Compare commits

..

28 Commits

Author SHA1 Message Date
96c1852abc Merge branch 'master' into huggingface 2023-06-30 12:09:25 +08:00
cd145c0794 1 2023-06-29 15:04:03 +08:00
7a4d4ad956 Merge branch 'huggingface' of github.com:binary-husky/chatgpt_academic into huggingface 2023-06-29 12:54:24 +08:00
9f9848c6e9 again 2023-06-29 12:54:19 +08:00
94425c49fd again 2023-05-28 21:34:50 +08:00
e874a16050 try again 2023-05-28 21:33:28 +08:00
c28388c5fe load version 2023-05-28 21:32:10 +08:00
b4a56d391b Merge branch 'huggingface' of github.com:binary-husky/chatgpt_academic into huggingface 2023-05-28 21:30:34 +08:00
7075092f86 fix app 2023-05-28 21:30:29 +08:00
1086ff8092 Merge branch 'huggingface' of github.com:binary-husky/chatgpt_academic into huggingface 2023-05-28 21:27:31 +08:00
3a22446b47 try4 2023-05-28 21:27:25 +08:00
7842cf03cc Merge branch 'master' into huggingface 2023-05-28 21:27:20 +08:00
54f55c32f2 213 2023-05-28 21:25:45 +08:00
94318ff0a2 try3 2023-05-28 21:24:46 +08:00
5be6b83762 try2 2023-05-28 21:24:02 +08:00
6f18d1716e Merge branch 'master' into huggingface 2023-05-28 21:21:12 +08:00
90944bd744 up 2023-05-25 15:04:53 +08:00
752937cb70 Merge branch 'master' into huggingface 2023-05-25 15:01:30 +08:00
c584cbac5b fix ver 2023-05-19 14:08:47 +08:00
309d12b404 Merge branch 'master' into huggingface 2023-05-19 14:05:23 +08:00
52ea0acd61 Merge branch 'master' into huggingface 2023-05-06 23:06:53 +08:00
9f5e3e0fd5 Merge branch 'master' into huggingface 2023-05-05 18:24:36 +08:00
315e78e5d9 Merge branch 'master' into huggingface 2023-04-29 03:53:32 +08:00
b6b4ba684a Merge branch 'master' into huggingface 2023-04-24 18:32:56 +08:00
2281a5ca7f 修改提示 2023-04-24 12:55:53 +08:00
49558686f2 Merge branch 'master' into huggingface 2023-04-24 12:30:59 +08:00
b050ccedb5 Merge branch 'master' into huggingface 2023-04-21 18:48:00 +08:00
ae56cab6f4 huggingface 2023-04-19 18:07:32 +08:00
18 changed files with 216 additions and 308 deletions

View File

@ -1,3 +1,15 @@
---
title: ChatImprovement
emoji: 😻
colorFrom: blue
colorTo: blue
sdk: gradio
sdk_version: 3.32.0
app_file: app.py
pinned: false
---
# ChatGPT 学术优化
> **Note** > **Note**
> >
> 2023.5.27 对Gradio依赖进行了调整Fork并解决了官方Gradio的若干Bugs。请及时**更新代码**并重新更新pip依赖。安装依赖时请严格选择`requirements.txt`中**指定的版本** > 2023.5.27 对Gradio依赖进行了调整Fork并解决了官方Gradio的若干Bugs。请及时**更新代码**并重新更新pip依赖。安装依赖时请严格选择`requirements.txt`中**指定的版本**

View File

@ -1,13 +1,15 @@
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染 import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
def main(): def main():
import subprocess, sys
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'gradio-stable-fork'])
import gradio as gr import gradio as gr
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖详情信息见requirements.txt" if gr.__version__ not in ['3.28.3','3.32.3']: assert False, "用 pip install -r requirements.txt 安装依赖"
from request_llm.bridge_all import predict from request_llm.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到 # 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \ proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT') get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS')
# 如果WEB_PORT是-1, 则随机选取WEB端口 # 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
@ -54,6 +56,7 @@ def main():
cancel_handles = [] cancel_handles = []
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo: with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
gr.HTML(title_html) gr.HTML(title_html)
gr.HTML('''<center><a href="https://huggingface.co/spaces/qingxu98/gpt-academic?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>请您打开此页面后务必点击上方的“复制空间”Duplicate Space按钮<font color="#FF00FF">使用时先在输入框填入API-KEY然后回车。</font><br/>切忌在“复制空间”Duplicate Space之前填入API_KEY或进行提问否则您的API_KEY将极可能被空间所有者攫取<br/>支持任意数量的OpenAI的密钥和API2D的密钥共存例如输入"OpenAI密钥1,API2D密钥2",然后提交,即可同时使用两种模型接口。</center>''')
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL}) cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
with gr_L1(): with gr_L1():
with gr_L2(scale=2): with gr_L2(scale=2):
@ -63,7 +66,7 @@ def main():
with gr_L2(scale=1): with gr_L2(scale=1):
with gr.Accordion("输入区", open=True) as area_input_primary: with gr.Accordion("输入区", open=True) as area_input_primary:
with gr.Row(): with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False) txt = gr.Textbox(show_label=False, lines=2, placeholder="输入问题或API密钥输入多个密钥时用英文逗号间隔。支持OpenAI密钥和API2D密钥共存。").style(container=False)
with gr.Row(): with gr.Row():
submitBtn = gr.Button("提交", variant="primary") submitBtn = gr.Button("提交", variant="primary")
with gr.Row(): with gr.Row():
@ -104,7 +107,7 @@ def main():
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt) system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",) top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",) temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
max_length_sl = gr.Slider(minimum=256, maximum=8192, value=4096, step=1, interactive=True, label="Local LLM MaxLength",) max_length_sl = gr.Slider(minimum=256, maximum=4096, value=512, step=1, interactive=True, label="Local LLM MaxLength",)
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区") checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False) md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
@ -144,11 +147,6 @@ def main():
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status]) resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
clearBtn.click(lambda: ("",""), None, [txt, txt2]) clearBtn.click(lambda: ("",""), None, [txt, txt2])
clearBtn2.click(lambda: ("",""), None, [txt, txt2]) clearBtn2.click(lambda: ("",""), None, [txt, txt2])
if AUTO_CLEAR_TXT:
submitBtn.click(lambda: ("",""), None, [txt, txt2])
submitBtn2.click(lambda: ("",""), None, [txt, txt2])
txt.submit(lambda: ("",""), None, [txt, txt2])
txt2.submit(lambda: ("",""), None, [txt, txt2])
# 基础功能区的回调函数注册 # 基础功能区的回调函数注册
for k in functional: for k in functional:
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
@ -202,10 +200,7 @@ def main():
threading.Thread(target=warm_up_modules, name="warm-up", daemon=True).start() threading.Thread(target=warm_up_modules, name="warm-up", daemon=True).start()
auto_opentab_delay() auto_opentab_delay()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch( demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", share=False, favicon_path="docs/logo.png", blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
server_name="0.0.0.0", server_port=PORT,
favicon_path="docs/logo.png", auth=AUTHENTICATION,
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
# 如果需要在二级路径下运行 # 如果需要在二级路径下运行
# CUSTOM_PATH, = get_conf('CUSTOM_PATH') # CUSTOM_PATH, = get_conf('CUSTOM_PATH')

