Compare commits
139 Commits
ui_improve
...
personal_a
| Author | SHA1 | Date | |
|---|---|---|---|
| b6439711c3 | |||
| e4e2430255 | |||
| 1732127a28 | |||
| 56bb8b6498 | |||
| e93b6fa3a6 | |||
| dd4ba0ea22 | |||
| c2701c9ce5 | |||
| 2f019ce359 | |||
| c5b147aeb7 | |||
| 5813d65e52 | |||
| a393edfaa4 | |||
| dd7a01cda5 | |||
| 00a3b91f95 | |||
| 61ba544282 | |||
| b5b8c123e4 | |||
| d9ceba959f | |||
| 6b5b040701 | |||
| 4f4c09a5f3 | |||
| 067bc97cce | |||
| 7368580cd6 | |||
| df90db210c | |||
| 0927ed20a2 | |||
| 73b22f85be | |||
| b8d77557b0 | |||
| 99b8fce8f3 | |||
| 16364f1b2d | |||
| 3b88e00cfb | |||
| 0c8c539e9b | |||
| fd549fb986 | |||
| babb775cfb | |||
| eef9e470c9 | |||
| 3002c6318a | |||
| 6d0bceaebd | |||
| aa51d6fde6 | |||
| 136479e218 | |||
| 19a2742354 | |||
| 45aac96dd3 | |||
| 6f21ae8939 | |||
| add98f4eeb | |||
| fe231f72b6 | |||
| b308fde480 | |||
| f3e14ff806 | |||
| 79ef9bdf1c | |||
| a3e938aee9 | |||
| b19a6155f4 | |||
| 801f7342b1 | |||
| 4829fa0f35 | |||
| 3671f4208e | |||
| e8c51181ee | |||
| 3ccbb4d6fb | |||
| 93fe457e99 | |||
| afac657aaa | |||
| 3e5c32860a | |||
| d577bb38b6 | |||
| 418bc32b39 | |||
| 7148ea0596 | |||
| 87adb17df4 | |||
| 3fcee3762d | |||
| 1f014779e4 | |||
| 97879e73ef | |||
| 13d4cd3237 | |||
| 73e835885b | |||
| 2524c908fc | |||
| 0e71d81bb3 | |||
| a47864888f | |||
| 9b61ac807c | |||
| bc200dc555 | |||
| 2c18b84517 | |||
| fe7b651c56 | |||
| 9b8f160788 | |||
| 801d5e2fc2 | |||
| cecdd28e04 | |||
| d364df1cd6 | |||
| f51bc03686 | |||
| c010d50716 | |||
| acddb86f3a | |||
| 4fde0120ab | |||
| 592a354eef | |||
| bd66cf3d8b | |||
| e6e5174734 | |||
| 13ade82677 | |||
| ce9eb8d20a | |||
| dd47c0a284 | |||
| f725ab1b31 | |||
| 7ce4192c52 | |||
| c06aafb642 | |||
| b298c5416c | |||
| 94abf302cb | |||
| fcc5534e66 | |||
| 56c0e4d575 | |||
| 8a10db618e | |||
| 1fe66f0291 | |||
| ced977c443 | |||
| 6c2ffbae52 | |||
| be2f54fac9 | |||
| 87b5e56378 | |||
| 3a5764ed34 | |||
| 91aee50ea7 | |||
| e5ccedf491 | |||
| f620666a58 | |||
| 594c63e5d6 | |||
| 67d9051890 | |||
| be96232127 | |||
| 3b5bc7a784 | |||
| 5e92f437a1 | |||
| eabd9d312f | |||
| 0da6fe78ac | |||
| be990380a0 | |||
| 9c0bc48420 | |||
| 5c0d34793e | |||
| 37fc550652 | |||
| 2c1d6ac212 | |||
| 8c699c1b26 | |||
| c620fa9011 | |||
| f16fd60211 | |||
| 9674e59d26 | |||
| 643c5e125a | |||
| e5099e1daa | |||
| 3e621bbec1 | |||
| bb1d5a61c0 | |||
| fd3d0be2d8 | |||
| ae623258f3 | |||
| cda281f08b | |||
| 9f8e7a6efa | |||
| 57643dd2b6 | |||
| 6bc8a78cfe | |||
| d2700e97fb | |||
| c4dd81dc9a | |||
| e9b06d7cde | |||
| 6e6ea69611 | |||
| b082b5eb1b | |||
| 9648d78453 | |||
| 16c17eb077 | |||
| 2dc8718041 | |||
| a330d6636e | |||
| 322c4be145 | |||
| a3596ff60d | |||
| e11d8132f8 | |||
| 59877dd728 |
2
.github/workflows/build-with-chatglm.yml
vendored
2
.github/workflows/build-with-chatglm.yml
vendored
@ -1,5 +1,5 @@
|
||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||
name: Create and publish a Docker image for ChatGLM support
|
||||
name: build-with-chatglm
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
2
.github/workflows/build-with-jittorllms.yml
vendored
2
.github/workflows/build-with-jittorllms.yml
vendored
@ -1,5 +1,5 @@
|
||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||
name: Create and publish a Docker image for ChatGLM support
|
||||
name: build-with-jittorllms
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
2
.github/workflows/build-with-latex.yml
vendored
2
.github/workflows/build-with-latex.yml
vendored
@ -1,5 +1,5 @@
|
||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||
name: Create and publish a Docker image for Latex support
|
||||
name: build-with-latex
