合并mater

This commit is contained in:
w_xiaolizu
2023-05-26 14:28:19 +08:00
34 changed files with 4717 additions and 1150 deletions

View File

@ -1,6 +1,6 @@
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
from toolbox import update_ui, trimmed_format_exc
from toolbox import CatchException, report_execption, write_results_to_file, zip_folder
class PaperFileGroup():
def __init__(self):
@ -34,8 +34,27 @@ class PaperFileGroup():
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")
print('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
for r, k in zip(self.sp_file_result, self.sp_file_index):
self.file_result[k] += r
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
def write_result(self):
manifest = []
for path, res in zip(self.file_paths, self.file_result):
with open(path + '.polish.tex', 'w', encoding='utf8') as f:
manifest.append(path + '.polish.tex')
f.write(res)
return manifest
def zip_result(self):
import os, time
folder = os.path.dirname(self.file_paths[0])
t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
zip_folder(folder, './gpt_log/', f'{t}-polished.zip')
def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='polish'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
@ -58,28 +77,27 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.run_file_split(max_token_limit=1024)
n_split = len(pfg.sp_file_contents)
# <-------- 抽取摘要 ---------->
# if language == 'en':
# abs_extract_inputs = f"Please write an abstract for this paper"
# # 单线获取文章meta信息
# paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
# inputs=abs_extract_inputs,
# inputs_show_user=f"正在抽取摘要信息。",
# llm_kwargs=llm_kwargs,
# chatbot=chatbot, history=[],
# sys_prompt="Your job is to collect information from materials。",
# )
# <-------- 多线程润色开始 ---------->
if language == 'en':
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
if mode == 'polish':
inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, " +
"improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
else:
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
r"Answer me only with the revised text:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
elif language == 'zh':
inputs_array = [f"以下是一篇学术论文中的一段内容请将此部分润色以满足学术标准提高语法、清晰度和整体可读性不要修改任何LaTeX命令例如\section\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
if mode == 'polish':
inputs_array = [f"以下是一篇学术论文中的一段内容请将此部分润色以满足学术标准提高语法、清晰度和整体可读性不要修改任何LaTeX命令例如\section\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
else:
inputs_array = [f"以下是一篇学术论文中的一段内容请对这部分内容进行语法矫正。不要修改任何LaTeX命令例如\section\cite和方程式" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag]
sys_prompt_array=["你是一位专业的中文学术论文作家。" for _ in range(n_split)]
@ -95,6 +113,17 @@ def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
scroller_max_len = 80
)
# <-------- 文本碎片重组为完整的tex文件整理结果为压缩包 ---------->
try:
pfg.sp_file_result = []
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
pfg.sp_file_result.append(gpt_say)
pfg.merge_result()
pfg.write_result()
pfg.zip_result()
except:
print(trimmed_format_exc())
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name)
@ -172,4 +201,42 @@ def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')
@CatchException
def Latex英文纠错(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Latex项目进行纠错。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en', mode='proofread')

View File

@ -99,6 +99,25 @@ def test_解析ipynb文件():
print(cb)
def test_数学动画生成manim():
from crazy_functions.数学动画生成manim import 动画生成
txt = "A ball split into 2, and then split into 4, and finally split into 8."
for cookies, cb, hist, msg in 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
def test_Markdown多语言():
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
txt = "README.md"
history = []
for lang in ["English", "French", "Japanese", "Korean", "Russian", "Italian", "German", "Portuguese", "Arabic"]:
plugin_kwargs = {"advanced_arg": lang}
for cookies, cb, hist, msg in Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
print(cb)
# test_解析一个Python项目()
# test_Latex英文润色()
# test_Markdown中译英()
@ -108,7 +127,9 @@ def test_解析ipynb文件():
# test_下载arxiv论文并翻译摘要()
# test_解析一个Cpp项目()
# test_联网回答问题()
test_解析ipynb文件()
# test_解析ipynb文件()
# test_数学动画生成manim()
test_Markdown多语言()
input("程序完成,回车退出。")
print("退出。")

View File

@ -259,9 +259,6 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
time.sleep(refresh_interval)
cnt += 1
worker_done = [h.done() for h in futures]
if all(worker_done):
executor.shutdown()
break
# 更好的UI视觉效果
observe_win = []
# 每个线程都要“喂狗”(看门狗)
@ -280,7 +277,10 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
# 在前端打印些好玩的东西
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
if all(worker_done):
executor.shutdown()
break
# 异步任务结束
gpt_response_collection = []
for inputs_show_user, f in zip(inputs_show_user_array, futures):