View File

@ -1,10 +1,10 @@
def check_proxy(proxies: dict): def check_proxy(proxies):
import requests import requests
proxies_https = proxies.get('https') if proxies is not None else '' proxies_https = proxies['https'] if proxies is not None else ''
try: try:
response = requests.get("https://ipapi.co/json/", response = requests.get("https://ipapi.co/json/",
proxies=proxies, timeout=30) proxies=proxies, timeout=4)
data = response.json() data = response.json()
print(f'查询代理的地理位置,返回的结果是{data}') print(f'查询代理的地理位置,返回的结果是{data}')
if 'country_name' in data: if 'country_name' in data:
@ -12,12 +12,10 @@ def check_proxy(proxies: dict):
result = f"代理配置 {proxies_https}, 代理所在地:{country}" result = f"代理配置 {proxies_https}, 代理所在地:{country}"
elif 'error' in data: elif 'error' in data:
result = f"代理配置 {proxies_https}, 代理所在地未知IP查询频率受限" result = f"代理配置 {proxies_https}, 代理所在地未知IP查询频率受限"
else:
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
print(result) print(result)
return result return result
except Exception as e: except:
result = f"代理 {proxies_https} 查询出现异常: {e},代理可能无效" result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
print(result) print(result)
return result return result

View File

@ -45,10 +45,9 @@ WEB_PORT = -1
# 如果OpenAI不响应网络卡顿、代理失败、KEY失效重试的次数限制 # 如果OpenAI不响应网络卡顿、代理失败、KEY失效重试的次数限制
MAX_RETRY = 2 MAX_RETRY = 2
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 同时它必须被包含在AVAIL_LLM_MODELS切换列表中 ) # OpenAI模型选择是gpt4现在只对申请成功的人开放
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓ LLM_MODEL = "gpt-3.5-turbo" # 可选 "chatglm"
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt35", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "newbing-free", "stack-claude"] AVAIL_LLM_MODELS = ["newbing-free", "gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "api2d-gpt-3.5-turbo"]
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU # 本地LLM模型如ChatGLM的执行方式 CPU/GPU
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda" LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
@ -56,9 +55,6 @@ LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
# 设置gradio的并行线程数不需要修改 # 设置gradio的并行线程数不需要修改
CONCURRENT_COUNT = 100 CONCURRENT_COUNT = 100
# 是否在提交时自动清空输入框
AUTO_CLEAR_TXT = False
# 加一个live2d装饰 # 加一个live2d装饰
ADD_WAIFU = False ADD_WAIFU = False

View File

@ -63,7 +63,6 @@ def get_core_functions():
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL" + "Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL" +
r"然后请使用Markdown格式封装并且不要有反斜线不要用代码块。现在请按以下描述给我发送图片" + "\n\n", r"然后请使用Markdown格式封装并且不要有反斜线不要用代码块。现在请按以下描述给我发送图片" + "\n\n",
"Suffix": r"", "Suffix": r"",
"Visible": False,
}, },
"解释代码": { "解释代码": {
"Prefix": r"请解释以下代码:" + "\n```\n", "Prefix": r"请解释以下代码:" + "\n```\n",
@ -74,5 +73,6 @@ def get_core_functions():
r"Note that, reference styles maybe more than one kind, you should transform each item correctly." + r"Note that, reference styles maybe more than one kind, you should transform each item correctly." +
r"Items need to be transformed:", r"Items need to be transformed:",
"Suffix": r"", "Suffix": r"",
"Visible": False,
} }
} }

View File

@ -193,9 +193,8 @@ def test_Latex():
# txt = r"https://arxiv.org/abs/2212.10156" # txt = r"https://arxiv.org/abs/2212.10156"
# txt = r"https://arxiv.org/abs/2211.11559" # txt = r"https://arxiv.org/abs/2211.11559"
# txt = r"https://arxiv.org/abs/2303.08774" # txt = r"https://arxiv.org/abs/2303.08774"
# txt = r"https://arxiv.org/abs/2303.12712" txt = r"https://arxiv.org/abs/2303.12712"
# txt = r"C:\Users\fuqingxu\arxiv_cache\2303.12712\workfolder" # txt = r"C:\Users\fuqingxu\arxiv_cache\2303.12712\workfolder"
txt = r"2306.17157" # 这个paper有个input命令文件名大小写错误
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):