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||
name: Create and publish a Docker image
|
||||
name: build-without-local-llms
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
45
.gitignore
vendored
45
.gitignore
vendored
@ -2,14 +2,15 @@
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
plugins/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
@ -25,6 +26,7 @@ share/python-wheels/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
@ -33,6 +35,7 @@ MANIFEST
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
@ -46,64 +49,91 @@ coverage.xml
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
github
|
||||
.github
|
||||
TEMP
|
||||
TRASH
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
site/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.direnv/
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv*/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
.vscode
|
||||
.idea
|
||||
|
||||
history
|
||||
ssr_conf
|
||||
config_private.py
|
||||
@ -115,12 +145,9 @@ cradle*
|
||||
debug*
|
||||
private*
|
||||
crazy_functions/test_project/pdf_and_word
|
||||
crazy_fun
|
||||
ctions/test_samples
|
||||
crazy_functions/test_samples
|
||||
request_llm/jittorllms
|
||||
users_data/*
|
||||
request_llm/moss
|
||||
multi-language
|
||||
request_llm/moss
|
||||
media
|
||||
__test.py
|
||||
flagged
|
||||
|
||||
22
Dockerfile
22
Dockerfile
@ -1,28 +1,34 @@
|
||||
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
|
||||
# 如何构建: 先修改 `config.py`, 然后 docker build -t gpt-academic .
|
||||
# 如何运行: docker run --rm -it --net=host gpt-academic
|
||||
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型或者latex运行依赖,请参考 docker-compose.yml
|
||||
# 如何构建: 先修改 `config.py`, 然后 `docker build -t gpt-academic . `
|
||||
# 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
|
||||
# 如何运行(其他操作系统,选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
|
||||
FROM python:3.11
|
||||
|
||||
|
||||
# 非必要步骤,更换pip源
|
||||
RUN echo '[global]' > /etc/pip.conf && \
|
||||
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
|
||||
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
||||
|
||||
|
||||
# 进入工作路径
|
||||
WORKDIR /gpt
|
||||
|
||||
|
||||
|
||||
|
||||
# 安装依赖
|
||||
# 安装大部分依赖,利用Docker缓存加速以后的构建
|
||||
COPY requirements.txt ./
|
||||
COPY ./docs/gradio-3.32.2-py3-none-any.whl ./docs/gradio-3.32.2-py3-none-any.whl
|
||||
RUN pip3 install -r requirements.txt
|
||||
# 装载项目文件
|
||||
|
||||
|
||||
# 装载项目文件,安装剩余依赖
|
||||
COPY . .
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
|
||||
# 非必要步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
|
||||
# 启动
|
||||
CMD ["python3", "-u", "main.py"]
|
||||
|
||||
85
README.md
85
README.md
@ -1,31 +1,31 @@
|
||||
> **Note**
|
||||
>
|
||||
> 2023.5.27 对Gradio依赖进行了调整,Fork并解决了官方Gradio的若干Bugs。请及时**更新代码**并重新更新pip依赖。安装依赖时,请严格选择`requirements.txt`中**指定的版本**:
|
||||
> 2023.7.8: Gradio, Pydantic依赖调整,已修改 `requirements.txt`。请及时**更新代码**,安装依赖时,请严格选择`requirements.txt`中**指定的版本**
|
||||
>
|
||||
> `pip install -r requirements.txt`
|
||||
>
|
||||
|
||||
# <img src="docs/logo.png" width="40" > GPT 学术优化 (GPT Academic)
|
||||
|
||||
**如果喜欢这个项目,请给它一个Star;如果你发明了更好用的快捷键或函数插件,欢迎发pull requests**
|
||||
# <div align=center><img src="docs/logo.png" width="40"> GPT 学术优化 (GPT Academic)</div>
|
||||
|
||||
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或函数插件,欢迎发pull requests!**
|
||||
|
||||
If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request. We also have a README in [English|](docs/README_EN.md)[日本語|](docs/README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](docs/README_RS.md)[Français](docs/README_FR.md) translated by this project itself.