View File

@ -1,4 +1,4 @@
from toolbox import update_ui
from toolbox import update_ui, trimmed_format_exc, gen_time_str
from toolbox import CatchException, report_execption, write_results_to_file
fast_debug = False
@ -32,9 +32,21 @@ class PaperFileGroup():
self.sp_file_contents.append(segment)
self.sp_file_index.append(index)
self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.md")
print('Segmentation: done')
def merge_result(self):
self.file_result = ["" for _ in range(len(self.file_paths))]
for r, k in zip(self.sp_file_result, self.sp_file_index):
self.file_result[k] += r
def write_result(self, language):
manifest = []
for path, res in zip(self.file_paths, self.file_result):
with open(path + f'.{gen_time_str()}.{language}.md', 'w', encoding='utf8') as f:
manifest.append(path + f'.{gen_time_str()}.{language}.md')
f.write(res)
return manifest
def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
import time, os, re
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
@ -53,7 +65,7 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
pfg.run_file_split(max_token_limit=1500)
n_split = len(pfg.sp_file_contents)
# <-------- 多线程润色开始 ---------->
# <-------- 多线程翻译开始 ---------->
if language == 'en->zh':
inputs_array = ["This is a Markdown file, translate it into Chinese, do not modify any existing Markdown commands:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
@ -64,6 +76,11 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
else:
inputs_array = [f"This is a Markdown file, translate it into {language}, do not modify any existing Markdown commands, only answer me with translated results:" +
f"\n\n{frag}" for frag in pfg.sp_file_contents]
inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
@ -75,6 +92,14 @@ def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, ch
# max_workers=5, # OpenAI所允许的最大并行过载
scroller_max_len = 80
)
try:
pfg.sp_file_result = []
for i_say, gpt_say in zip(gpt_response_collection[0::2], gpt_response_collection[1::2]):
pfg.sp_file_result.append(gpt_say)
pfg.merge_result()
pfg.write_result(language)
except:
print(trimmed_format_exc())
# <-------- 整理结果,退出 ---------->
create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
@ -183,4 +208,40 @@ def Markdown中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')
@CatchException
def Markdown翻译指定语言(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"对整个Markdown项目进行翻译。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import tiktoken
import glob, os
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
history = [] # 清空历史,以免输入溢出
success, file_manifest, project_folder = get_files_from_everything(txt)
if not success:
# 什么都没有
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if len(file_manifest) == 0:
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.md文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
language = plugin_kwargs.get("advanced_arg", 'Chinese')
yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language=language)

View File

@ -58,14 +58,17 @@ def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt):
import os
import copy
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1280
generated_conclusion_files = []
generated_html_files = []
for index, fp in enumerate(file_manifest):
# 读取PDF文件
file_content, page_one = read_and_clean_pdf_text(fp)
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
# 递归地切割PDF文件
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
@ -74,7 +77,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
@ -100,15 +103,15 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
# max_workers=5 # OpenAI所允许的最大并行过载
)
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
# 整理报告的格式
for i,k in enumerate(gpt_response_collection):
for i,k in enumerate(gpt_response_collection_md):
if i%2==0:
gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]\n "
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}] \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]\n "
else:
gpt_response_collection[i] = gpt_response_collection[i]
gpt_response_collection_md[i] = gpt_response_collection_md[i]
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
final.extend(gpt_response_collection)
final.extend(gpt_response_collection_md)
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
res = write_results_to_file(final, file_name=create_report_file_name)
@ -117,15 +120,97 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
chatbot.append((f"{fp}完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# write html
try:
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
else:
gpt_response_collection_html[i] = gpt_response_collection_html[i]
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
ch.save_file(create_report_file_name)
generated_html_files.append(f'./gpt_log/{create_report_file_name}')
except:
from toolbox import trimmed_format_exc
print('writing html result failed:', trimmed_format_exc())
# 准备文件的下载
import shutil
for pdf_path in generated_conclusion_files:
# 重命名文件
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
rename_file = f'./gpt_log/翻译-{os.path.basename(pdf_path)}'
if os.path.exists(rename_file):
os.remove(rename_file)
shutil.copyfile(pdf_path, rename_file)
if os.path.exists(pdf_path):
os.remove(pdf_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
for html_path in generated_html_files:
# 重命名文件
rename_file = f'./gpt_log/翻译-{os.path.basename(html_path)}'
if os.path.exists(rename_file):
os.remove(rename_file)
shutil.copyfile(html_path, rename_file)
if os.path.exists(html_path):
os.remove(html_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
class construct_html():
def __init__(self) -> None:
self.css = """
.row {
display: flex;
flex-wrap: wrap;
}
.column {
flex: 1;
padding: 10px;
}
.table-header {
font-weight: bold;
border-bottom: 1px solid black;
}
.table-row {
border-bottom: 1px solid lightgray;
}
.table-cell {
padding: 5px;
}
"""
self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>'
def add_row(self, a, b):
tmp = """
<div class="row table-row">
<div class="column table-cell">REPLACE_A</div>
<div class="column table-cell">REPLACE_B</div>
</div>
"""
from toolbox import markdown_convertion
tmp = tmp.replace('REPLACE_A', markdown_convertion(a))
tmp = tmp.replace('REPLACE_B', markdown_convertion(b))
self.html_string += tmp
def save_file(self, file_name):
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
f.write(self.html_string.encode('utf-8', 'ignore').decode())

