diff --git a/tutorial-contents-notebooks/201_torch_numpy.ipynb b/tutorial-contents-notebooks/201_torch_numpy.ipynb index 82fbfe6..ad19bba 100644 --- a/tutorial-contents-notebooks/201_torch_numpy.ipynb +++ b/tutorial-contents-notebooks/201_torch_numpy.ipynb @@ -183,14 +183,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\nmatrix multiplication (matmul) \nnumpy: [[ 7 10]\n [15 22]] \ntorch: tensor([[ 7., 10.],\n [ 15., 22.]])\n" + "\nmatrix multiplication (matmul) \nnumpy: [[ 7 10]\n [15 22]] \ntorch: tensor([[ 7., 10.],\n [15., 22.]])\n" ] } ], @@ -208,29 +208,29 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "matrix multiplication (dot) \n", - "numpy: [[ 7 10]\n", - " [15 22]] \n", - "torch: 30.0\n" - ] + "ename": "RuntimeError", + "evalue": "dot: Expected 1-D argument self, but got 2-D", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m'\\nmatrix multiplication (dot)'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m'\\nnumpy: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# [[7, 10], [15, 22]]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;34m'\\ntorch: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# 30.0. Beware that torch.dot does not broadcast, only works for 1-dimensional tensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m )\n", + "\u001b[0;31mRuntimeError\u001b[0m: dot: Expected 1-D argument self, but got 2-D" + ], + "output_type": "error" } ], "source": [ "# incorrect method\n", "data = np.array(data)\n", - "tensor = torch.Tensor([1,2,3,4]\n", + "tensor = torch.Tensor(data)\n", "print(\n", " '\\nmatrix multiplication (dot)',\n", " '\\nnumpy: ', data.dot(data), # [[7, 10], [15, 22]]\n", - " '\\ntorch: ', torch.dot(tensor.dot(tensor) # 30.0. Beware that torch.dot does not broadcast, only works for 1-dimensional tensor\n", + " '\\ntorch: ', torch.dot(tensor.dot(tensor)) # NOT WORKING! Beware that torch.dot does not broadcast, only works for 1-dimensional tensor\n", ")" ] },