View File

@ -1,19 +1,16 @@
from toolbox import update_ui, get_conf, trimmed_format_exc from toolbox import update_ui, get_conf, trimmed_format_exc
import threading import threading
def input_clipping(inputs, history, max_token_limit): def input_clipping(inputs, history, max_token_limit):
import numpy as np import numpy as np
from request_llm.bridge_all import model_info from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer'] enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
def get_token_num(txt):
return len(enc.encode(txt, disallowed_special=()))
mode = 'input-and-history' mode = 'input-and-history'
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史 # 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
input_token_num = get_token_num(inputs) input_token_num = get_token_num(inputs)
if input_token_num < max_token_limit // 2: if input_token_num < max_token_limit//2:
mode = 'only-history' mode = 'only-history'
max_token_limit = max_token_limit - input_token_num max_token_limit = max_token_limit - input_token_num
@ -21,13 +18,13 @@ def input_clipping(inputs, history, max_token_limit):
everything.extend(history) everything.extend(history)
n_token = get_token_num('\n'.join(everything)) n_token = get_token_num('\n'.join(everything))
everything_token = [get_token_num(e) for e in everything] everything_token = [get_token_num(e) for e in everything]
delta = max(everything_token) // 16 # 截断时的颗粒度 delta = max(everything_token) // 16 # 截断时的颗粒度
while n_token > max_token_limit: while n_token > max_token_limit:
where = np.argmax(everything_token) where = np.argmax(everything_token)
encoded = enc.encode(everything[where], disallowed_special=()) encoded = enc.encode(everything[where], disallowed_special=())
clipped_encoded = encoded[:len(encoded) - delta] clipped_encoded = encoded[:len(encoded)-delta]
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char
everything_token[where] = get_token_num(everything[where]) everything_token[where] = get_token_num(everything[where])
n_token = get_token_num('\n'.join(everything)) n_token = get_token_num('\n'.join(everything))
@ -38,13 +35,12 @@ def input_clipping(inputs, history, max_token_limit):
history = everything[1:] history = everything[1:]
return inputs, history return inputs, history
def request_gpt_model_in_new_thread_with_ui_alive( def request_gpt_model_in_new_thread_with_ui_alive(
inputs, inputs_show_user, llm_kwargs, inputs, inputs_show_user, llm_kwargs,
chatbot, history, sys_prompt, refresh_interval=0.2, chatbot, history, sys_prompt, refresh_interval=0.2,
handle_token_exceed=True, handle_token_exceed=True,
retry_times_at_unknown_error=2, retry_times_at_unknown_error=2,
): ):
""" """
Request GPT model请求GPT模型同时维持用户界面活跃。 Request GPT model请求GPT模型同时维持用户界面活跃。
@ -68,16 +64,15 @@ def request_gpt_model_in_new_thread_with_ui_alive(
from request_llm.bridge_all import predict_no_ui_long_connection from request_llm.bridge_all import predict_no_ui_long_connection
# 用户反馈 # 用户反馈
chatbot.append([inputs_show_user, ""]) chatbot.append([inputs_show_user, ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16) executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time(), ""] mutable = ["", time.time(), ""]
def _req_gpt(inputs, history, sys_prompt): def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error retry_op = retry_times_at_unknown_error
exceeded_cnt = 0 exceeded_cnt = 0
while True: while True:
# watchdog error # watchdog error
if len(mutable) >= 2 and (time.time() - mutable[1]) > 5: if len(mutable) >= 2 and (time.time()-mutable[1]) > 5:
raise RuntimeError("检测到程序终止。") raise RuntimeError("检测到程序终止。")
try: try:
# 【第一种情况】:顺利完成 # 【第一种情况】:顺利完成
@ -94,14 +89,14 @@ def request_gpt_model_in_new_thread_with_ui_alive(
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096 MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN - EXCEED_ALLO) inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
mutable[0] += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n' mutable[0] += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n'
continue # 返回重试 continue # 返回重试
else: else:
# 【选择放弃】 # 【选择放弃】
tb_str = '```\n' + trimmed_format_exc() + '```' tb_str = '```\n' + trimmed_format_exc() + '```'
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n" mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
return mutable[0] # 放弃 return mutable[0] # 放弃
except: except:
# 【第三种情况】:其他错误:重试几次 # 【第三种情况】:其他错误:重试几次
tb_str = '```\n' + trimmed_format_exc() + '```' tb_str = '```\n' + trimmed_format_exc() + '```'
@ -109,15 +104,14 @@ def request_gpt_model_in_new_thread_with_ui_alive(
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n" mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if retry_op > 0: if retry_op > 0:
retry_op -= 1 retry_op -= 1
mutable[ mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}\n\n"
0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error - retry_op}/{retry_times_at_unknown_error}\n\n"
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
time.sleep(30) time.sleep(30)
time.sleep(5) time.sleep(5)
continue # 返回重试 continue # 返回重试
else: else:
time.sleep(5) time.sleep(5)
return mutable[0] # 放弃 return mutable[0] # 放弃
# 提交任务 # 提交任务
future = executor.submit(_req_gpt, inputs, history, sys_prompt) future = executor.submit(_req_gpt, inputs, history, sys_prompt)
@ -129,21 +123,21 @@ def request_gpt_model_in_new_thread_with_ui_alive(
if future.done(): if future.done():
break break
chatbot[-1] = [chatbot[-1][0], mutable[0]] chatbot[-1] = [chatbot[-1][0], mutable[0]]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
final_result = future.result() final_result = future.result()
chatbot[-1] = [chatbot[-1][0], final_result] chatbot[-1] = [chatbot[-1][0], final_result]
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息 yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
return final_result return final_result
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array, inputs_show_user_array, llm_kwargs, inputs_array, inputs_show_user_array, llm_kwargs,
chatbot, history_array, sys_prompt_array, chatbot, history_array, sys_prompt_array,
refresh_interval=0.2, max_workers=-1, scroller_max_len=30, refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
handle_token_exceed=True, show_user_at_complete=False, handle_token_exceed=True, show_user_at_complete=False,
retry_times_at_unknown_error=2, retry_times_at_unknown_error=2,
): ):
""" """
Request GPT model using multiple threads with UI and high efficiency Request GPT model using multiple threads with UI and high efficiency
请求GPT模型的[多线程]版。 请求GPT模型的[多线程]版。
@ -176,21 +170,19 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
from request_llm.bridge_all import predict_no_ui_long_connection from request_llm.bridge_all import predict_no_ui_long_connection
assert len(inputs_array) == len(history_array) assert len(inputs_array) == len(history_array)
assert len(inputs_array) == len(sys_prompt_array) assert len(inputs_array) == len(sys_prompt_array)
if max_workers == -1: # 读取配置文件 if max_workers == -1: # 读取配置文件
try: try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
max_workers, = get_conf('DEFAULT_WORKER_NUM') except: max_workers = 8
except:
max_workers = 8
if max_workers <= 0: max_workers = 3 if max_workers <= 0: max_workers = 3
# 屏蔽掉 chatglm的多线程可能会导致严重卡顿 # 屏蔽掉 chatglm的多线程可能会导致严重卡顿
if not (llm_kwargs['llm_model'].startswith('gpt-') or llm_kwargs['llm_model'].startswith('api2d-')): if not (llm_kwargs['llm_model'].startswith('gpt-') or llm_kwargs['llm_model'].startswith('api2d-')):
max_workers = 1 max_workers = 1
executor = ThreadPoolExecutor(max_workers=max_workers) executor = ThreadPoolExecutor(max_workers=max_workers)
n_frag = len(inputs_array) n_frag = len(inputs_array)
# 用户反馈 # 用户反馈
chatbot.append(["请开始多线程操作。", ""]) chatbot.append(["请开始多线程操作。", ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
# 跨线程传递 # 跨线程传递
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)] mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
@ -202,13 +194,13 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[index][2] = "执行中" mutable[index][2] = "执行中"
while True: while True:
# watchdog error # watchdog error
if len(mutable[index]) >= 2 and (time.time() - mutable[index][1]) > 5: if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5:
raise RuntimeError("检测到程序终止。") raise RuntimeError("检测到程序终止。")
try: try:
# 【第一种情况】:顺利完成 # 【第一种情况】:顺利完成
# time.sleep(10); raise RuntimeError("测试") # time.sleep(10); raise RuntimeError("测试")
gpt_say = predict_no_ui_long_connection( gpt_say = predict_no_ui_long_connection(
inputs=inputs, llm_kwargs=llm_kwargs, history=history, inputs=inputs, llm_kwargs=llm_kwargs, history=history,
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
) )
mutable[index][2] = "已成功" mutable[index][2] = "已成功"
@ -222,26 +214,24 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
MAX_TOKEN = 4096 MAX_TOKEN = 4096
EXCEED_ALLO = 512 + 512 * exceeded_cnt EXCEED_ALLO = 512 + 512 * exceeded_cnt