View File

@ -0,0 +1,187 @@
from toolbox import CatchException, update_ui, gen_time_str
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import input_clipping
def inspect_dependency(chatbot, history):
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import manim
return True
except:
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖,安装方法:```pip install manimgl```"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return False
def eval_manim(code):
import subprocess, sys, os, shutil
with open('gpt_log/MyAnimation.py', 'w', encoding='utf8') as f:
f.write(code)
def get_class_name(class_string):
import re
# Use regex to extract the class name
class_name = re.search(r'class (\w+)\(', class_string).group(1)
return class_name
class_name = get_class_name(code)
try:
subprocess.check_output([sys.executable, '-c', f"from gpt_log.MyAnimation import {class_name}; {class_name}().render()"])
shutil.move('media/videos/1080p60/{class_name}.mp4', f'gpt_log/{class_name}-{gen_time_str()}.mp4')
return f'gpt_log/{gen_time_str()}.mp4'
except subprocess.CalledProcessError as e:
output = e.output.decode()
print(f"Command returned non-zero exit status {e.returncode}: {output}.")
return f"Evaluating python script failed: {e.output}."
except:
print('generating mp4 failed')
return "Generating mp4 failed."
def get_code_block(reply):
import re
pattern = r"```([\s\S]*?)```" # regex pattern to match code blocks
matches = re.findall(pattern, reply) # find all code blocks in text
if len(matches) != 1:
raise RuntimeError("GPT is not generating proper code.")
return matches[0].strip('python') # code block
@CatchException
def 动画生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数,暂时没有用武之地
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
# 清空历史,以免输入溢出
history = []
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"生成数学动画, 此插件处于开发阶段, 建议暂时不要使用, 作者: binary-husky, 插件初始化中 ..."
])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖, 如果缺少依赖, 则给出安装建议
dep_ok = yield from inspect_dependency(chatbot=chatbot, history=history) # 刷新界面
if not dep_ok: return
# 输入
i_say = f'Generate a animation to show: ' + txt
demo = ["Here is some examples of manim", examples_of_manim()]
_, demo = input_clipping(inputs="", history=demo, max_token_limit=2560)
# 开始
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=i_say,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=demo,
sys_prompt=
r"Write a animation script with 3blue1brown's manim. "+
r"Please begin with `from manim import *`. " +
r"Answer me with a code block wrapped by ```."
)
chatbot.append(["开始生成动画", "..."])
history.extend([i_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 将代码转为动画
code = get_code_block(gpt_say)
res = eval_manim(code)
chatbot.append(("生成的视频文件路径", res))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
# 在这里放一些网上搜集的demo辅助gpt生成代码
def examples_of_manim():
return r"""
```
class MovingGroupToDestination(Scene):
def construct(self):
group = VGroup(Dot(LEFT), Dot(ORIGIN), Dot(RIGHT, color=RED), Dot(2 * RIGHT)).scale(1.4)
dest = Dot([4, 3, 0], color=YELLOW)
self.add(group, dest)
self.play(group.animate.shift(dest.get_center() - group[2].get_center()))
self.wait(0.5)
```
```
class LatexWithMovingFramebox(Scene):
def construct(self):
text=MathTex(
"\\frac{d}{dx}f(x)g(x)=","f(x)\\frac{d}{dx}g(x)","+",
"g(x)\\frac{d}{dx}f(x)"
)
self.play(Write(text))
framebox1 = SurroundingRectangle(text[1], buff = .1)
framebox2 = SurroundingRectangle(text[3], buff = .1)
self.play(
Create(framebox1),
)
self.wait()
self.play(
ReplacementTransform(framebox1,framebox2),
)
self.wait()
```
```
class PointWithTrace(Scene):
def construct(self):
path = VMobject()
dot = Dot()
path.set_points_as_corners([dot.get_center(), dot.get_center()])
def update_path(path):
previous_path = path.copy()
previous_path.add_points_as_corners([dot.get_center()])
path.become(previous_path)
path.add_updater(update_path)
self.add(path, dot)
self.play(Rotating(dot, radians=PI, about_point=RIGHT, run_time=2))
self.wait()
self.play(dot.animate.shift(UP))
self.play(dot.animate.shift(LEFT))
self.wait()
```
```
# do not use get_graph, this funciton is deprecated
class ExampleFunctionGraph(Scene):
def construct(self):
cos_func = FunctionGraph(
lambda t: np.cos(t) + 0.5 * np.cos(7 * t) + (1 / 7) * np.cos(14 * t),
color=RED,
)
sin_func_1 = FunctionGraph(
lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t),
color=BLUE,
)
sin_func_2 = FunctionGraph(
lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t),
x_range=[-4, 4],
color=GREEN,
).move_to([0, 1, 0])
self.add(cos_func, sin_func_1, sin_func_2)
```
"""

View File

@ -7,6 +7,7 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
msg = '正常'
summary_batch_isolation = True
inputs_array = []
inputs_show_user_array = []
history_array = []
@ -59,10 +60,17 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
# 把“请对下面的程序文件做一个概述” 替换成 精简的 "文件名:{all_file[index]}"
for index, content in enumerate(this_iteration_gpt_response_collection):
if index%2==0: this_iteration_gpt_response_collection[index] = f"{file_rel_path[index//2]}" # 只保留文件名节省token
previous_iteration_files.extend([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
this_iteration_files = [os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)]
previous_iteration_files.extend(this_iteration_files)
previous_iteration_files_string = ', '.join(previous_iteration_files)
current_iteration_focus = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(this_iteration_file_manifest)])
i_say = f'用一张Markdown表格简要描述以下文件的功能{previous_iteration_files_string}。根据以上分析,用一句话概括程序的整体功能。'
current_iteration_focus = ', '.join(this_iteration_files)
if summary_batch_isolation: focus = current_iteration_focus
else: focus = previous_iteration_files_string
i_say = f'用一张Markdown表格简要描述以下文件的功能{focus}。根据以上分析,用一句话概括程序的整体功能。'
if last_iteration_result != "":
sys_prompt_additional = "已知某些代码的局部作用是:" + last_iteration_result + "\n请继续分析其他源代码,从而更全面地理解项目的整体功能。"
else:
sys_prompt_additional = ""
inputs_show_user = f'根据以上分析,对程序的整体功能和构架重新做出概括,由于输入长度限制,可能需要分组处理,本组文件为 {current_iteration_focus} + 已经汇总的文件组。'
this_iteration_history = copy.deepcopy(this_iteration_gpt_response_collection)
this_iteration_history.append(last_iteration_result)
@ -71,10 +79,19 @@ def 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=inputs, inputs_show_user=inputs_show_user, llm_kwargs=llm_kwargs, chatbot=chatbot,
history=this_iteration_history_feed, # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。")
report_part_2.extend([i_say, result])
last_iteration_result = result
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
summary = "请用一句话概括这些文件的整体功能"
summary_result = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=summary,
inputs_show_user=summary,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[i_say, result], # 迭代之前的分析
sys_prompt="你是一个程序架构分析师,正在分析一个项目的源代码。" + sys_prompt_additional)
report_part_2.extend([i_say, result])
last_iteration_result = summary_result
file_manifest = file_manifest[batchsize:]
gpt_response_collection = gpt_response_collection[batchsize*2:]
@ -232,6 +249,25 @@ def 解析一个Golang项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Rust项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
history = [] # 清空历史,以免输入溢出
import glob, os
if os.path.exists(txt):
project_folder = txt
else:
if txt == "": txt = '空空如也的输入栏'
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.rs', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.toml', recursive=True)] + \
[f for f in glob.glob(f'{project_folder}/**/*.lock', recursive=True)]
if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何golang文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from 解析源代码新(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
@CatchException
def 解析一个Lua项目(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):