合并master
This commit is contained in:
10
Dockerfile
10
Dockerfile
@ -10,12 +10,16 @@ RUN echo '[global]' > /etc/pip.conf && \
|
||||
|
||||
WORKDIR /gpt
|
||||
|
||||
# 装载项目文件
|
||||
COPY . .
|
||||
|
||||
|
||||
|
||||
# 安装依赖
|
||||
COPY requirements.txt ./
|
||||
COPY ./docs/gradio-3.32.2-py3-none-any.whl ./docs/gradio-3.32.2-py3-none-any.whl
|
||||
RUN pip3 install -r requirements.txt
|
||||
# 装载项目文件
|
||||
COPY . .
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
70
README.md
70
README.md
@ -43,10 +43,11 @@ chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
|
||||
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
||||
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
|
||||
互联网信息聚合+GPT | [函数插件] 一键[让GPT先从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck),再回答问题,让信息永不过时
|
||||
⭐Arxiv论文精细翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),迄今为止最好的论文翻译工具⭐
|
||||
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
|
||||
多线程函数插件支持 | 支持多线调用chatgpt,一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
|
||||
启动暗色gradio[主题](https://github.com/binary-husky/chatgpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
||||
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持,[API2D](https://api2d.com/)接口支持 | 同时被GPT3.5、GPT4、[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
|
||||
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
|
||||
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama),[RWKV](https://github.com/BlinkDL/ChatRWKV)和[盘古α](https://openi.org.cn/pangu/)
|
||||
更多新功能展示(图像生成等) …… | 见本文档结尾处 ……
|
||||
|
||||
@ -227,38 +228,33 @@ docker-compose up
|
||||
|
||||
1. 对话保存功能。在函数插件区调用 `保存当前的对话` 即可将当前对话保存为可读+可复原的html文件,
|
||||
另外在函数插件区(下拉菜单)调用 `载入对话历史存档` ,即可还原之前的会话。
|
||||
Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史html存档缓存,点击 `删除所有本地对话历史记录` 可以删除所有html存档缓存。
|
||||
Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史html存档缓存。
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
2. 生成报告。大部分插件都会在执行结束后,生成工作报告
|
||||
2. ⭐Latex/Arxiv论文翻译功能⭐
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="300" >
|
||||
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="300" >
|
||||
<img src="https://user-images.githubusercontent.com/96192199/227504005-efeaefe0-b687-49d0-bf95-2d7b7e66c348.png" height="300" >
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
|
||||
</div>
|
||||
|
||||
3. 模块化功能设计,简单的接口却能支持强大的功能
|
||||
3. 生成报告。大部分插件都会在执行结束后,生成工作报告
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/96192199/227503770-fe29ce2c-53fd-47b0-b0ff-93805f0c2ff4.png" height="250" >
|
||||
<img src="https://user-images.githubusercontent.com/96192199/227504617-7a497bb3-0a2a-4b50-9a8a-95ae60ea7afd.png" height="250" >
|
||||
</div>
|
||||
|
||||
4. 模块化功能设计,简单的接口却能支持强大的功能
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
|
||||
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
|
||||
</div>
|
||||
|
||||
4. 这是一个能够“自我译解”的开源项目
|
||||
5. 译解其他开源项目
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/96192199/226936850-c77d7183-0749-4c1c-9875-fd4891842d0c.png" width="500" >
|
||||
</div>
|
||||
|
||||
5. 译解其他开源项目,不在话下
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="500" >
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" width="500" >
|
||||
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
|
||||
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
|
||||
</div>
|
||||
|
||||
6. 装饰[live2d](https://github.com/fghrsh/live2d_demo)的小功能(默认关闭,需要修改`config.py`)
|
||||
@ -283,13 +279,15 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
||||
|
||||
10. Latex全文校对纠错
|
||||
<div align="center">
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" width="500" >
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
|
||||
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
## 版本:
|
||||
- version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级)
|
||||
- version 3.4(Todo): 完善chatglm本地大模型的多线支持
|
||||
- version 3.4: +arxiv论文翻译、latex论文批改功能
|
||||
- version 3.3: +互联网信息综合功能
|
||||
- version 3.2: 函数插件支持更多参数接口 (保存对话功能, 解读任意语言代码+同时询问任意的LLM组合)
|
||||
- version 3.1: 支持同时问询多个gpt模型!支持api2d,支持多个apikey负载均衡
|
||||
@ -307,30 +305,32 @@ gpt_academic开发者QQ群-2:610599535
|
||||
|
||||
- 已知问题
|
||||
- 某些浏览器翻译插件干扰此软件前端的运行
|
||||
- 官方Gradio目前有很多兼容性Bug,请务必使用requirement.txt安装Gradio
|
||||
- 官方Gradio目前有很多兼容性Bug,请务必使用`requirement.txt`安装Gradio
|
||||
|
||||
## 参考与学习
|
||||
|
||||
```
|
||||
代码中参考了很多其他优秀项目中的设计,主要包括:
|
||||
代码中参考了很多其他优秀项目中的设计,顺序不分先后:
|
||||
|
||||
# 项目1:清华ChatGLM-6B:
|
||||
# 清华ChatGLM-6B:
|
||||
https://github.com/THUDM/ChatGLM-6B
|
||||
|
||||
# 项目2:清华JittorLLMs:
|
||||
# 清华JittorLLMs:
|
||||
https://github.com/Jittor/JittorLLMs
|
||||
|
||||
# 项目3:Edge-GPT:
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
|
||||
# 项目4:ChuanhuChatGPT:
|
||||
https://github.com/GaiZhenbiao/ChuanhuChatGPT
|
||||
|
||||
# 项目5:ChatPaper:
|
||||
# ChatPaper:
|
||||
https://github.com/kaixindelele/ChatPaper
|
||||
|
||||
# 更多:
|
||||
# Edge-GPT:
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
|
||||
# ChuanhuChatGPT:
|
||||
https://github.com/GaiZhenbiao/ChuanhuChatGPT
