合并master

This commit is contained in:
w_xiaolizu
2023-04-19 18:48:47 +08:00
37 changed files with 2582 additions and 1112 deletions

View File

@ -1,35 +1,53 @@
# 如何使用其他大语言模型v3.0分支测试中)
## 1. 先运行text-generation
## ChatGLM
- 安装依赖 `pip install -r request_llm/requirements_chatglm.txt`
- 修改配置在config.py中将LLM_MODEL的值改为"chatglm"
``` sh
# 下载模型( text-generation 这么牛的项目别忘了给人家star
LLM_MODEL = "chatglm"
```
- 运行!
``` sh
`python main.py`
```
---
## Text-Generation-UI (TGUI)
### 1. 部署TGUI
``` sh
# 1 下载模型
git clone https://github.com/oobabooga/text-generation-webui.git
# 安装text-generation的额外依赖
pip install accelerate bitsandbytes flexgen gradio llamacpp markdown numpy peft requests rwkv safetensors sentencepiece tqdm datasets git+https://github.com/huggingface/transformers
# 切换路径
# 2 这个仓库的最新代码有问题,回滚到几周之前
git reset --hard fcda3f87767e642d1c0411776e549e1d3894843d
# 3 切换路径
cd text-generation-webui
# 下载模型
# 4 安装text-generation的额外依赖
pip install accelerate bitsandbytes flexgen gradio llamacpp markdown numpy peft requests rwkv safetensors sentencepiece tqdm datasets git+https://github.com/huggingface/transformers
# 5 下载模型
python download-model.py facebook/galactica-1.3b
# 其他可选如 facebook/opt-1.3b
# facebook/galactica-1.3b
# facebook/galactica-6.7b
# facebook/galactica-120b
# facebook/pygmalion-1.3b 等
# 详情见 https://github.com/oobabooga/text-generation-webui
# 启动text-generation,注意把模型的斜杠改成下划线
python server.py --cpu --listen --listen-port 7860 --model facebook_galactica-1.3b
# 6 启动text-generation
python server.py --cpu --listen --listen-port 7865 --model facebook_galactica-1.3b
```
## 2. 修改config.py
### 2. 修改config.py
``` sh
# LLM_MODEL格式较复杂 TGUI:[模型]@[ws地址]:[ws端口] , 端口要和上面给定的端口一致
LLM_MODEL = "TGUI:galactica-1.3b@localhost:7860"
# LLM_MODEL格式: tgui:[模型]@[ws地址]:[ws端口] , 端口要和上面给定的端口一致
LLM_MODEL = "tgui:galactica-1.3b@localhost:7860"
```
## 3. 运行!
### 3. 运行!
``` sh
cd chatgpt-academic
python main.py

210
request_llm/bridge_all.py Normal file
View File

@ -0,0 +1,210 @@
"""
该文件中主要包含2个函数
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
具备多线程调用能力的函数
2. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时和openai的连接容易断掉这个函数用stream的方式解决这个问题同样支持多线程
"""
import tiktoken
from functools import wraps, lru_cache
from concurrent.futures import ThreadPoolExecutor
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
from .bridge_chatgpt import predict as chatgpt_ui
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui
# from .bridge_tgui import predict_no_ui_long_connection as tgui_noui
# from .bridge_tgui import predict as tgui_ui
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
class LazyloadTiktoken(object):
def __init__(self, model):
self.model = model
@staticmethod
@lru_cache(maxsize=128)
def get_encoder(model):
print('正在加载tokenizer如果是第一次运行可能需要一点时间下载参数')
tmp = tiktoken.encoding_for_model(model)
print('加载tokenizer完毕')
return tmp
def encode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
return encoder.encode(*args, **kwargs)
def decode(self, *args, **kwargs):
encoder = self.get_encoder(self.model)
return encoder.decode(*args, **kwargs)
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
tokenizer_gpt4 = LazyloadTiktoken("gpt-4")
get_token_num_gpt35 = lambda txt: len(tokenizer_gpt35.encode(txt, disallowed_special=()))
get_token_num_gpt4 = lambda txt: len(tokenizer_gpt4.encode(txt, disallowed_special=()))
model_info = {
# openai
"gpt-3.5-turbo": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": "https://api.openai.com/v1/chat/completions",
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"gpt-4": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": "https://api.openai.com/v1/chat/completions",
"max_token": 8192,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
# api_2d
"api2d-gpt-3.5-turbo": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": "https://openai.api2d.net/v1/chat/completions",
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"api2d-gpt-4": {
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": "https://openai.api2d.net/v1/chat/completions",
"max_token": 8192,
"tokenizer": tokenizer_gpt4,
"token_cnt": get_token_num_gpt4,
},
# chatglm
"chatglm": {
"fn_with_ui": chatglm_ui,
"fn_without_ui": chatglm_noui,
"endpoint": None,
"max_token": 1024,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
}
def LLM_CATCH_EXCEPTION(f):
"""
装饰器函数,将错误显示出来
"""
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
try:
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
except Exception as e:
from toolbox import get_conf
import traceback
proxies, = get_conf('proxies')
tb_str = '\n```\n' + traceback.format_exc() + '\n```\n'
observe_window[0] = tb_str
return tb_str
return decorated
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
"""
发送至LLM等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
LLM的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
import threading, time, copy
model = llm_kwargs['llm_model']
n_model = 1
if '&' not in model:
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
# 如果只询问1个大语言模型
method = model_info[model]["fn_without_ui"]
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
else:
# 如果同时询问多个大语言模型:
executor = ThreadPoolExecutor(max_workers=4)
models = model.split('&')
n_model = len(models)
window_len = len(observe_window)
assert window_len==3
window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]
futures = []
for i in range(n_model):
model = models[i]
method = model_info[model]["fn_without_ui"]
llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
llm_kwargs_feedin['llm_model'] = model
future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
futures.append(future)
def mutex_manager(window_mutex, observe_window):
while True:
time.sleep(0.5)
if not window_mutex[-1]: break
# 看门狗watchdog
for i in range(n_model):
window_mutex[i][1] = observe_window[1]
# 观察窗window
chat_string = []
for i in range(n_model):
chat_string.append( f"{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
res = '<br/><br/>\n\n---\n\n'.join(chat_string)
# # # # # # # # # # #
observe_window[0] = res
t_model = threading.Thread(target=mutex_manager, args=(window_mutex, observe_window), daemon=True)
t_model.start()
return_string_collect = []
while True:
worker_done = [h.done() for h in futures]
if all(worker_done):
executor.shutdown()
break
time.sleep(1)
for i, future in enumerate(futures): # wait and get
return_string_collect.append( f"{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
window_mutex[-1] = False # stop mutex thread
res = '<br/>\n\n---\n\n'.join(return_string_collect)
return res
def predict(inputs, llm_kwargs, *args, **kwargs):
"""
发送至LLM流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是LLM的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
yield from method(inputs, llm_kwargs, *args, **kwargs)

View File

@ -0,0 +1,140 @@
from transformers import AutoModel, AutoTokenizer
import time
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
load_message = "ChatGLM尚未加载加载需要一段时间。注意取决于`config.py`的配置ChatGLM消耗大量的内存CPU或显存GPU也许会导致低配计算机卡死 ……"
#################################################################################
class GetGLMHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.chatglm_model = None
self.chatglm_tokenizer = None
self.info = ""
self.success = True
self.check_dependency()
self.start()
def check_dependency(self):
try:
import sentencepiece
self.info = "依赖检测通过"
self.success = True
except:
self.info = "缺少ChatGLM的依赖如果要使用ChatGLM除了基础的pip依赖以外您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
self.success = False
def ready(self):
return self.chatglm_model is not None
def run(self):
# 第一次运行,加载参数
retry = 0
while True:
try:
if self.chatglm_model is None:
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
device, = get_conf('LOCAL_MODEL_DEVICE')
if device=='cpu':
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
else:
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
self.chatglm_model = self.chatglm_model.eval()
break
else:
break
except:
retry += 1
if retry > 3:
self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。')
raise RuntimeError("不能正常加载ChatGLM的参数")
# 进入任务等待状态
while True:
kwargs = self.child.recv()
try:
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
self.child.send(response)
except:
self.child.send('[Local Message] Call ChatGLM fail.')
