Every time the function is called, if the list parameter is not explicitly passed, the same default list will be used. This leads to the sharing of the same list object between function calls, resulting in a cumulative effect.

This commit is contained in:
kainstan
2023-06-06 10:31:28 +08:00
parent 6d7ee17dbd
commit 344579fa79

View File

@ -28,6 +28,7 @@ proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response): def get_full_error(chunk, stream_response):
""" """
获取完整的从Openai返回的报错 获取完整的从Openai返回的报错
@ -40,7 +41,7 @@ def get_full_error(chunk, stream_response):
return chunk return chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): def predict_no_ui_long_connection(inputs, llm_kwargs, history=None, sys_prompt="", observe_window=None, console_slience=False):
""" """
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。 发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs inputs
@ -54,7 +55,9 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
observe_window = None observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗 用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
""" """
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 if history is None:
history = []
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True) headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0 retry = 0
while True: while True:
@ -63,14 +66,14 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
from .bridge_all import model_info from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies, response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e: except requests.exceptions.ReadTimeout as e:
retry += 1 retry += 1
traceback.print_exc() traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines() stream_response = response.iter_lines()
result = '' result = ''
while True: while True:
try: chunk = next(stream_response).decode() try: chunk = next(stream_response).decode()
@ -100,7 +103,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if len(observe_window) >= 2: if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。") raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta) else:
raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'length': if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。") raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
return result return result