|
||||
|
||||
# Oobabooga one-click installer:
|
||||
https://github.com/oobabooga/one-click-installers
|
||||
|
||||
# More:
|
||||
https://github.com/gradio-app/gradio
|
||||
https://github.com/fghrsh/live2d_demo
|
||||
https://github.com/oobabooga/one-click-installers
|
||||
```
|
||||
|
||||
@ -56,7 +56,9 @@ MAX_RETRY = 2
|
||||
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 同时它必须被包含在AVAIL_LLM_MODELS切换列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", 'proxy-gpt-4', "api2d-gpt-4", "chatglm", "moss", "newbing", "newbing-free", "stack-claude"]
|
||||
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", 'proxy-gpt-4', "api2d-gpt-4", "chatglm", "moss", "newbing", "newbing-free", "stack-claude"]
|
||||
|
||||
# P.S. 其他可用的模型还包括 ["newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||
|
||||
@ -75,9 +75,18 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
|
||||
@CatchException
|
||||
def 读取知识库作答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port=-1):
|
||||
# resolve deps
|
||||
try:
|
||||
from zh_langchain import construct_vector_store
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from .crazy_utils import knowledge_archive_interface
|
||||
except Exception as e:
|
||||
chatbot.append(["依赖不足", "导入依赖失败。正在尝试自动安装,请查看终端的输出或耐心等待..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
from .crazy_utils import try_install_deps
|
||||
try_install_deps(['zh_langchain==0.2.0'])
|
||||
|
||||
# < ------------------- --------------- >
|
||||
from .crazy_utils import knowledge_archive_interface
|
||||
kai = knowledge_archive_interface()
|
||||
|
||||
if 'langchain_plugin_embedding' in chatbot._cookies:
|
||||
|
||||
@ -5,7 +5,7 @@ pj = os.path.join
|
||||
ARXIV_CACHE_DIR = os.path.expanduser(f"~/arxiv_cache/")
|
||||
|
||||
# =================================== 工具函数 ===============================================
|
||||
沙雕GPT啊别犯这些低级翻译错误 = 'You must to translate "agent" to "智能体". '
|
||||
专业词汇声明 = 'If the term "agent" is used in this section, it should be translated to "智能体". '
|
||||
def switch_prompt(pfg, mode):
|
||||
"""
|
||||
Generate prompts and system prompts based on the mode for proofreading or translating.
|
||||
@ -25,7 +25,7 @@ def switch_prompt(pfg, mode):
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
elif mode == 'translate_zh':
|
||||
inputs_array = [r"Below is a section from an English academic paper, translate it into Chinese." + 沙雕GPT啊别犯这些低级翻译错误 +
|
||||
inputs_array = [r"Below is a section from an English academic paper, translate it into Chinese. " + 专业词汇声明 +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Answer me only with the translated text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
@ -65,8 +65,10 @@ def move_project(project_folder, arxiv_id=None):
|
||||
new_workfolder = pj(ARXIV_CACHE_DIR, arxiv_id, 'workfolder')
|
||||
else:
|
||||
new_workfolder = f'gpt_log/{gen_time_str()}'
|
||||
try: shutil.rmtree(new_workfolder)
|
||||
except: pass
|
||||
try:
|
||||
shutil.rmtree(new_workfolder)
|
||||
except:
|
||||
pass
|
||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||
return new_workfolder
|
||||
|
||||
@ -80,7 +82,14 @@ def arxiv_download(chatbot, history, txt):
|
||||
promote_file_to_downloadzone(target_file)
|
||||
return target_file
|
||||
return False
|
||||
|
||||
def is_float(s):
|
||||
try:
|
||||
float(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt):
|
||||
txt = 'https://arxiv.org/abs/' + txt
|
||||
if not txt.startswith('https://arxiv.org'):
|
||||
return txt, None
|
||||
|
||||
@ -132,12 +141,12 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time
|
||||
os.system(f'pdflatex -version')
|
||||
from .latex_utils import Latex精细分解与转化, 编译Latex差别
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_utils import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([ f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
@ -172,7 +181,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex差别(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread',
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
||||
|
||||
|
||||
@ -196,18 +205,18 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
# <-------------- information about this plugin ------------->
|
||||
chatbot.append([
|
||||
"函数插件功能?",
|
||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
"对整个Latex项目进行翻译, 生成中文PDF。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
import glob, os, time
|
||||
os.system(f'pdflatex -version')
|
||||
from .latex_utils import Latex精细分解与转化, 编译Latex差别
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_utils import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([ f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
@ -219,6 +228,8 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"发现已经存在翻译好的PDF文档")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
@ -226,6 +237,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
@ -247,7 +259,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex差别(chatbot, history, main_file_original='merge', main_file_modified='merge_translate_zh',