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res != '[Finish]':
yield res
else:
break
return
global glm_handle
glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
global glm_handle
if glm_handle is None:
glm_handle = GetGLMHandle()
observe_window[0] = load_message + "\n\n" + glm_handle.info
if not glm_handle.success:
error = glm_handle.info
glm_handle = None
raise RuntimeError(error)
# chatglm 没有 sys_prompt 接口因此把prompt加入 history
history_feedin = []
for i in range(len(history)//2):
history_feedin.append(["What can I do?", sys_prompt] )
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
global glm_handle
if glm_handle is None:
glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not glm_handle.success:
glm_handle = None
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
history_feedin = []
for i in range(len(history)//2):
history_feedin.append(["What can I do?", system_prompt] )
history_feedin.append([history[2*i], history[2*i+1]] )
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)

View File

@ -21,9 +21,9 @@ import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf, update_ui
proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \
get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL')
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
@ -42,25 +42,27 @@ def get_full_error(chunk, stream_response):
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
# make a POST requests to the API endpoint, stream=False
response = requests.post(API_URL, headers=headers, proxies=proxies,
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
except requests.exceptions.ReadTimeout as e:
retry += 1
@ -83,6 +85,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if ('data: [DONE]' in chunk): break # api2d 正常完成
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
@ -105,22 +108,22 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
发送至chatGPT流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if inputs.startswith('sk-') and len(inputs) == 51:
if is_any_api_key(inputs):
chatbot._cookies['api_key'] = inputs
chatbot.append(("输入已识别为openai的api_key", "api_key已导入"))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
return
elif len(chatbot._cookies['api_key']) != 51:
elif not is_any_api_key(chatbot._cookies['api_key']):
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。"))
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
return
if additional_fn is not None:
@ -130,20 +133,27 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
if stream:
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
try:
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求不包含任何可用于{llm_kwargs['llm_model']}的api-key。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
history.append(inputs); history.append(" ")
retry = 0
while True:
try:
# make a POST requests to the API endpoint, stream=True
response = requests.post(API_URL, headers=headers, proxies=proxies,
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
except:
retry += 1
@ -160,21 +170,23 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
while True:
chunk = next(stream_response)
# print(chunk.decode()[6:])
if is_head_of_the_stream:
if is_head_of_the_stream and (r'"object":"error"' not in chunk.decode()):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
try:
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
chunk_decoded = chunk.decode()
# 前者API2D的
if ('data: [DONE]' in chunk_decoded) or (len(json.loads(chunk_decoded[6:])['choices'][0]["delta"]) == 0):
# 判定为数据流的结束gpt_replying_buffer也写完了
logging.info(f'[response] {gpt_replying_buffer}')
break
# 处理数据流的主体
chunkjson = json.loads(chunk.decode()[6:])
chunkjson = json.loads(chunk_decoded[6:])
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
# 如果这里抛出异常一般是文本过长详情见get_full_error的输出
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk_decoded[6:])['choices'][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
@ -183,31 +195,38 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
traceback.print_exc()
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
error_msg = chunk.decode()
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
if "reduce the length" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长,或历史数据过长. 历史缓存数据现已释放,您可以请再次尝试.")
history = [] # 清除历史
elif "does not exist" in error_msg:
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在,或者您没有获得体验资格.")
elif "Incorrect API key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由拒绝服务.")
elif "exceeded your current quota" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由拒绝服务.")