|
||||
To translate this project to arbitary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
|
||||
|
||||
> **Note**
|
||||
>
|
||||
> 1.请注意只有**红颜色**标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR!
|
||||
> 1.请注意只有 **高亮(如红色)** 标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
|
||||
>
|
||||
> 2.本项目中每个文件的功能都在自译解[`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题汇总在[`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)当中。[安装方法](#installation)。
|
||||
>
|
||||
> 3.本项目兼容并鼓励尝试国产大语言模型chatglm和RWKV, 盘古等等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,api2d-key3"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
|
||||
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM和Moss等等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
|
||||
|
||||
|
||||
|
||||
|
||||
<div align="center">
|
||||
|
||||
功能 | 描述
|
||||
功能(⭐= 近期新增功能) | 描述
|
||||
--- | ---
|
||||
一键润色 | 支持一键润色、一键查找论文语法错误
|
||||
一键中英互译 | 一键中英互译
|
||||
@ -41,14 +41,17 @@ Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [函数
|
||||
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
|
||||
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [函数插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
||||
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
||||
Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
||||
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
|
||||
互联网信息聚合+GPT | [函数插件] 一键[让GPT先从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck),再回答问题,让信息永不过时
|
||||
⭐Arxiv论文精细翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),迄今为止最好的论文翻译工具⭐
|
||||
互联网信息聚合+GPT | [函数插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
|
||||
⭐Arxiv论文精细翻译 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
|
||||
⭐[实时语音对话输入](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [函数插件] 异步[监听音频](https://www.bilibili.com/video/BV1AV4y187Uy/),自动断句,自动寻找回答时机
|
||||
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
|
||||
多线程函数插件支持 | 支持多线调用chatgpt,一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
|
||||
启动暗色gradio[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
||||
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
|
||||
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama),[RWKV](https://github.com/BlinkDL/ChatRWKV)和[盘古α](https://openi.org.cn/pangu/)
|
||||
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
||||
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
|
||||
⭐ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调辅助插件
|
||||
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
|
||||
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
|
||||
|
||||
</div>
|
||||
@ -85,13 +88,12 @@ chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
|
||||
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
|
||||
</div>
|
||||
|
||||
---
|
||||
# Installation
|
||||
## 安装-方法1:直接运行 (Windows, Linux or MacOS)
|
||||
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
||||
|
||||
1. 下载项目
|
||||
```sh
|
||||
git clone https://github.com/binary-husky/gpt_academic.git
|
||||
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
||||
cd gpt_academic
|
||||
```
|
||||
|
||||
@ -114,17 +116,17 @@ python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步
|
||||
```
|
||||
|
||||
|
||||
<details><summary>如果需要支持清华ChatGLM/复旦MOSS作为后端,请点击展开此处</summary>
|
||||
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS作为后端,请点击展开此处</summary>
|
||||
<p>
|
||||
|
||||
【可选步骤】如果需要支持清华ChatGLM/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
```sh
|
||||
# 【可选步骤I】支持清华ChatGLM。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
|
||||
# 【可选步骤II】支持复旦MOSS
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # 注意执行此行代码时,必须处于项目根路径
|
||||
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llm/moss # 注意执行此行代码时,必须处于项目根路径
|
||||
|
||||
# 【可选步骤III】确保config.py配置文件的AVAIL_LLM_MODELS包含了期望的模型,目前支持的全部模型如下(jittorllms系列目前仅支持docker方案):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
@ -140,24 +142,27 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-
|
||||
python main.py
|
||||
```
|
||||
|
||||
## 安装-方法2:使用Docker
|
||||
### 安装方法II:使用Docker
|
||||
|
||||
1. 仅ChatGPT(推荐大多数人选择,等价于docker-compose方案1)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
||||
|
||||
``` sh
|
||||
git clone https://github.com/binary-husky/gpt_academic.git # 下载项目
|
||||
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git # 下载项目
|
||||
cd gpt_academic # 进入路径
|
||||
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
|
||||
docker build -t gpt-academic . # 安装
|
||||
|
||||
#(最后一步-选择1)在Linux环境下,用`--net=host`更方便快捷
|
||||
#(最后一步-Linux操作系统)用`--net=host`更方便快捷
|
||||
docker run --rm -it --net=host gpt-academic
|
||||
#(最后一步-选择2)在macOS/windows环境下,只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
||||
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
||||
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
|
||||
```
|
||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能(修改docker-compose.yml,保留方案4并删除其他方案)。
|
||||
|
||||
2. ChatGPT + ChatGLM + MOSS(需要熟悉Docker)
|
||||
2. ChatGPT + ChatGLM2 + MOSS(需要熟悉Docker)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
||||
|
||||
``` sh
|
||||
# 修改docker-compose.yml,保留方案2并删除其他方案。修改docker-compose.yml中方案2的配置,参考其中注释即可
|
||||
@ -165,13 +170,15 @@ docker-compose up
|
||||
```
|
||||
|
||||
3. ChatGPT + LLAMA + 盘古 + RWKV(需要熟悉Docker)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-jittorllms.yml)
|
||||
|
||||
``` sh
|
||||
# 修改docker-compose.yml,保留方案3并删除其他方案。修改docker-compose.yml中方案3的配置,参考其中注释即可
|
||||
docker-compose up
|
||||
```
|
||||
|
||||
|
||||
## 安装-方法3:其他部署姿势
|
||||
### 安装方法III:其他部署姿势
|
||||
1. 一键运行脚本。
|
||||
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。
|
||||
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
|
||||
@ -194,11 +201,9 @@ docker-compose up
|
||||
7. 如何在二级网址(如`http://localhost/subpath`)下运行。
|
||||
请访问[FastAPI运行说明](docs/WithFastapi.md)
|
||||
|
||||
---
|
||||
# Advanced Usage
|
||||
## 自定义新的便捷按钮 / 自定义函数插件
|
||||
|
||||
1. 自定义新的便捷按钮(学术快捷键)
|
||||
# Advanced Usage
|
||||
### I:自定义新的便捷按钮(学术快捷键)
|
||||
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序即可。(如果按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
|
||||
例如
|
||||
```
|
||||
@ -214,15 +219,15 @@ docker-compose up
|
||||
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
|
||||
</div>
|
||||
|
||||
2. 自定义函数插件
|
||||
### II:自定义函数插件
|
||||
|
||||
编写强大的函数插件来执行任何你想得到的和想不到的任务。
|
||||
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
|
||||
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
|
||||
|
||||
---
|
||||
|
||||
# Latest Update
|
||||
## 新功能动态
|
||||
### I:新功能动态
|
||||
|
||||
1. 对话保存功能。在函数插件区调用 `保存当前的对话` 即可将当前对话保存为可读+可复原的html文件,
|
||||
另外在函数插件区(下拉菜单)调用 `载入对话历史存档` ,即可还原之前的会话。
|
||||
@ -283,8 +288,11 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
||||
|
||||
|
||||
|
||||
## 版本:
|
||||
### II:版本:
|
||||
- version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级)
|
||||
- version 3.46: 支持完全脱手操作的实时语音对话
|
||||
- version 3.45: 支持自定义ChatGLM2微调模型
|
||||
- version 3.44: 正式支持Azure,优化界面易用性
|
||||
- version 3.4: +arxiv论文翻译、latex论文批改功能
|
||||
- version 3.3: +互联网信息综合功能
|
||||
- version 3.2: 函数插件支持更多参数接口 (保存对话功能, 解读任意语言代码+同时询问任意的LLM组合)
|
||||
@ -305,13 +313,18 @@ gpt_academic开发者QQ群-2:610599535
|
||||
- 某些浏览器翻译插件干扰此软件前端的运行
|
||||
- 官方Gradio目前有很多兼容性Bug,请务必使用`requirement.txt`安装Gradio
|
||||
|
||||
## 参考与学习
|
||||
### III:主题
|
||||
可以通过修改`THEME`选项(config.py)变更主题
|
||||
1. `Chuanhu-Small-and-Beautiful` [网址](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
|
||||
|
||||
|
||||
### IV:参考与学习
|
||||
|
||||
```
|
||||
代码中参考了很多其他优秀项目中的设计,顺序不分先后:
|
||||
|
||||
# 清华ChatGLM-6B:
|
||||
https://github.com/THUDM/ChatGLM-6B
|
||||
# 清华ChatGLM2-6B:
|
||||
https://github.com/THUDM/ChatGLM2-6B
|
||||
|
||||
# 清华JittorLLMs:
|
||||
https://github.com/Jittor/JittorLLMs
|
||||
|
||||
486
__main__.py
486
__main__.py
@ -1,486 +0,0 @@
|
||||
import os
|
||||
import gradio as gr
|
||||
from request_llm.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_user_upload, \
|
||||
get_conf, ArgsGeneralWrapper, DummyWith
|
||||
|
||||
# 问询记录, python 版本建议3.9+(越新越好)
|
||||
import logging
|
||||
|
||||
# 一些普通功能模块
|
||||
from core_functional import get_core_functions
|
||||
|
||||
functional = get_core_functions()
|
||||
|
||||
# 高级函数插件
|
||||
from crazy_functional import get_crazy_functions
|
||||
|
||||
crazy_fns = get_crazy_functions()
|
||||
|
||||
# 处理markdown文本格式的转变
|
||||
gr.Chatbot.postprocess = format_io
|
||||
|
||||
# 做一些外观色彩上的调整
|
||||
from theme import adjust_theme, advanced_css, custom_css
|
||||
|
||||
set_theme = adjust_theme()
|
||||
|
||||
# 代理与自动更新
|
||||
from check_proxy import check_proxy, auto_update, warm_up_modules
|
||||
|
||||
import func_box
|
||||
|
||||
from check_proxy import get_current_version
|
||||
|
||||
os.makedirs("gpt_log", exist_ok=True)
|
||||
try:
|
||||
logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
|
||||
except:
|
||||
logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
|
||||
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
|
||||
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, LAYOUT, API_KEY, AVAIL_LLM_MODELS, LOCAL_PORT= \
|
||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'LAYOUT',
|
||||
'API_KEY', 'AVAIL_LLM_MODELS', 'LOCAL_PORT')
|
||||
|
||||
proxy_info = check_proxy(proxies)
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
if not AUTHENTICATION: AUTHENTICATION = None
|
||||
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
|
||||
|
||||
class ChatBotFrame:
|
||||
|
||||
def __init__(self):
|
||||
self.cancel_handles = []
|
||||
self.initial_prompt = "You will play a professional to answer me according to my needs."
|
||||
self.title_html = f"<h1 align=\"center\">Chatbot for KSO {get_current_version()}</h1>"
|
||||
self.description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
|
||||
|
||||
|
||||
class ChatBot(ChatBotFrame):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.__url = f'http://{func_box.ipaddr()}:{PORT}'
|
||||
# self.__gr_url = gr.State(self.__url)
|
||||
|
||||
def draw_title(self):
|
||||
# self.title = gr.HTML(self.title_html)
|
||||
self.cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL, 'local': self.__url})
|
||||
def draw_chatbot(self):
|
||||
self.chatbot = gr.Chatbot(elem_id='main_chatbot', label=f"当前模型:{LLM_MODEL}")
|
||||
self.chatbot.style()
|
||||
self.history = gr.State([])
|
||||
temp_draw = [gr.HTML() for i in range(7)]
|
||||
with gr.Box(elem_id='chat_box'):
|
||||
self.state_users = gr.HTML(value='', visible=False, elem_id='state_users')
|
||||
with gr.Row():
|
||||
self.sm_upload = gr.UploadButton(label='UPLOAD', file_count='multiple', elem_classes='sm_btn').style(size='sm', full_width=False)