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_translate_zh',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
||||
|
||||
# <-------------- zip PDF ------------->
|
||||
@ -259,5 +271,6 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
|
||||
|
||||
# <-------------- we are done ------------->
|
||||
return success
|
||||
|
||||
@ -181,18 +181,14 @@ def test_Langchain知识库读取():
|
||||
|
||||
def test_Latex():
|
||||
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比, Latex翻译中文并重新编译PDF
|
||||
txt = "C:/Users/fuqingxu/Desktop/proofread"
|
||||
txt = "C:/Users/fuqingxu/Desktop/旧文件/gpt/paperx"
|
||||
txt = "C:/Users/fuqingxu/Desktop/旧文件/gpt/papery"
|
||||
txt = r"C:\Users\fuqingxu\Desktop\旧文件\gpt\latex2pdf\2023-06-03-14-57-06"
|
||||
txt = r"C:\Users\fuqingxu\Desktop\旧文件\gpt\latex2pdf\2023-06-03-15-40-20"
|
||||
txt = r"https://arxiv.org/abs/1902.03185"
|
||||
txt = r"C:\Users\fuqingxu\Desktop\旧文件\gpt\latex2pdf\2023-06-03-17-14-40"
|
||||
txt = r"https://arxiv.org/abs/2305.18290"
|
||||
txt = r"https://arxiv.org/abs/2305.17608"
|
||||
# txt = r"https://arxiv.org/abs/2306.00324"
|
||||
txt = r"https://arxiv.org/abs/2211.16068"
|
||||
|
||||
# txt = r"https://arxiv.org/abs/1706.03762"
|
||||
# txt = r"https://arxiv.org/abs/1902.03185"
|
||||
# txt = r"https://arxiv.org/abs/2305.18290"
|
||||
# txt = r"https://arxiv.org/abs/2305.17608"
|
||||
# txt = r"https://arxiv.org/abs/2211.16068" # ACE
|
||||
# txt = r"C:\Users\x\arxiv_cache\2211.16068\workfolder" # ACE
|
||||
txt = r"https://arxiv.org/abs/2002.09253"
|
||||
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
cli_printer.print(cb) # print(cb)
|
||||
|
||||
|
||||
@ -2,8 +2,111 @@ from toolbox import update_ui, update_ui_lastest_msg # 刷新Gradio前端界
|
||||
from toolbox import zip_folder, objdump, objload, promote_file_to_downloadzone
|
||||
import os, shutil
|
||||
import re
|
||||
import numpy as np
|
||||
pj = os.path.join
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
Part One
|
||||
Latex segmentation to a linklist
|
||||
========================================================================
|
||||
"""
|
||||
PRESERVE = 0
|
||||
TRANSFORM = 1
|
||||
|
||||
def split_worker(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
mask[res.span()[0]:res.span()[1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def split_worker_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Move area into preserve area
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = -1
|
||||
p = begin = end = res.regs[0][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
p += 1
|
||||
end = p+1
|
||||
mask[begin:end] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def split_worker_reverse_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Move area out of preserve area
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = 0
|
||||
p = begin = end = res.regs[1][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
p += 1
|
||||
end = p
|
||||
mask[begin:end] = TRANSFORM
|
||||
return text, mask
|
||||
|
||||
def split_worker_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
|
||||
"""
|
||||
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
|
||||
Add it to preserve area
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
def search_with_line_limit(text, mask):
|
||||
for res in pattern_compile.finditer(text):
|
||||
cmd = res.group(1) # begin{what}
|
||||
this = res.group(2) # content between begin and end
|
||||
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
|
||||
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
|
||||
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
|
||||
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
|
||||
this, this_mask = search_with_line_limit(this, this_mask)
|
||||
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
|
||||
else:
|
||||
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
return search_with_line_limit(text, mask)
|
||||
|
||||
class LinkedListNode():
|
||||
"""
|
||||
Linked List Node
|
||||
"""
|
||||
def __init__(self, string, preserve=True) -> None:
|
||||
self.string = string
|
||||
self.preserve = preserve
|
||||
self.next = None
|
||||
# self.begin_line = 0
|
||||
# self.begin_char = 0
|
||||
|
||||
def convert_to_linklist(text, mask):
|
||||
root = LinkedListNode("", preserve=True)
|
||||
current_node = root
|
||||
for c, m, i in zip(text, mask, range(len(text))):
|
||||
if (m==PRESERVE and current_node.preserve) \
|
||||
or (m==TRANSFORM and not current_node.preserve):
|
||||
# add
|
||||
current_node.string += c
|
||||
else:
|
||||
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
|
||||
current_node = current_node.next
|
||||
return root
|
||||
"""
|
||||
========================================================================
|
||||
Latex Merge File
|
||||
========================================================================
|
||||
"""
|
||||
|
||||
def 寻找Latex主文件(file_manifest, mode):
|
||||
"""
|
||||
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
||||
@ -20,10 +123,23 @@ def 寻找Latex主文件(file_manifest, mode):