elif "bad forward key" in error_msg:
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
else:
from toolbox import regular_txt_to_markdown
tb_str = '```\n' + traceback.format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}")
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded[4:])}")
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
return
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息选择LLM模型生成http请求为发送请求做准备
整合所有信息选择LLM模型生成http请求为发送请求做准备
"""
if len(llm_kwargs['api_key']) != 51:
if not is_any_api_key(llm_kwargs['api_key']):
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案直接在输入区键入api_key然后回车提交。\n\n2. 长效解决方案在config.py中配置。")
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {llm_kwargs['api_key']}"
"Authorization": f"Bearer {api_key}"
}
conversation_cnt = len(history) // 2
@ -235,7 +254,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
messages.append(what_i_ask_now)
payload = {
"model": llm_kwargs['llm_model'],
"model": llm_kwargs['llm_model'].strip('api2d-'),
"messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,

View File

@ -13,23 +13,18 @@ import time
import threading
import importlib
from toolbox import get_conf, update_ui
LLM_MODEL, = get_conf('LLM_MODEL')
# "TGUI:galactica-1.3b@localhost:7860"
model_name, addr_port = LLM_MODEL.split('@')
assert ':' in addr_port, "LLM_MODEL 格式不正确!" + LLM_MODEL
addr, port = addr_port.split(':')
def random_hash():
letters = string.ascii_lowercase + string.digits
return ''.join(random.choice(letters) for i in range(9))
async def run(context, max_token=512):
async def run(context, max_token, temperature, top_p, addr, port):
params = {
'max_new_tokens': max_token,
'do_sample': True,
'temperature': 0.5,
'top_p': 0.9,
'temperature': temperature,
'top_p': top_p,
'typical_p': 1,
'repetition_penalty': 1.05,
'encoder_repetition_penalty': 1.0,
@ -90,7 +85,7 @@ async def run(context, max_token=512):
def predict_tgui(inputs, top_p, temperature, chatbot, history=[], system_prompt='' , stream = True, additional_fn=None):
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出。
用于基础的对话功能。
@ -108,18 +103,26 @@ def predict_tgui(inputs, top_p, temperature, chatbot, history=[], system_prompt=
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
raw_input = "What I would like to say is the following: " + inputs
logging.info(f'[raw_input] {raw_input}')
history.extend([inputs, ""])
chatbot.append([inputs, ""])
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
prompt = inputs
prompt = raw_input
tgui_say = ""
model_name, addr_port = llm_kwargs['llm_model'].split('@')
assert ':' in addr_port, "LLM_MODEL 格式不正确!" + llm_kwargs['llm_model']
addr, port = addr_port.split(':')
mutable = ["", time.time()]
def run_coorotine(mutable):
async def get_result(mutable):
async for response in run(prompt):
# "tgui:galactica-1.3b@localhost:7860"
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
temperature=llm_kwargs['temperature'],
top_p=llm_kwargs['top_p'], addr=addr, port=port):
print(response[len(mutable[0]):])
mutable[0] = response
if (time.time() - mutable[1]) > 3:
@ -140,28 +143,29 @@ def predict_tgui(inputs, top_p, temperature, chatbot, history=[], system_prompt=
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
logging.info(f'[response] {tgui_say}')
def predict_tgui_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
raw_input = "What I would like to say is the following: " + inputs
prompt = inputs
prompt = raw_input
tgui_say = ""
mutable = ["", time.time()]
def run_coorotine(mutable):
async def get_result(mutable):
async for response in run(prompt, max_token=20):
print(response[len(mutable[0]):])
mutable[0] = response
if (time.time() - mutable[1]) > 3:
model_name, addr_port = llm_kwargs['llm_model'].split('@')
assert ':' in addr_port, "LLM_MODEL 格式不正确!" + llm_kwargs['llm_model']
addr, port = addr_port.split(':')
def run_coorotine(observe_window):
async def get_result(observe_window):
async for response in run(context=prompt, max_token=llm_kwargs['max_length'],
temperature=llm_kwargs['temperature'],
top_p=llm_kwargs['top_p'], addr=addr, port=port):
print(response[len(observe_window[0]):])
observe_window[0] = response
if (time.time() - observe_window[1]) > 5:
print('exit when no listener')
break
asyncio.run(get_result(mutable))
thread_listen = threading.Thread(target=run_coorotine, args=(mutable,))
asyncio.run(get_result(observe_window))
thread_listen = threading.Thread(target=run_coorotine, args=(observe_window,))
thread_listen.start()
while thread_listen.is_alive():
time.sleep(1)
mutable[1] = time.time()
tgui_say = mutable[0]
return tgui_say
return observe_window[0]

View File

@ -0,0 +1,6 @@
protobuf
transformers==4.27.1
cpm_kernels
torch>=1.10
mdtex2html
sentencepiece