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN - EXCEED_ALLO) inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
gpt_say += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n' gpt_say += f'[Local Message] 警告文本过长将进行截断Token溢出数{n_exceed}\n\n'
mutable[index][2] = f"截断重试" mutable[index][2] = f"截断重试"
continue # 返回重试 continue # 返回重试
else: else:
# 【选择放弃】 # 【选择放弃】
tb_str = '```\n' + trimmed_format_exc() + '```' tb_str = '```\n' + trimmed_format_exc() + '```'
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n" gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
mutable[index][2] = "输入过长已放弃" mutable[index][2] = "输入过长已放弃"
return gpt_say # 放弃 return gpt_say # 放弃
except Exception as e: except:
# 【第三种情况】:其他错误 # 【第三种情况】:其他错误
tb_str = '```\n' + trimmed_format_exc() + '```' tb_str = '```\n' + trimmed_format_exc() + '```'
print(f"发生异常:{e}, 调用栈信息:{tb_str}") print(tb_str)
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n" gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback\n\n{tb_str}\n\n"
if len(mutable[index][0]) > 0: if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0] if retry_op > 0:
if retry_op > 0:
retry_op -= 1 retry_op -= 1
wait = random.randint(5, 20) wait = random.randint(5, 20)
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
@ -251,22 +241,19 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
fail_info = "" fail_info = ""
# 也许等待十几秒后,情况会好转 # 也许等待十几秒后,情况会好转
for i in range(wait): for i in range(wait):
mutable[index][2] = f"{fail_info}等待重试 {wait - i}"; mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1)
time.sleep(1)
# 开始重试 # 开始重试
mutable[index][ mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
2] = f"重试中 {retry_times_at_unknown_error - retry_op}/{retry_times_at_unknown_error}" continue # 返回重试
continue # 返回重试
else: else:
mutable[index][2] = "已失败" mutable[index][2] = "已失败"
wait = 5 wait = 5
time.sleep(5) time.sleep(5)
return gpt_say # 放弃 return gpt_say # 放弃
# 异步任务开始 # 异步任务开始
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
zip( range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
cnt = 0 cnt = 0
while True: while True:
# yield一次以刷新前端页面 # yield一次以刷新前端页面
@ -280,17 +267,17 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
mutable[thread_index][1] = time.time() mutable[thread_index][1] = time.time()
# 在前端打印些好玩的东西 # 在前端打印些好玩的东西
for thread_index, _ in enumerate(worker_done): for thread_index, _ in enumerate(worker_done):
print_something_really_funny = "[ ...`" + mutable[thread_index][0][-scroller_max_len:]. \ print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
replace('\n', '').replace('```', '...').replace( replace('\n', '').replace('```', '...').replace(
' ', '.').replace('<br/>', '.....').replace('$', '.') + "`... ]" ' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
observe_win.append(print_something_really_funny) observe_win.append(print_something_really_funny)
# 在前端打印些好玩的东西 # 在前端打印些好玩的东西
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n' stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
if not done else f'`{mutable[thread_index][2]}`\n\n' if not done else f'`{mutable[thread_index][2]}`\n\n'
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)]) for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
# 在前端打印些好玩的东西 # 在前端打印些好玩的东西
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.'] * (cnt % 10 + 1))] chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
if all(worker_done): if all(worker_done):
executor.shutdown() executor.shutdown()
break break
@ -300,13 +287,13 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
for inputs_show_user, f in zip(inputs_show_user_array, futures): for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result() gpt_res = f.result()
gpt_response_collection.extend([inputs_show_user, gpt_res]) gpt_response_collection.extend([inputs_show_user, gpt_res])
# 是否在结束时,在界面上显示结果 # 是否在结束时,在界面上显示结果
if show_user_at_complete: if show_user_at_complete:
for inputs_show_user, f in zip(inputs_show_user_array, futures): for inputs_show_user, f in zip(inputs_show_user_array, futures):
gpt_res = f.result() gpt_res = f.result()
chatbot.append([inputs_show_user, gpt_res]) chatbot.append([inputs_show_user, gpt_res])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
time.sleep(0.3) time.sleep(0.3)
return gpt_response_collection return gpt_response_collection
@ -319,7 +306,6 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
lines = txt_tocut.split('\n') lines = txt_tocut.split('\n')
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines) estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
estimated_line_cut = int(estimated_line_cut) estimated_line_cut = int(estimated_line_cut)
cnt = 0
for cnt in reversed(range(estimated_line_cut)): for cnt in reversed(range(estimated_line_cut)):
if must_break_at_empty_line: if must_break_at_empty_line:
if lines[cnt] != "": if lines[cnt] != "":
@ -336,7 +322,6 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
result = [prev] result = [prev]
result.extend(cut(post, must_break_at_empty_line)) result.extend(cut(post, must_break_at_empty_line))
return result return result
try: try:
return cut(txt, must_break_at_empty_line=True) return cut(txt, must_break_at_empty_line=True)
except RuntimeError: except RuntimeError:
@ -352,10 +337,9 @@ def force_breakdown(txt, limit, get_token_fn):
return txt[:i], txt[i:] return txt[:i], txt[i:]
return "Tiktoken未知错误", "Tiktoken未知错误" return "Tiktoken未知错误", "Tiktoken未知错误"
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit): def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
# 递归 # 递归
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False): def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
if get_token_fn(txt_tocut) <= limit: if get_token_fn(txt_tocut) <= limit:
return [txt_tocut] return [txt_tocut]
else: else:
@ -381,7 +365,6 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
result = [prev] result = [prev]
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway)) result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
return result return result
try: try:
# 第1次尝试将双空行\n\n作为切分点 # 第1次尝试将双空行\n\n作为切分点
return cut(txt, must_break_at_empty_line=True) return cut(txt, must_break_at_empty_line=True)
@ -392,7 +375,7 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
except RuntimeError: except RuntimeError:
try: try:
# 第3次尝试将英文句号.)作为切分点 # 第3次尝试将英文句号.)作为切分点
res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在 res = cut(txt.replace('.', '\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
return [r.replace('\n', '.') for r in res] return [r.replace('\n', '.') for r in res]
except RuntimeError as e: except RuntimeError as e:
try: try:
@ -404,6 +387,7 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
return cut(txt, must_break_at_empty_line=False, break_anyway=True) return cut(txt, must_break_at_empty_line=False, break_anyway=True)
def read_and_clean_pdf_text(fp): def read_and_clean_pdf_text(fp):
""" """
这个函数用于分割pdf用了很多trick逻辑较乱效果奇好 这个函数用于分割pdf用了很多trick逻辑较乱效果奇好
@ -431,9 +415,8 @@ def read_and_clean_pdf_text(fp):
fc = 0 # Index 0 文本 fc = 0 # Index 0 文本
fs = 1 # Index 1 字体 fs = 1 # Index 1 字体
fb = 2 # Index 2 框框 fb = 2 # Index 2 框框
REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等) REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等)
REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的判定为不是正文有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化) REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的判定为不是正文有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化)
def primary_ffsize(l): def primary_ffsize(l):
""" """
提取文本块主字体 提取文本块主字体
@ -443,12 +426,12 @@ def read_and_clean_pdf_text(fp):
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0 if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
fsize_statiscs[wtf['size']] += len(wtf['text']) fsize_statiscs[wtf['size']] += len(wtf['text'])
return max(fsize_statiscs, key=fsize_statiscs.get) return max(fsize_statiscs, key=fsize_statiscs.get)
def ffsize_same(a, b): def ffsize_same(a,b):
""" """
提取字体大小是否近似相等 提取字体大小是否近似相等
""" """
return abs((a - b) / max(a, b)) < 0.02 return abs((a-b)/max(a,b)) < 0.02
with fitz.open(fp) as doc: with fitz.open(fp) as doc:
meta_txt = [] meta_txt = []
@ -468,19 +451,18 @@ def read_and_clean_pdf_text(fp):
if len(txt_line) == 0: continue if len(txt_line) == 0: continue
pf = primary_ffsize(l) pf = primary_ffsize(l)
meta_line.append([txt_line, pf, l['bbox'], l]) meta_line.append([txt_line, pf, l['bbox'], l])
for wtf in l['spans']: # for l in t['lines']: for wtf in l['spans']: # for l in t['lines']:
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])]) meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
# meta_line.append(["NEW_BLOCK", pf]) # meta_line.append(["NEW_BLOCK", pf])
# 块元提取 for each word segment with in line for each line # 块元提取 for each word segment with in line for each line cross-line words for each block
# cross-line words for each block
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t]) '- ', '') for t in text_areas['blocks'] if 'lines' in t])