|
||||
continue
|
||||
raise RuntimeError('无法找到一个主Tex文件(包含documentclass关键字)')
|
||||
|
||||
def rm_comments(main_file):
|
||||
new_file_remove_comment_lines = []
|
||||
for l in main_file.splitlines():
|
||||
# 删除整行的空注释
|
||||
if l.lstrip().startswith("%"):
|
||||
pass
|
||||
else:
|
||||
new_file_remove_comment_lines.append(l)
|
||||
main_file = '\n'.join(new_file_remove_comment_lines)
|
||||
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
return main_file
|
||||
|
||||
def merge_tex_files_(project_foler, main_file, mode):
|
||||
"""
|
||||
递归地把多Tex工程整合为一个Tex文档
|
||||
Merge Tex project recrusively
|
||||
"""
|
||||
main_file = rm_comments(main_file)
|
||||
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
|
||||
f = s.group(1)
|
||||
fp = os.path.join(project_foler, f)
|
||||
@ -41,42 +157,37 @@ def merge_tex_files_(project_foler, main_file, mode):
|
||||
|
||||
def merge_tex_files(project_foler, main_file, mode):
|
||||
"""
|
||||
递归地把多Tex工程整合为一个Tex文档(递归外层)
|
||||
Merge Tex project recrusively
|
||||
P.S. 顺便把CTEX塞进去以支持中文
|
||||
P.S. 顺便把Latex的注释去除
|
||||
"""
|
||||
main_file = merge_tex_files_(project_foler, main_file, mode)
|
||||
main_file = rm_comments(main_file)
|
||||
|
||||
if mode == 'translate_zh':
|
||||
pattern = re.compile(r'\\documentclass.*\n')
|
||||
match = pattern.search(main_file)
|
||||
position = match.end()
|
||||
main_file = main_file[:position] + '\\usepackage{CTEX}\n\\usepackage{url}\n' + main_file[position:]
|
||||
|
||||
new_file_remove_comment_lines = []
|
||||
for l in main_file.splitlines():
|
||||
# 删除整行的空注释
|
||||
if l.startswith("%") or (l.startswith(" ") and l.lstrip().startswith("%")):
|
||||
pass
|
||||
else:
|
||||
new_file_remove_comment_lines.append(l)
|
||||
main_file = '\n'.join(new_file_remove_comment_lines)
|
||||
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
add_ctex = '\\usepackage{ctex}\n'
|
||||
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
|
||||
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
|
||||
# 2 fontset=windows
|
||||
import platform
|
||||
if platform.system() != 'Windows':
|
||||
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows]{\2}",main_file)
|
||||
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows]{\1}",main_file)
|
||||
return main_file
|
||||
|
||||
|
||||
class LinkedListNode():
|
||||
"""
|
||||
链表单元
|
||||
"""
|
||||
def __init__(self, string, preserve=True) -> None:
|
||||
self.string = string
|
||||
self.preserve = preserve
|
||||
self.next = None
|
||||
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
Post process
|
||||
========================================================================
|
||||
"""
|
||||
def mod_inbraket(match):
|
||||
"""
|
||||
为啥chatgpt会把cite里面的逗号换成中文逗号呀 艹
|
||||
为啥chatgpt会把cite里面的逗号换成中文逗号呀
|
||||
"""
|
||||
# get the matched string
|
||||
cmd = match.group(1)
|
||||
@ -91,187 +202,98 @@ def fix_content(final_tex, node_string):
|
||||
"""
|
||||
Fix common GPT errors to increase success rate
|
||||
"""
|
||||
final_tex = final_tex.replace('%', r'\%')
|
||||
final_tex = final_tex.replace(r'\%', r'\\%')
|
||||
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
|
||||
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
|
||||
if node_string.count('{') != node_string.count('}'):
|
||||
if final_tex.count('{') != node_string.count('{'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if final_tex.count('}') != node_string.count('}'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
|
||||
if node_string.count('\\begin') != final_tex.count('\\begin'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
|
||||
# walk and replace any _ without \
|
||||
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
|
||||
|
||||
def compute_brace_level(string):
|
||||
# this function count the number of { and }
|
||||
brace_level = 0
|
||||
for c in string:
|
||||
if c == "{": brace_level += 1
|
||||
elif c == "}": brace_level -= 1
|
||||
return brace_level
|
||||
def join_most(tex_t, tex_o):
|
||||
# this function join translated string and original string when something goes wrong
|
||||
p_t = 0
|
||||
p_o = 0
|
||||
def find_next(string, chars, begin):
|
||||
p = begin
|
||||
while p < len(string):
|
||||
if string[p] in chars: return p, string[p]
|
||||
p += 1
|
||||
return None, None
|
||||
while True:
|
||||
res1, char = find_next(tex_o, ['{','}'], p_o)
|
||||
if res1 is None: break
|
||||
res2, char = find_next(tex_t, [char], p_t)
|
||||
if res2 is None: break
|
||||
p_o = res1 + 1
|
||||
p_t = res2 + 1
|
||||
return tex_t[:p_t] + tex_o[p_o:]
|
||||
|
||||
if compute_brace_level(final_tex) != compute_brace_level(node_string):
|
||||
# 出问题了,还原部分原文,保证括号正确
|
||||
final_tex = join_most(final_tex, node_string)
|
||||
return final_tex
|
||||
|
||||
class LatexPaperSplit():
|
||||
def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
"""
|
||||
将Latex文档分解到一个链表中,每个链表节点用preserve的标志位提示它是否应当被GPT处理
|
||||
break down latex file to a linked list,
|
||||
each node use a preserve flag to indicate whether it should
|
||||
be proccessed by GPT.