|
||||
self.sm_code_block = gr.Button(value='CODE', elem_classes='sm_btn').style(size='sm', full_width=False)
|
||||
self.sm_upload_history = gr.Button("SPASE", variant="primary", elem_classes='sm_btn').style(size='sm', full_width=False)
|
||||
self.md_dropdown = gr.Dropdown(choices=AVAIL_LLM_MODELS, value=LLM_MODEL,
|
||||
show_label=False, interactive=True,
|
||||
elem_classes='sm_select', elem_id='change-font-size').style(container=False)
|
||||
gr.HTML(func_box.get_html("appearance_switcher.html").format(label=""), elem_id='user_input_tb', elem_classes="insert_block")
|
||||
|
||||
with gr.Row():
|
||||
self.txt = gr.Textbox(show_label=False, placeholder="Input question here.", elem_classes='chat_input').style(container=False)
|
||||
self.input_copy = gr.State('')
|
||||
self.submitBtn = gr.Button("", variant="primary", elem_classes='submit_btn').style(full_width=False)
|
||||
with gr.Row():
|
||||
self.status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行\n {proxy_info}", elem_id='debug_mes')
|
||||
|
||||
def signals_sm_btn(self):
|
||||
self.sm_upload.upload(on_file_uploaded, [self.sm_upload, self.chatbot, self.txt], [self.chatbot, self.txt]).then(
|
||||
fn=lambda: [gr.Tabs.update(selected='plug_tab'), gr.Column.update(visible=False)], inputs=None, outputs=[self.tabs_inputs, self.examples_column]
|
||||
)
|
||||
self.sm_code_block.click(fn=lambda x: x+'```\n\n```', inputs=[self.txt], outputs=[self.txt])
|
||||
self.sm_upload_history.click(get_user_upload, [self.chatbot], outputs=[self.chatbot]).then(fn=lambda: gr.Column.update(visible=False), inputs=None, outputs=self.examples_column)
|
||||
# self.sm_select_font.select(fn=lambda x: gr.HTML.update(value=f"{x}px"), inputs=[self.sm_select_font], outputs=[self.state_users])
|
||||
|
||||
def draw_examples(self):
|
||||
with gr.Column(elem_id='examples_col') as self.examples_column:
|
||||
gr.Markdown('# Get Started Quickly')
|
||||
with gr.Row():
|
||||
hide_components = gr.Textbox(visible=False)
|
||||
gr.Button.update = func_box.update_btn
|
||||
self.example = [['今天伦敦天气怎么样?', '对2021年以后的世界和事件了解有限', self.submitBtn.update(elem_id='highlight_update')],
|
||||
['今夕何夕,明月何月?', '偶尔会产生不正确的信息', self.submitBtn.update(elem_id='highlight_update')],
|
||||
['怎么才能把学校给炸了?', '经过训练,会拒绝不适当的请求', self.submitBtn.update(elem_id='highlight_update')]]
|
||||
self.example_inputs = [self.txt, hide_components, self.submitBtn]
|
||||
self.guidance_example = gr.Examples(examples=self.example, inputs=self.example_inputs, label='基础对话')
|
||||
self.guidance_plugins = gr.Dataset(components=[gr.HTML(visible=False)], samples=[['...'] for i in range(4)], label='高级功能', type='index')
|
||||
self.guidance_plugins_state = gr.State()
|
||||
self.guidance_news = gr.Examples(examples=func_box.git_log_list(), inputs=[hide_components, hide_components], label='News')
|
||||
|
||||
def plug_update(index, date_set):
|
||||
variant = crazy_fns[date_set[index]]["Color"] if "Color" in crazy_fns[date_set[index]] else "secondary"
|
||||
ret = {self.switchy_bt: self.switchy_bt.update(value=date_set[index], variant=variant, elem_id='highlight_update'),
|
||||
self.tabs_inputs: gr.Tabs.update(selected='plug_tab'),
|
||||
self.area_crazy_fn: self.area_crazy_fn.update(open=True)}
|
||||
fns_value = func_box.txt_converter_json(str(crazy_fns[date_set[index]].get('Parameters', '')))
|
||||
fns_lable = f"插件[{date_set[index]}]的高级参数说明:\n" + crazy_fns[date_set[index]].get("ArgsReminder", f"没有提供高级参数功能说明")
|
||||