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']]) meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t]) for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
if index == 0: if index == 0:
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
'- ', '') for t in text_areas['blocks'] if 'lines' in t] '- ', '') for t in text_areas['blocks'] if 'lines' in t]
############################## <第 2 步,获取正文主字体> ################################## ############################## <第 2 步,获取正文主字体> ##################################
fsize_statiscs = {} fsize_statiscs = {}
for span in meta_span: for span in meta_span:
@ -494,33 +476,32 @@ def read_and_clean_pdf_text(fp):
mega_sec = [] mega_sec = []
sec = [] sec = []
for index, line in enumerate(meta_line): for index, line in enumerate(meta_line):
if index == 0: if index == 0:
sec.append(line[fc]) sec.append(line[fc])
continue continue
if REMOVE_FOOT_NOTE: if REMOVE_FOOT_NOTE:
if meta_line[index][fs] <= give_up_fize_threshold: if meta_line[index][fs] <= give_up_fize_threshold:
continue continue
if ffsize_same(meta_line[index][fs], meta_line[index - 1][fs]): if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
# 尝试识别段落 # 尝试识别段落
if meta_line[index][fc].endswith('.') and \ if meta_line[index][fc].endswith('.') and\
(meta_line[index - 1][fc] != 'NEW_BLOCK') and \ (meta_line[index-1][fc] != 'NEW_BLOCK') and \
(meta_line[index][fb][2] - meta_line[index][fb][0]) < ( (meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
meta_line[index - 1][fb][2] - meta_line[index - 1][fb][0]) * 0.7:
sec[-1] += line[fc] sec[-1] += line[fc]
sec[-1] += "\n\n" sec[-1] += "\n\n"
else: else:
sec[-1] += " " sec[-1] += " "
sec[-1] += line[fc] sec[-1] += line[fc]
else: else:
if (index + 1 < len(meta_line)) and \ if (index+1 < len(meta_line)) and \
meta_line[index][fs] > main_fsize: meta_line[index][fs] > main_fsize:
# 单行 + 字体大 # 单行 + 字体大
mega_sec.append(copy.deepcopy(sec)) mega_sec.append(copy.deepcopy(sec))
sec = [] sec = []
sec.append("# " + line[fc]) sec.append("# " + line[fc])
else: else:
# 尝试识别section # 尝试识别section
if meta_line[index - 1][fs] > meta_line[index][fs]: if meta_line[index-1][fs] > meta_line[index][fs]:
sec.append("\n" + line[fc]) sec.append("\n" + line[fc])
else: else:
sec.append(line[fc]) sec.append(line[fc])
@ -539,15 +520,13 @@ def read_and_clean_pdf_text(fp):
if len(block_txt) < 100: if len(block_txt) < 100:
meta_txt[index] = '\n' meta_txt[index] = '\n'
return meta_txt return meta_txt
meta_txt = 把字符太少的块清除为回车(meta_txt) meta_txt = 把字符太少的块清除为回车(meta_txt)
def 清理多余的空行(meta_txt): def 清理多余的空行(meta_txt):
for index in reversed(range(1, len(meta_txt))): for index in reversed(range(1, len(meta_txt))):
if meta_txt[index] == '\n' and meta_txt[index - 1] == '\n': if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
meta_txt.pop(index) meta_txt.pop(index)
return meta_txt return meta_txt
meta_txt = 清理多余的空行(meta_txt) meta_txt = 清理多余的空行(meta_txt)
def 合并小写开头的段落块(meta_txt): def 合并小写开头的段落块(meta_txt):
@ -558,18 +537,16 @@ def read_and_clean_pdf_text(fp):
return True return True
else: else:
return False return False
for _ in range(100): for _ in range(100):
for index, block_txt in enumerate(meta_txt): for index, block_txt in enumerate(meta_txt):
if starts_with_lowercase_word(block_txt): if starts_with_lowercase_word(block_txt):
if meta_txt[index - 1] != '\n': if meta_txt[index-1] != '\n':
meta_txt[index - 1] += ' ' meta_txt[index-1] += ' '
else: else:
meta_txt[index - 1] = '' meta_txt[index-1] = ''
meta_txt[index - 1] += meta_txt[index] meta_txt[index-1] += meta_txt[index]
meta_txt[index] = '\n' meta_txt[index] = '\n'
return meta_txt return meta_txt
meta_txt = 合并小写开头的段落块(meta_txt) meta_txt = 合并小写开头的段落块(meta_txt)
meta_txt = 清理多余的空行(meta_txt) meta_txt = 清理多余的空行(meta_txt)
@ -589,7 +566,7 @@ def read_and_clean_pdf_text(fp):
return meta_txt, page_one_meta return meta_txt, page_one_meta
def get_files_from_everything(txt, type): # type='.md' def get_files_from_everything(txt, type): # type='.md'
""" """
这个函数是用来获取指定目录下所有指定类型(如.md的文件并且对于网络上的文件也可以获取它。 这个函数是用来获取指定目录下所有指定类型(如.md的文件并且对于网络上的文件也可以获取它。
下面是对每个参数和返回值的说明: 下面是对每个参数和返回值的说明:
@ -611,10 +588,9 @@ def get_files_from_everything(txt, type): # type='.md'
from toolbox import get_conf from toolbox import get_conf
proxies, = get_conf('proxies') proxies, = get_conf('proxies')
r = requests.get(txt, proxies=proxies) r = requests.get(txt, proxies=proxies)
with open('./gpt_log/temp' + type, 'wb+') as f: with open('./gpt_log/temp'+type, 'wb+') as f: f.write(r.content)
f.write(r.content)
project_folder = './gpt_log/' project_folder = './gpt_log/'
file_manifest = ['./gpt_log/temp' + type] file_manifest = ['./gpt_log/temp'+type]
elif txt.endswith(type): elif txt.endswith(type):
# 直接给定文件 # 直接给定文件
file_manifest = [txt] file_manifest = [txt]
@ -622,7 +598,7 @@ def get_files_from_everything(txt, type): # type='.md'
elif os.path.exists(txt): elif os.path.exists(txt):
# 本地路径,递归搜索 # 本地路径,递归搜索
project_folder = txt project_folder = txt
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*' + type, recursive=True)] file_manifest = [f for f in glob.glob(f'{project_folder}/**/*'+type, recursive=True)]
if len(file_manifest) == 0: if len(file_manifest) == 0:
success = False success = False
else: else:
@ -633,14 +609,16 @@ def get_files_from_everything(txt, type): # type='.md'
return success, file_manifest, project_folder return success, file_manifest, project_folder
def Singleton(cls): def Singleton(cls):
_instance = {} _instance = {}
def _singleton(*args, **kargs): def _singleton(*args, **kargs):
if cls not in _instance: if cls not in _instance:
_instance[cls] = cls(*args, **kargs) _instance[cls] = cls(*args, **kargs)
return _instance[cls] return _instance[cls]
return _singleton return _singleton
@ -659,30 +637,31 @@ class knowledge_archive_interface():
from toolbox import ProxyNetworkActivate from toolbox import ProxyNetworkActivate
print('Checking Text2vec ...') print('Checking Text2vec ...')
from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.embeddings.huggingface import HuggingFaceEmbeddings
with ProxyNetworkActivate(): # 临时地激活代理网络 with ProxyNetworkActivate(): # 临时地激活代理网络
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese") self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
return self.text2vec_large_chinese return self.text2vec_large_chinese
def feed_archive(self, file_manifest, id="default"): def feed_archive(self, file_manifest, id="default"):
self.threadLock.acquire() self.threadLock.acquire()
# import uuid # import uuid
self.current_id = id self.current_id = id
from zh_langchain import construct_vector_store from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store( self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id, vs_id=self.current_id,
files=file_manifest, files=file_manifest,
sentence_size=100, sentence_size=100,
history=[], history=[],
one_conent="", one_conent="",
one_content_segmentation="", one_content_segmentation="",
text2vec=self.get_chinese_text2vec(), text2vec = self.get_chinese_text2vec(),
) )
self.threadLock.release() self.threadLock.release()
def get_current_archive_id(self): def get_current_archive_id(self):
return self.current_id return self.current_id
def get_loaded_file(self): def get_loaded_file(self):
return self.qa_handle.get_loaded_file() return self.qa_handle.get_loaded_file()
@ -691,31 +670,30 @@ class knowledge_archive_interface():
if not self.current_id == id: if not self.current_id == id:
self.current_id = id self.current_id = id
from zh_langchain import construct_vector_store from zh_langchain import construct_vector_store
self.qa_handle, self.kai_path = construct_vector_store( self.qa_handle, self.kai_path = construct_vector_store(
vs_id=self.current_id, vs_id=self.current_id,
files=[], files=[],
sentence_size=100, sentence_size=100,
history=[], history=[],
one_conent="", one_conent="",
one_content_segmentation="", one_content_segmentation="",
text2vec=self.get_chinese_text2vec(), text2vec = self.get_chinese_text2vec(),
) )
VECTOR_SEARCH_SCORE_THRESHOLD = 0 VECTOR_SEARCH_SCORE_THRESHOLD = 0
VECTOR_SEARCH_TOP_K = 4 VECTOR_SEARCH_TOP_K = 4
CHUNK_SIZE = 512 CHUNK_SIZE = 512
resp, prompt = self.qa_handle.get_knowledge_based_conent_test( resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
query=txt, query = txt,
vs_path=self.kai_path, vs_path = self.kai_path,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD, score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, vector_search_top_k=VECTOR_SEARCH_TOP_K,
chunk_conent=True, chunk_conent=True,
chunk_size=CHUNK_SIZE, chunk_size=CHUNK_SIZE,
text2vec=self.get_chinese_text2vec(), text2vec = self.get_chinese_text2vec(),
) )
self.threadLock.release() self.threadLock.release()
return resp, prompt return resp, prompt
def try_install_deps(deps): def try_install_deps(deps):
for dep in deps: for dep in deps:
import subprocess, sys import subprocess, sys