|
||||
"""
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
root是链表的根节点
|
||||
"""
|
||||
self.root = None
|
||||
text = txt
|
||||
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
|
||||
|
||||
def merge_result(self, arr, mode, msg):
|
||||
"""
|
||||
将GPT处理后的结果融合
|
||||
"""
|
||||
result_string = ""
|
||||
node = self.root
|
||||
p = 0
|
||||
while True:
|
||||
if node.preserve:
|
||||
result_string += node.string
|
||||
else:
|
||||
result_string += fix_content(arr[p], node.string)
|
||||
p += 1
|
||||
node = node.next
|
||||
if node is None: break
|
||||
if mode == 'translate_zh':
|
||||
try:
|
||||
pattern = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
match = pattern.search(result_string)
|
||||
position = match.end()
|
||||
result_string = result_string[:position] + \
|
||||
"{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成,其内容可靠性没有任何保障,请仔细鉴别并以原文为准。" + \
|
||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。" + \
|
||||
msg + \
|
||||
"为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\" + \
|
||||
result_string[position:]
|
||||
except:
|
||||
pass
|
||||
return result_string
|
||||
|
||||
def split(self, txt, project_folder):
|
||||
"""
|
||||
将Latex文档分解到一个链表中,每个链表节点用preserve的标志位提示它是否应当被GPT处理
|
||||
"""
|
||||
root = LinkedListNode(txt, False)
|
||||
def split_worker(root, pattern, flags=0):
|
||||
lt = root
|
||||
cnt = 0
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
while True:
|
||||
if not lt.preserve:
|
||||
while True:
|
||||
res = pattern_compile.search(lt.string)
|
||||
if not res: break
|
||||
before = res.string[:res.span()[0]]
|
||||
this = res.group(0)
|
||||
after = res.string[res.span()[1]:]
|
||||
# ======
|
||||
lt.string = before
|
||||
tmp = lt.next
|
||||
# ======
|
||||
mid = LinkedListNode(this, True)
|
||||
lt.next = mid
|
||||
# ======
|
||||
aft = LinkedListNode(after, False)
|
||||
mid.next = aft
|
||||
aft.next = tmp
|
||||
# ======
|
||||
lt = aft
|
||||
lt = lt.next
|
||||
cnt += 1
|
||||
# print(cnt)
|
||||
if lt is None: break
|
||||
|
||||
def split_worker_begin_end(root, pattern, flags=0, limit_n_lines=25):
|
||||
lt = root
|
||||
cnt = 0
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
while True:
|
||||
if not lt.preserve:
|
||||
while True:
|
||||
target_string = lt.string
|
||||
|
||||
def search_with_line_limit(target_string):
|
||||
for res in pattern_compile.finditer(target_string):
|
||||
cmd = res.group(1) # begin{what}
|
||||
this = res.group(2) # content between begin and end
|
||||
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof', 'em', 'emph', 'textit', 'textbf']
|
||||
if cmd in white_list or this.count('\n') > 25:
|
||||
sub_res = search_with_line_limit(this)
|
||||
if not sub_res: continue
|
||||
else: return sub_res
|
||||
else:
|
||||
return res.group(0)
|
||||
return False
|
||||
# ======
|
||||
# search for first encounter of \begin \end pair with less than 25 lines in the middle
|
||||
ps = search_with_line_limit(target_string)
|
||||
if not ps: break
|
||||
res = re.search(re.escape(ps), target_string, flags)
|
||||
if not res: assert False
|
||||
before = res.string[:res.span()[0]]
|
||||
this = res.group(0)
|
||||
after = res.string[res.span()[1]:]
|
||||
# ======
|
||||
lt.string = before
|
||||
tmp = lt.next
|
||||
# ======
|
||||
mid = LinkedListNode(this, True)
|
||||
lt.next = mid
|
||||
# ======
|
||||
aft = LinkedListNode(after, False)
|
||||
mid.next = aft
|
||||
aft.next = tmp
|
||||
# ======
|
||||
lt = aft
|
||||
lt = lt.next
|
||||
cnt += 1
|
||||
# print(cnt)
|
||||
if lt is None: break
|
||||
|
||||
|
||||
# root 是链表的头
|
||||
print('正在分解Latex源文件,构建链表结构')
|
||||
# 吸收title与作者以上的部分
|
||||
text, mask = split_worker(text, mask, r"(.*?)\\maketitle", re.DOTALL)
|
||||
# 删除iffalse注释
|
||||
split_worker(root, r"\\iffalse(.*?)\\fi", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
|
||||
# 吸收在25行以内的begin-end组合
|
||||
split_worker_begin_end(root, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=25)
|
||||
text, mask = split_worker_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=25)
|
||||
# 吸收匿名公式
|
||||
split_worker(root, r"\$\$(.*?)\$\$", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\$\$(.*?)\$\$", re.DOTALL)
|
||||
# 吸收其他杂项
|
||||
split_worker(root, r"(.*?)\\maketitle", re.DOTALL)
|
||||
split_worker(root, r"\\section\{(.*?)\}")
|
||||
split_worker(root, r"\\section\*\{(.*?)\}")
|
||||
split_worker(root, r"\\subsection\{(.*?)\}")
|
||||
split_worker(root, r"\\subsubsection\{(.*?)\}")
|
||||
split_worker(root, r"\\bibliography\{(.*?)\}")
|
||||
split_worker(root, r"\\bibliographystyle\{(.*?)\}")
|
||||
