Files
PyTorch-Tutorial/tutorial-contents-notebooks/303_build_nn_quickly.ipynb
2017-06-22 23:05:34 +02:00

134 lines
2.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 303 Build NN Quickly\n",
"\n",
"View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/\n",
"My Youtube Channel: https://www.youtube.com/user/MorvanZhou\n",
"\n",
"Dependencies:\n",
"* torch: 0.1.11"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn.functional as F"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# replace following class code with an easy sequential network\n",
"class Net(torch.nn.Module):\n",
" def __init__(self, n_feature, n_hidden, n_output):\n",
" super(Net, self).__init__()\n",
" self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer\n",
" self.predict = torch.nn.Linear(n_hidden, n_output) # output layer\n",
"\n",
" def forward(self, x):\n",
" x = F.relu(self.hidden(x)) # activation function for hidden layer\n",
" x = self.predict(x) # linear output\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"net1 = Net(1, 10, 1)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# easy and fast way to build your network\n",
"net2 = torch.nn.Sequential(\n",
" torch.nn.Linear(1, 10),\n",
" torch.nn.ReLU(),\n",
" torch.nn.Linear(10, 1)\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Net (\n",
" (hidden): Linear (1 -> 10)\n",
" (predict): Linear (10 -> 1)\n",
")\n",
"Sequential (\n",
" (0): Linear (1 -> 10)\n",
" (1): ReLU ()\n",
" (2): Linear (10 -> 1)\n",
")\n"
]
}
],
"source": [
"print(net1) # net1 architecture\n",
"print(net2) # net2 architecture"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}