View File

@ -203,7 +203,6 @@ def merge_tex_files_(project_foler, main_file, mode):
c = fx.read() c = fx.read()
else: else:
# e.g., \input{srcs/07_appendix} # e.g., \input{srcs/07_appendix}
assert os.path.exists(fp+'.tex'), f'即找不到{fp},也找不到{fp}.texTex源文件缺失'
with open(fp+'.tex', 'r', encoding='utf-8', errors='replace') as fx: with open(fp+'.tex', 'r', encoding='utf-8', errors='replace') as fx:
c = fx.read() c = fx.read()
c = merge_tex_files_(project_foler, c, mode) c = merge_tex_files_(project_foler, c, mode)

View File

@ -27,10 +27,8 @@ def gen_image(llm_kwargs, prompt, resolution="256x256"):
} }
response = requests.post(url, headers=headers, json=data, proxies=proxies) response = requests.post(url, headers=headers, json=data, proxies=proxies)
print(response.content) print(response.content)
try: image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
except:
raise RuntimeError(response.content.decode())
# 文件保存到本地 # 文件保存到本地
r = requests.get(image_url, proxies=proxies) r = requests.get(image_url, proxies=proxies)
file_path = 'gpt_log/image_gen/' file_path = 'gpt_log/image_gen/'

View File

@ -1,5 +1,5 @@
from toolbox import CatchException, report_execption, write_results_to_file from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui, promote_file_to_downloadzone from toolbox import update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text from .crazy_utils import read_and_clean_pdf_text
@ -147,14 +147,23 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
print('writing html result failed:', trimmed_format_exc()) print('writing html result failed:', trimmed_format_exc())
# 准备文件的下载 # 准备文件的下载
import shutil
for pdf_path in generated_conclusion_files: for pdf_path in generated_conclusion_files:
# 重命名文件 # 重命名文件
rename_file = f'翻译-{os.path.basename(pdf_path)}' rename_file = f'./gpt_log/翻译-{os.path.basename(pdf_path)}'
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot) if os.path.exists(rename_file):
os.remove(rename_file)
shutil.copyfile(pdf_path, rename_file)
if os.path.exists(pdf_path):
os.remove(pdf_path)
for html_path in generated_html_files: for html_path in generated_html_files:
# 重命名文件 # 重命名文件
rename_file = f'翻译-{os.path.basename(html_path)}' rename_file = f'./gpt_log/翻译-{os.path.basename(html_path)}'
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot) if os.path.exists(rename_file):
os.remove(rename_file)
shutil.copyfile(html_path, rename_file)
if os.path.exists(html_path):
os.remove(html_path)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files))) chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

View File

@ -13,11 +13,11 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
web_port 当前软件运行的端口号 web_port 当前软件运行的端口号
""" """
history = [] # 清空历史,以免输入溢出 history = [] # 清空历史,以免输入溢出
chatbot.append((txt, "正在同时咨询ChatGPT和ChatGLM……")) chatbot.append((txt, "正在同时咨询gpt-3.5和gpt-4……"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间我们先及时地做一次界面更新
# llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口用&符号分隔 # llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo&api2d-gpt-3.5-turbo' # 支持任意数量的llm接口用&符号分隔
llm_kwargs['llm_model'] = 'chatglm&gpt-3.5-turbo' # 支持任意数量的llm接口用&符号分隔 llm_kwargs['llm_model'] = 'gpt-3.5-turbo&gpt-4' # 支持任意数量的llm接口用&符号分隔
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=txt, inputs_show_user=txt, inputs=txt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history, llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,

View File

@ -1,78 +1,67 @@
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
fast_debug = False fast_debug = False
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt): def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time import time, glob, os
import os
print('begin analysis on:', file_manifest) print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest): for index, fp in enumerate(file_manifest):
with open(fp, 'r', encoding='utf-8', errors='replace') as f: with open(fp, 'r', encoding='utf-8', errors='replace') as f:
file_content = f.read() file_content = f.read()
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index == 0 else "" prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```' i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}' i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response.")) chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug: if not fast_debug:
msg = '正常' msg = '正常'
# ** gpt request ** # ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
chatbot, history=[],
sys_prompt=system_prompt) # 带超时倒计时
chatbot[-1] = (i_say_show_user, gpt_say) chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(i_say_show_user); history.append(gpt_say)
history.append(gpt_say) yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2) if not fast_debug: time.sleep(2)
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)]) all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。' i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response.")) chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug: if not fast_debug:
msg = '正常' msg = '正常'
# ** gpt request ** # ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, history=history, sys_prompt=system_prompt) # 带超时倒计时
history=history,
sys_prompt=system_prompt) # 带超时倒计时
chatbot[-1] = (i_say, gpt_say) chatbot[-1] = (i_say, gpt_say)
history.append(i_say) history.append(i_say); history.append(gpt_say)
history.append(gpt_say) yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history) res = write_results_to_file(history)
chatbot.append(("完成了吗?", res)) chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
@CatchException @CatchException
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, system_prompt, web_port, history=None): def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# history = [] # 清空历史,以免输入溢出 history = [] # 清空历史,以免输入溢出
if history is None: import glob, os
history = [] # 清空历史,以免输入溢出
import glob
import os
if os.path.exists(txt): if os.path.exists(txt):
project_folder = txt project_folder = txt
else: else:
if txt == "": if txt == "": txt = '空空如也的输入栏'
txt = '空空如也的输入栏' report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return return
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \ file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \ # [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)] # [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
if len(file_manifest) == 0: if len(file_manifest) == 0:
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}") report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return return
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt) yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@ -104,7 +104,7 @@ def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
meta_paper_info_list = meta_paper_info_list[batchsize:] meta_paper_info_list = meta_paper_info_list[batchsize:]
chatbot.append(["状态?", chatbot.append(["状态?",
"已经全部完成您可以试试让AI写一个Related Works例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."]) "已经全部完成您可以试试让AI写一个Related Works例如您可以继续输入Write an academic \"Related Works\" section about \"你搜索的研究领域\" for me."])
msg = '正常' msg = '正常'
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history) res = write_results_to_file(history)

View File

@ -1,28 +0,0 @@
# encoding: utf-8
# @Time : 2023/4/19
# @Author : Spike
# @Descr :
from toolbox import update_ui
from toolbox import CatchException, report_execption, write_results_to_file
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@CatchException
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
if txt:
show_say = txt
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
else:
prompt = history[-1]+"\n分析上述回答,再列出用户可能提出的三个问题。"
show_say = '分析上述回答,再列出用户可能提出的三个问题。'
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=show_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt=system_prompt
)
chatbot[-1] = (show_say, gpt_say)
history.extend([show_say, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

Binary file not shown.

View File

@ -28,7 +28,6 @@ proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response): def get_full_error(chunk, stream_response):
""" """
获取完整的从Openai返回的报错 获取完整的从Openai返回的报错
@ -41,9 +40,7 @@ def get_full_error(chunk, stream_response):
return chunk return chunk
def predict_no_ui_long_connection( def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
inputs, llm_kwargs, history=None, sys_prompt="", observe_window=None, console_slience=False
):
""" """
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。 发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs inputs
@ -57,59 +54,45 @@ def predict_no_ui_long_connection(
observe_window = None observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗 用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
""" """
if history is None: watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
history = []
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True) headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0 retry = 0
from bridge_all import model_info
while True: while True:
try: try:
# make a POST request to the API endpoint, stream=False # make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint'] endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, proxies=proxies, response = requests.post(endpoint, headers=headers, proxies=proxies,
json=payload, stream=True, timeout=TIMEOUT_SECONDS) json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
stream_response = response.iter_lines() except requests.exceptions.ReadTimeout as e:
break
except (requests.exceptions.ReadTimeout, requests.exceptions.ConnectionError):
retry += 1 retry += 1
traceback.print_exc() traceback.print_exc()
if retry > MAX_RETRY: if retry > MAX_RETRY: raise TimeoutError
raise TimeoutError if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
if MAX_RETRY != 0:
print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
except Exception as e:
print(f"出现异常:{e}")
raise e
stream_response = response.iter_lines()
result = '' result = ''
while True: while True:
try: try: chunk = next(stream_response).decode()
chunk = next(stream_response).decode()
except StopIteration: except StopIteration:
break break
# except requests.exceptions.ConnectionError: except requests.exceptions.ConnectionError:
# chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。 chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
if len(chunk) == 0: if len(chunk)==0: continue
continue
if not chunk.startswith('data:'): if not chunk.startswith('data:'):
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode() error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
if "reduce the length" in error_msg: if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg) raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
else: else:
raise RuntimeError("OpenAI拒绝了请求" + error_msg) raise RuntimeError("OpenAI拒绝了请求" + error_msg)
if 'data: [DONE]' in chunk: if ('data: [DONE]' in chunk): break # api2d 正常完成
break # api2d 正常完成
json_data = json.loads(chunk.lstrip('data:'))['choices'][0] json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
delta = json_data["delta"] delta = json_data["delta"]
if len(delta) == 0: if len(delta) == 0: break
break if "role" in delta: continue
if "role" in delta:
continue
if "content" in delta: if "content" in delta:
result += delta["content"] result += delta["content"]
if not console_slience: if not console_slience: print(delta["content"], end='')
print(delta["content"], end='')
if observe_window is not None: if observe_window is not None:
# 观测窗,把已经获取的数据显示出去 # 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"] if len(observe_window) >= 1: observe_window[0] += delta["content"]
@ -117,8 +100,7 @@ def predict_no_ui_long_connection(
if len(observe_window) >= 2: if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。") raise RuntimeError("用户取消了程序。")
else: else: raise RuntimeError("意外Json结构"+delta)
raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'length': if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。") raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
return result return result
@ -246,7 +228,6 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
return return
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream): def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
""" """
整合所有信息选择LLM模型生成http请求为发送请求做准备 整合所有信息选择LLM模型生成http请求为发送请求做准备
@ -266,19 +247,23 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
messages = [{"role": "system", "content": system_prompt}] messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt: if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2): for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {"role": "user", "content": history[index]} what_i_have_asked = {}
what_gpt_answer = {"role": "assistant", "content": history[index + 1]} what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "": if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": if what_gpt_answer["content"] == "": continue
continue if what_gpt_answer["content"] == timeout_bot_msg: continue
if what_gpt_answer["content"] == timeout_bot_msg:
continue
messages.append(what_i_have_asked) messages.append(what_i_have_asked)
messages.append(what_gpt_answer) messages.append(what_gpt_answer)
else: else:
messages[-1]['content'] = what_gpt_answer['content'] messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {"role": "user", "content": inputs} what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now) messages.append(what_i_ask_now)
payload = { payload = {
@ -293,8 +278,8 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
} }
try: try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........") print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except Exception as e: except:
print(f'输入中可能存在乱码。抛出异常: {e}') print('输入中可能存在乱码。')
return headers, payload return headers,payload

View File

@ -1,4 +1,3 @@
gradio>=3.33.1
tiktoken>=0.3.3 tiktoken>=0.3.3
requests[socks] requests[socks]
transformers transformers
@ -16,5 +15,3 @@ openai
numpy numpy
arxiv arxiv
rich rich
langchain
zh_langchain

View File

@ -21,7 +21,6 @@ pj = os.path.join
======================================================================== ========================================================================
""" """
class ChatBotWithCookies(list): class ChatBotWithCookies(list):
def __init__(self, cookie): def __init__(self, cookie):
self._cookies = cookie self._cookies = cookie
@ -72,13 +71,11 @@ def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时可用clear将其清空然后用for+append循环重新赋值。" assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时可用clear将其清空然后用for+append循环重新赋值。"
yield chatbot.get_cookies(), chatbot, history, msg yield chatbot.get_cookies(), chatbot, history, msg
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面 def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
""" """
刷新用户界面 刷新用户界面
""" """
if len(chatbot) == 0: if len(chatbot) == 0: chatbot.append(["update_ui_last_msg", lastmsg])
chatbot.append(["update_ui_last_msg", lastmsg])
chatbot[-1] = list(chatbot[-1]) chatbot[-1] = list(chatbot[-1])
chatbot[-1][-1] = lastmsg chatbot[-1][-1] = lastmsg
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)
@ -86,25 +83,24 @@ def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
def trimmed_format_exc(): def trimmed_format_exc():
import os import os, traceback
import traceback str = traceback.format_exc()
_str = traceback.format_exc()
current_path = os.getcwd() current_path = os.getcwd()
replace_path = "." replace_path = "."
return _str.replace(current_path, replace_path) return str.replace(current_path, replace_path)
def CatchException(f): def CatchException(f):
""" """
装饰器函数捕捉函数f中的异常并封装到一个生成器中返回并显示到聊天当中。 装饰器函数捕捉函数f中的异常并封装到一个生成器中返回并显示到聊天当中。
""" """
@wraps(f) @wraps(f)
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT=-1): def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT=-1):
try: try:
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT) yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
except Exception as e: except Exception as e:
from check_proxy import check_proxy from check_proxy import check_proxy
# from toolbox import get_conf # 不需要导入本文件内容 from toolbox import get_conf
proxies, = get_conf('proxies') proxies, = get_conf('proxies')
tb_str = '```\n' + trimmed_format_exc() + '```' tb_str = '```\n' + trimmed_format_exc() + '```'
if len(chatbot) == 0: if len(chatbot) == 0:
@ -112,7 +108,7 @@ def CatchException(f):
chatbot.append(["插件调度异常", "异常原因"]) chatbot.append(["插件调度异常", "异常原因"])
chatbot[-1] = (chatbot[-1][0], chatbot[-1] = (chatbot[-1][0],
f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}") f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}")
yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面 yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面
return decorated return decorated
@ -152,7 +148,6 @@ def HotReload(f):
======================================================================== ========================================================================
""" """
def get_reduce_token_percent(text): def get_reduce_token_percent(text):
""" """
* 此函数未来将被弃用 * 此函数未来将被弃用
@ -212,6 +207,8 @@ def regular_txt_to_markdown(text):
return text return text
def report_execption(chatbot, history, a, b): def report_execption(chatbot, history, a, b):
""" """
向chatbot中添加错误信息 向chatbot中添加错误信息
@ -241,7 +238,6 @@ def text_divide_paragraph(text):
text = "</br>".join(lines) text = "</br>".join(lines)
return pre + text + suf return pre + text + suf
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度 @lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
def markdown_convertion(txt): def markdown_convertion(txt):
""" """
@ -444,7 +440,6 @@ def find_recent_files(directory):
return recent_files return recent_files
def promote_file_to_downloadzone(file, rename_file=None, chatbot=None): def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
# 将文件复制一份到下载区 # 将文件复制一份到下载区
import shutil import shutil
@ -457,7 +452,6 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
else: current = [] else: current = []
chatbot._cookies.update({'file_to_promote': [new_path] + current}) chatbot._cookies.update({'file_to_promote': [new_path] + current})
def on_file_uploaded(files, chatbot, txt, txt2, checkboxes): def on_file_uploaded(files, chatbot, txt, txt2, checkboxes):
""" """
当文件被上传时的回调函数 当文件被上传时的回调函数
@ -511,20 +505,17 @@ def on_report_generated(cookies, files, chatbot):
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}']) chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
return cookies, report_files, chatbot return cookies, report_files, chatbot
def is_openai_api_key(key): def is_openai_api_key(key):
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key) API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key) API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE) return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE)
def is_api2d_key(key): def is_api2d_key(key):
if key.startswith('fk') and len(key) == 41: if key.startswith('fk') and len(key) == 41:
return True return True
else: else:
return False return False
def is_any_api_key(key): def is_any_api_key(key):
if ',' in key: if ',' in key:
keys = key.split(',') keys = key.split(',')
@ -534,7 +525,6 @@ def is_any_api_key(key):
else: else:
return is_openai_api_key(key) or is_api2d_key(key) return is_openai_api_key(key) or is_api2d_key(key)
def what_keys(keys): def what_keys(keys):
avail_key_list = {'OpenAI Key':0, "API2D Key":0} avail_key_list = {'OpenAI Key':0, "API2D Key":0}
key_list = keys.split(',') key_list = keys.split(',')
@ -549,7 +539,6 @@ def what_keys(keys):
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']}API2D Key {avail_key_list['API2D Key']}" return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']}API2D Key {avail_key_list['API2D Key']}"
def select_api_key(keys, llm_model): def select_api_key(keys, llm_model):
import random import random
avail_key_list = [] avail_key_list = []
@ -569,7 +558,6 @@ def select_api_key(keys, llm_model):
api_key = random.choice(avail_key_list) # 随机负载均衡 api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key return api_key
def read_env_variable(arg, default_value): def read_env_variable(arg, default_value):
""" """
环境变量可以是 `GPT_ACADEMIC_CONFIG`(优先),也可以直接是`CONFIG` 环境变量可以是 `GPT_ACADEMIC_CONFIG`(优先),也可以直接是`CONFIG`
@ -624,7 +612,6 @@ def read_env_variable(arg, default_value):
print亮绿(f"[ENV_VAR] 成功读取环境变量{arg}") print亮绿(f"[ENV_VAR] 成功读取环境变量{arg}")
return r return r
@lru_cache(maxsize=128) @lru_cache(maxsize=128)
def read_single_conf_with_lru_cache(arg): def read_single_conf_with_lru_cache(arg):
from colorful import print亮红, print亮绿, print亮蓝 from colorful import print亮红, print亮绿, print亮蓝
@ -689,7 +676,6 @@ class DummyWith():
def __exit__(self, exc_type, exc_value, traceback): def __exit__(self, exc_type, exc_value, traceback):
return return
def run_gradio_in_subpath(demo, auth, port, custom_path): def run_gradio_in_subpath(demo, auth, port, custom_path):
""" """
把gradio的运行地址更改到指定的二次路径上 把gradio的运行地址更改到指定的二次路径上
@ -784,7 +770,6 @@ def clip_history(inputs, history, tokenizer, max_token_limit):
======================================================================== ========================================================================
""" """
def zip_folder(source_folder, dest_folder, zip_name): def zip_folder(source_folder, dest_folder, zip_name):
import zipfile import zipfile
import os import os
@ -816,7 +801,6 @@ def zip_folder(source_folder, dest_folder, zip_name):
print(f"Zip file created at {zip_file}") print(f"Zip file created at {zip_file}")
def zip_result(folder): def zip_result(folder):
import time import time
t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
@ -827,7 +811,6 @@ def gen_time_str():
import time import time
return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
class ProxyNetworkActivate(): class ProxyNetworkActivate():
""" """
这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理 这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
@ -847,18 +830,16 @@ class ProxyNetworkActivate():
if 'HTTPS_PROXY' in os.environ: os.environ.pop('HTTPS_PROXY') if 'HTTPS_PROXY' in os.environ: os.environ.pop('HTTPS_PROXY')
return return
def objdump(obj, file='objdump.tmp'): def objdump(obj, file='objdump.tmp'):
import pickle import pickle
with open(file, 'wb+') as f: with open(file, 'wb+') as f:
pickle.dump(obj, f) pickle.dump(obj, f)
return return
def objload(file='objdump.tmp'): def objload(file='objdump.tmp'):
import pickle, os import pickle, os
if not os.path.exists(file): if not os.path.exists(file):
return return
with open(file, 'rb') as f: with open(file, 'rb') as f:
return pickle.load(f) return pickle.load(f)