split_worker(root, r"\\begin\{lstlisting\}(.*?)\\end\{lstlisting\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{wraptable\}(.*?)\\end\{wraptable\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{wrapfigure\}(.*?)\\end\{wrapfigure\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{wrapfigure\*\}(.*?)\\end\{wrapfigure\*\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{figure\}(.*?)\\end\{figure\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{figure\*\}(.*?)\\end\{figure\*\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{multline\}(.*?)\\end\{multline\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{multline\*\}(.*?)\\end\{multline\*\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{table\}(.*?)\\end\{table\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{table\*\}(.*?)\\end\{table\*\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{minipage\}(.*?)\\end\{minipage\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{minipage\*\}(.*?)\\end\{minipage\*\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{align\*\}(.*?)\\end\{align\*\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{align\}(.*?)\\end\{align\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{equation\}(.*?)\\end\{equation\}", re.DOTALL)
|
||||
split_worker(root, r"\\begin\{equation\*\}(.*?)\\end\{equation\*\}", re.DOTALL)
|
||||
split_worker(root, r"\\item ")
|
||||
split_worker(root, r"\\label\{(.*?)\}")
|
||||
split_worker(root, r"\\begin\{(.*?)\}")
|
||||
split_worker(root, r"\\vspace\{(.*?)\}")
|
||||
split_worker(root, r"\\hspace\{(.*?)\}")
|
||||
split_worker(root, r"\\end\{(.*?)\}")
|
||||
|
||||
node = root
|
||||
while True:
|
||||
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
|
||||
if len(node.string.strip('\n').strip(''))<50: node.preserve = True
|
||||
node = node.next
|
||||
if node is None: break
|
||||
text, mask = split_worker(text, mask, r"\\section\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\section\*\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\subsection\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\subsubsection\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\bibliography\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\bibliographystyle\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\begin\{lstlisting\}(.*?)\\end\{lstlisting\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{wraptable\}(.*?)\\end\{wraptable\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{wrapfigure\}(.*?)\\end\{wrapfigure\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{wrapfigure\*\}(.*?)\\end\{wrapfigure\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{figure\}(.*?)\\end\{figure\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{figure\*\}(.*?)\\end\{figure\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{multline\}(.*?)\\end\{multline\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{multline\*\}(.*?)\\end\{multline\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{table\}(.*?)\\end\{table\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{table\*\}(.*?)\\end\{table\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{minipage\}(.*?)\\end\{minipage\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{minipage\*\}(.*?)\\end\{minipage\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{align\*\}(.*?)\\end\{align\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{align\}(.*?)\\end\{align\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{equation\}(.*?)\\end\{equation\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{equation\*\}(.*?)\\end\{equation\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\item ")
|
||||
text, mask = split_worker(text, mask, r"\\label\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\begin\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\vspace\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\hspace\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\end\{(.*?)\}")
|
||||
text, mask = split_worker_careful_brace(text, mask, r"\\hl\{(.*?)\}", re.DOTALL)
|
||||
text, mask = split_worker_reverse_careful_brace(text, mask, r"\\caption\{(.*?)\}", re.DOTALL)
|
||||
root = convert_to_linklist(text, mask)
|
||||
|
||||
# 修复括号
|
||||
node = root
|
||||
@ -288,7 +310,7 @@ class LatexPaperSplit():
|
||||
str_stack.append('{')
|
||||
elif c == '}':
|
||||
if len(str_stack) == 1:
|
||||
print('stack kill')
|
||||
print('stack fix')
|
||||
return i
|
||||
str_stack.pop(-1)
|
||||
else:
|
||||
@ -312,10 +334,18 @@ class LatexPaperSplit():
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 屏蔽空行和太短的句子
|
||||
node = root
|
||||
while True:
|
||||
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
|
||||
if len(node.string.strip('\n').strip(''))<50: node.preserve = True
|
||||
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
|
||||
node = node.next
|
||||
if node is None: break
|
||||
node = root
|
||||
while True:
|
||||
if node.next and node.preserve and node.next.preserve:
|
||||
node.string += node.next.string
|
||||
node.next = node.next.next
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
@ -337,25 +367,86 @@ class LatexPaperSplit():
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 将分解结果返回 res_to_t
|
||||
with open(pj(project_folder, 'debug_log.html'), 'w', encoding='utf8') as f:
|
||||
res_to_t = []
|
||||
segment_parts_for_gpt = []
|
||||
nodes = []
|
||||
node = root
|
||||
while True:
|
||||
nodes.append(node)
|
||||
show_html = node.string.replace('\n','<br/>')
|
||||
if not node.preserve:
|
||||
res_to_t.append(node.string)
|
||||
segment_parts_for_gpt.append(node.string)
|
||||
f.write(f'<p style="color:black;">#{show_html}#</p>')
|
||||
else:
|
||||
f.write(f'<p style="color:red;">{show_html}</p>')
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
self.root = root
|
||||
self.sp = res_to_t
|
||||
for n in nodes: n.next = None # break
|
||||
return_dict['nodes'] = nodes
|
||||
return_dict['segment_parts_for_gpt'] = segment_parts_for_gpt
|
||||
return return_dict
|
||||
|
||||
|
||||
|
||||
class LatexPaperSplit():
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
each node use a preserve flag to indicate whether it should
|
||||
be proccessed by GPT.
|
||||
"""
|
||||
def __init__(self) -> None:
|
||||
self.nodes = None
|
||||
self.msg = "{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
||||
"版权归原文作者所有。翻译内容可靠性无任何保障,请仔细鉴别并以原文为准。" + \
|
||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
||||
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
||||
|
||||
def merge_result(self, arr, mode, msg):
|
||||
"""
|
||||
Merge the result after the GPT process completed
|
||||
"""
|
||||
result_string = ""
|
||||
p = 0
|
||||
for node in self.nodes:
|
||||
if node.preserve:
|
||||
result_string += node.string
|
||||
else:
|
||||
result_string += fix_content(arr[p], node.string)
|
||||
p += 1
|
||||
if mode == 'translate_zh':
|
||||
pattern = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
match = pattern.search(result_string)
|
||||
position = match.end()
|
||||
result_string = result_string[:position] + self.msg + msg + self.msg_declare + result_string[position:]
|
||||
return result_string
|
||||
|
||||
def split(self, txt, project_folder, opts):
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
each node use a preserve flag to indicate whether it should
|
||||
be proccessed by GPT.
|
||||
P.S. use multiprocessing to avoid timeout error
|
||||
"""
|
||||
import multiprocessing
|
||||
manager = multiprocessing.Manager()
|
||||
return_dict = manager.dict()
|
||||
p = multiprocessing.Process(
|
||||
target=split_subprocess,
|
||||
args=(txt, project_folder, return_dict, opts))
|
||||
p.start()
|
||||
p.join()
|
||||
self.nodes = return_dict['nodes']
|
||||
self.sp = return_dict['segment_parts_for_gpt']
|
||||
return self.sp
|
||||
|
||||
|
||||
|
||||
class LatexPaperFileGroup():
|
||||
"""
|
||||
use tokenizer to break down text according to max_token_limit
|
||||
"""
|
||||
def __init__(self):
|
||||
self.file_paths = []
|
||||
self.file_contents = []
|
||||
@ -371,7 +462,7 @@ class LatexPaperFileGroup():
|
||||
|
||||
def run_file_split(self, max_token_limit=1900):
|
||||
"""
|
||||
将长文本分离开来
|
||||
use tokenizer to break down text according to max_token_limit
|
||||
"""
|
||||
for index, file_content in enumerate(self.file_contents):
|
||||
if self.get_token_num(file_content) < max_token_limit:
|
||||
@ -402,7 +493,7 @@ class LatexPaperFileGroup():
|
||||
|
||||
|
||||
|
||||
def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread', switch_prompt=None):
|
||||
def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread', switch_prompt=None, opts=[]):
|
||||
import time, os, re
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .latex_utils import LatexPaperFileGroup, merge_tex_files, LatexPaperSplit, 寻找Latex主文件
|
||||
@ -411,7 +502,7 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
maintex = 寻找Latex主文件(file_manifest, mode)
|
||||
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果:该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
time.sleep(5)
|
||||
time.sleep(3)
|
||||
|
||||
# <-------- 读取Latex文件, 将多文件tex工程融合为一个巨型tex ---------->
|
||||
main_tex_basename = os.path.basename(maintex)
|
||||
@ -431,8 +522,10 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
f.write(merged_content)
|
||||
|
||||
# <-------- 精细切分latex文件 ---------->
|
||||
chatbot.append((f"Latex文件融合完成", f'[Local Message] 正在精细切分latex文件,这需要一段时间计算,文档越长耗时越长,请耐心等待。'))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
lps = LatexPaperSplit()
|
||||
