{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 201 Torch and Numpy\n", "\n", "View more, visit my tutorial page: https://mofanpy.com/tutorials/\n", "My Youtube Channel: https://www.youtube.com/user/MorvanZhou\n", "\n", "Dependencies:\n", "* torch: 0.1.11\n", "* numpy\n", "\n", "Details about math operation in torch can be found in: http://pytorch.org/docs/torch.html#math-operations\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import torch\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\nnumpy array: [[0 1 2]\n [3 4 5]] \ntorch tensor: tensor([[ 0, 1, 2],\n [ 3, 4, 5]], dtype=torch.int32) \ntensor to array: [[0 1 2]\n [3 4 5]]\n" ] } ], "source": [ "# convert numpy to tensor or vise versa\n", "np_data = np.arange(6).reshape((2, 3))\n", "torch_data = torch.from_numpy(np_data)\n", "tensor2array = torch_data.numpy()\n", "print(\n", " '\\nnumpy array:', np_data, # [[0 1 2], [3 4 5]]\n", " '\\ntorch tensor:', torch_data, # 0 1 2 \\n 3 4 5 [torch.LongTensor of size 2x3]\n", " '\\ntensor to array:', tensor2array, # [[0 1 2], [3 4 5]]\n", ")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\nabs \nnumpy: [1 2 1 2] \ntorch: tensor([ 1., 2., 1., 2.])\n" ] } ], "source": [ "# abs\n", "data = [-1, -2, 1, 2]\n", "tensor = torch.FloatTensor(data) # 32-bit floating point\n", "print(\n", " '\\nabs',\n", " '\\nnumpy: ', np.abs(data), # [1 2 1 2]\n", " '\\ntorch: ', torch.abs(tensor) # [1 2 1 2]\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([ 1., 2., 1., 2.])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tensor.abs()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\nsin \nnumpy: [-0.84147098 -0.90929743 0.84147098 0.90929743] \ntorch: tensor([-0.8415, -0.9093, 0.8415, 0.9093])\n" ] } ], "source": [ "# sin\n", "print(\n", " '\\nsin',\n", " '\\nnumpy: ', np.sin(data), # [-0.84147098 -0.90929743 0.84147098 0.90929743]\n", " '\\ntorch: ', torch.sin(tensor) # [-0.8415 -0.9093 0.8415 0.9093]\n", ")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([ 0.2689, 0.1192, 0.7311, 0.8808])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tensor.sigmoid()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([ 0.3679, 0.1353, 2.7183, 7.3891])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tensor.exp()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\nmean \nnumpy: 0.0 \ntorch: tensor(0.)\n" ] } ], "source": [ "# mean\n", "print(\n", " '\\nmean',\n", " '\\nnumpy: ', np.mean(data), # 0.0\n", " '\\ntorch: ', torch.mean(tensor) # 0.0\n", ")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\nmatrix multiplication (matmul) \nnumpy: [[ 7 10]\n [15 22]] \ntorch: tensor([[ 7., 10.],\n [15., 22.]])\n" ] } ], "source": [ "# matrix multiplication\n", "data = [[1,2], [3,4]]\n", "tensor = torch.FloatTensor(data) # 32-bit floating point\n", "# correct method\n", "print(\n", " '\\nmatrix multiplication (matmul)',\n", " '\\nnumpy: ', np.matmul(data, data), # [[7, 10], [15, 22]]\n", " '\\ntorch: ', torch.mm(tensor, tensor) # [[7, 10], [15, 22]]\n", ")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "ename": "RuntimeError", "evalue": "dot: Expected 1-D argument self, but got 2-D", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m'\\nmatrix multiplication (dot)'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m'\\nnumpy: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# [[7, 10], [15, 22]]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;34m'\\ntorch: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# 30.0. Beware that torch.dot does not broadcast, only works for 1-dimensional tensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m )\n", "\u001b[0;31mRuntimeError\u001b[0m: dot: Expected 1-D argument self, but got 2-D" ], "output_type": "error" } ], "source": [ "# incorrect method\n", "data = np.array(data)\n", "tensor = torch.Tensor(data)\n", "print(\n", " '\\nmatrix multiplication (dot)',\n", " '\\nnumpy: ', data.dot(data), # [[7, 10], [15, 22]]\n", " '\\ntorch: ', torch.dot(tensor.dot(tensor)) # NOT WORKING! Beware that torch.dot does not broadcast, only works for 1-dimensional tensor\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that:\n", "\n", "torch.dot(tensor1, tensor2) → float\n", "\n", "Computes the dot product (inner product) of two tensors. Both tensors are treated as 1-D vectors." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 7., 10.],\n [ 15., 22.]])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tensor.mm(tensor)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 1., 4.],\n [ 9., 16.]])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tensor * tensor" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(7.)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.dot(torch.Tensor([2, 3]), torch.Tensor([2, 1]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }