""" View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou More about Reinforcement learning: https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/ Dependencies: torch: 0.1.11 gym: 0.8.1 numpy """ import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import numpy as np import gym # Hyper Parameters BATCH_SIZE = 32 LR = 0.01 # learning rate EPSILON = 0.9 # greedy policy GAMMA = 0.9 # reward discount TARGET_REPLACE_ITER = 100 # target update frequency MEMORY_CAPACITY = 2000 env = gym.make('CartPole-v0') env = env.unwrapped N_ACTIONS = env.action_space.n N_STATES = env.observation_space.shape[0] class Net(nn.Module): def __init__(self, ): super(Net, self).__init__() self.fc1 = nn.Linear(N_STATES, 10) self.fc1.weight.data.normal_(0, 0.1) # initialization self.out = nn.Linear(10, N_ACTIONS) self.out.weight.data.normal_(0, 0.1) # initialization def forward(self, x): x = self.fc1(x) x = F.relu(x) actions_value = self.out(x) return actions_value class DQN(object): def __init__(self): self.eval_net, self.target_net = Net(), Net() self.learn_step_counter = 0 # for target updating self.memory_counter = 0 # for storing memory self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2)) # initialize memory self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR) self.loss_func = nn.MSELoss() def choose_action(self, x): x = Variable(torch.unsqueeze(torch.FloatTensor(x), 0)) # input only one sample if np.random.uniform() < EPSILON: # greedy actions_value = self.eval_net.forward(x) action = torch.max(actions_value, 1)[1].data.numpy()[0, 0] # return the argmax else: # random action = np.random.randint(0, N_ACTIONS) return action def store_transition(self, s, a, r, s_): transition = np.hstack((s, [a, r], s_)) # replace the old memory with new memory index = self.memory_counter % MEMORY_CAPACITY self.memory[index, :] = transition self.memory_counter += 1 def learn(self): # target parameter update if self.learn_step_counter % TARGET_REPLACE_ITER == 0: self.target_net.load_state_dict(self.eval_net.state_dict()) self.learn_step_counter += 1 # sample batch transitions sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE) b_memory = self.memory[sample_index, :] b_s = Variable(torch.FloatTensor(b_memory[:, :N_STATES])) b_a = Variable(torch.LongTensor(b_memory[:, N_STATES:N_STATES+1].astype(int))) b_r = Variable(torch.FloatTensor(b_memory[:, N_STATES+1:N_STATES+2])) b_s_ = Variable(torch.FloatTensor(b_memory[:, -N_STATES:])) # q_eval w.r.t the action in experience q_eval = self.eval_net(b_s).gather(1, b_a) # shape (batch, 1) q_next = self.target_net(b_s_).detach() # detach from graph, don't backpropagate q_target = b_r + GAMMA * q_next.max(1)[0] # shape (batch, 1) loss = self.loss_func(q_eval, q_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() dqn = DQN() print('\nCollecting experience...') for i_episode in range(400): s = env.reset() ep_r = 0 while True: env.render() a = dqn.choose_action(s) # take action s_, r, done, info = env.step(a) # modify the reward x, x_dot, theta, theta_dot = s_ r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8 r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5 r = r1 + r2 dqn.store_transition(s, a, r, s_) ep_r += r if dqn.memory_counter > MEMORY_CAPACITY: dqn.learn() if done: print('Ep: ', i_episode, '| Ep_r: ', round(ep_r, 2)) if done: break s = s_