res = lps.split(merged_content, project_folder)
|
||||
res = lps.split(merged_content, project_folder, opts) # 消耗时间的函数
|
||||
|
||||
# <-------- 拆分过长的latex片段 ---------->
|
||||
pfg = LatexPaperFileGroup()
|
||||
@ -480,7 +573,8 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
||||
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
|
||||
f.write(final_tex)
|
||||
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
|
||||
|
||||
|
||||
# <-------- 整理结果, 退出 ---------->
|
||||
chatbot.append((f"完成了吗?", 'GPT结果已输出, 正在编译PDF'))
|
||||
@ -507,7 +601,8 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
|
||||
f.writelines(file_lines)
|
||||
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
|
||||
except:
|
||||
return False, 0, [0]
|
||||
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
||||
return False, -1, [-1]
|
||||
|
||||
|
||||
def compile_latex_with_timeout(command, timeout=60):
|
||||
@ -522,12 +617,12 @@ def compile_latex_with_timeout(command, timeout=60):
|
||||
return False
|
||||
return True
|
||||
|
||||
def 编译Latex差别(chatbot, history, main_file_original, main_file_modified, work_folder_original, work_folder_modified, work_folder):
|
||||
def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_folder_original, work_folder_modified, work_folder):
|
||||
import os, time
|
||||
current_dir = os.getcwd()
|
||||
n_fix = 1
|
||||
max_try = 32
|
||||
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,则大概率是卡死在Latex里面了。不幸卡死时请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
||||
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
||||
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
||||
yield from update_ui_lastest_msg('编译已经开始...', chatbot, history) # 刷新Gradio前端界面
|
||||
|
||||
|
||||
@ -8,7 +8,7 @@ def inspect_dependency(chatbot, history):
|
||||
import manim
|
||||
return True
|
||||
except:
|
||||
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖,安装方法:```pip install manimgl```"])
|
||||
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖,安装方法:```pip install manim manimgl```"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return False
|
||||
|
||||
|
||||
27
docs/Dockerfile+NoLocal+Latex
Normal file
27
docs/Dockerfile+NoLocal+Latex
Normal file
@ -0,0 +1,27 @@
|
||||
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
|
||||
# - 1 修改 `config.py`
|
||||
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/Dockerfile+NoLocal+Latex .
|
||||
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
|
||||
|
||||
FROM fuqingxu/python311_texlive_ctex:latest
|
||||
|
||||
# 指定路径
|
||||
WORKDIR /gpt
|
||||
|
||||
ARG useProxyNetwork=''
|
||||
|
||||
RUN $useProxyNetwork pip3 install gradio openai numpy arxiv rich -i https://pypi.douban.com/simple/
|
||||
RUN $useProxyNetwork pip3 install colorama Markdown pygments pymupdf -i https://pypi.douban.com/simple/
|
||||
|
||||
# 装载项目文件
|
||||
COPY . .
|
||||
|
||||
|
||||
# 安装依赖
|
||||
RUN $useProxyNetwork pip3 install -r requirements.txt -i https://pypi.douban.com/simple/
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
# 启动
|
||||
CMD ["python3", "-u", "main.py"]
|
||||
@ -58,6 +58,8 @@
|
||||
"连接网络回答问题": "ConnectToNetworkToAnswerQuestions",
|
||||
"联网的ChatGPT": "ChatGPTConnectedToNetwork",
|
||||
"解析任意code项目": "ParseAnyCodeProject",
|
||||
"读取知识库作答": "ReadKnowledgeArchiveAnswerQuestions",
|
||||
"知识库问答": "UpdateKnowledgeArchive",
|
||||
"同时问询_指定模型": "InquireSimultaneously_SpecifiedModel",
|
||||
"图片生成": "ImageGeneration",
|
||||
"test_解析ipynb文件": "Test_ParseIpynbFile",
|
||||
|
||||
@ -86,6 +86,15 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-16k": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 1024*16,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
|
||||
@ -562,7 +562,9 @@ def on_report_generated(files, chatbot):
|
||||
if len(report_files) == 0:
|
||||
return None, chatbot
|
||||
# files.extend(report_files)
|
||||
chatbot.append(['报告如何远程获取?', '报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。'])
|
||||
file_links = ''
|
||||
for f in report_files: file_links += f'<br/><a href="file={os.path.abspath(f)}" target="_blank">{f}</a>'
|
||||
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
|
||||
return report_files, chatbot
|
||||
|
||||
def is_openai_api_key(key):
|
||||
|
||||
4
version
4
version
@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 3.37,
|
||||
"version": 3.41,
|
||||
"show_feature": true,
|
||||
"new_feature": "修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持 <-> 提供复旦MOSS模型适配(启用需额外依赖) <-> 提供docker-compose方案兼容LLAMA盘古RWKV等模型的后端 <-> 新增Live2D装饰 <-> 完善对话历史的保存/载入/删除 <-> 保存对话功能"
|
||||
"new_feature": "增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持"
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user