temp_dict = dict(visible=True, interactive=True, value=str(fns_value), label=fns_lable)
|
||||
# 是否唤起高级插件参数区
|
||||
if crazy_fns[date_set[index]].get("AdvancedArgs", False):
|
||||
ret.update({self.plugin_advanced_arg: gr.update(**temp_dict)})
|
||||
ret.update({self.area_crazy_fn: self.area_crazy_fn.update(open=False)})
|
||||
else:
|
||||
ret.update({self.plugin_advanced_arg: gr.update(visible=False, label=f"插件[{date_set[index]}]不需要高级参数。")})
|
||||
return ret
|
||||
|
||||
self.guidance_plugins.select(fn=plug_update, inputs=[self.guidance_plugins, self.guidance_plugins_state],
|
||||
outputs=[self.switchy_bt, self.plugin_advanced_arg, self.tabs_inputs,
|
||||
self.area_crazy_fn])
|
||||
|
||||
def __clear_input(self, inputs):
|
||||
return '', inputs, self.examples_column.update(visible=False)
|
||||
|
||||
def draw_prompt(self):
|
||||
with gr.Row():
|
||||
self.pro_search_txt = gr.Textbox(show_label=False, placeholder="Enter the prompt you want.").style(
|
||||
container=False)
|
||||
self.pro_entry_btn = gr.Button("搜索", variant="primary").style(full_width=False, size="sm")
|
||||
with gr.Row():
|
||||
with gr.Accordion(label='Prompt usage frequency'):
|
||||
self.pro_prompt_list = gr.Dataset(components=[gr.HTML(visible=False)], samples_per_page=10,
|
||||
label='Results',
|
||||
samples=[[". . ."] for i in range(20)], type='index')
|
||||
self.pro_prompt_state = gr.State(self.pro_prompt_list)
|
||||
|
||||
def draw_temp_edit(self):
|
||||
with gr.Box():
|
||||
with gr.Row():
|
||||
with gr.Column(scale=100):
|
||||
self.pro_results = gr.Chatbot(label='Prompt and result', elem_id='prompt_result').style()
|
||||
with gr.Column(scale=16):
|
||||
Tips = "用 BORF 分析法设计chat GPT prompt:\n" \
|
||||
"1、阐述背景 B(Background): 说明背景,为chatGPT提供充足的信息\n" \
|
||||
"2、定义目标 O(Objectives):“我们希望实现什么”\n" \
|
||||
"3、定义关键结果 R(key Result):“我要什么具体效果”\n" \
|
||||
"4、试验并调整,改进 E(Evolve):三种改进方法自由组合\n" \
|
||||
"\t 改进输入:从答案的不足之处着手改进背景B,目标O与关键结果R\n" \
|
||||
"\t 改进答案:在后续对话中指正chatGPT答案缺点\n" \
|
||||
"\t 重新生成:尝试在prompt不变的情况下多次生成结果,优中选优\n" \
|
||||
"\t 熟练使用占位符{{{v}}}: 当Prompt存在占位符,则优先将{{{v}}}替换为预期文本"
|
||||
self.pro_edit_txt = gr.Textbox(show_label=False, info='Prompt编辑区', lines=14,
|
||||
placeholder=Tips).style(container=False)
|
||||
with gr.Row():
|
||||
self.pro_name_txt = gr.Textbox(show_label=False, placeholder='是否全复用prompt / prompt功能名', ).style(
|
||||
container=False)
|
||||
self.pro_new_btn = gr.Button("保存Prompt", variant="primary").style(size='sm').style()
|
||||
with gr.Row(elem_id='sm_btn'):
|
||||
self.pro_reuse_btn = gr.Button("复用Result", variant="secondary").style(size='sm').style(full_width=False)
|
||||
self.pro_clear_btn = gr.Button("重置Result", variant="stop").style(size='sm').style(full_width=False)
|
||||
|
||||
|
||||
def signals_prompt_edit(self):
|
||||
self.pro_clear_btn.click(fn=lambda: [], inputs=None, outputs=self.pro_results)
|
||||
self.prompt_tab.select(fn=func_box.draw_results,
|
||||
inputs=[self.pro_search_txt, self.pro_prompt_state, self.pro_tf_slider,
|
||||
self.pro_private_check],
|
||||
outputs=[self.pro_prompt_list, self.pro_prompt_state])
|
||||
self.pro_search_txt.submit(fn=func_box.draw_results,
|
||||
inputs=[self.pro_search_txt, self.pro_prompt_state, self.pro_tf_slider,
|
||||
self.pro_private_check],
|
||||
outputs=[self.pro_prompt_list, self.pro_prompt_state])
|
||||
self.pro_entry_btn.click(fn=func_box.draw_results,
|
||||
inputs=[self.pro_search_txt, self.pro_prompt_state, self.pro_tf_slider,
|
||||
self.pro_private_check],
|
||||
outputs=[self.pro_prompt_list, self.pro_prompt_state])
|
||||
self.pro_prompt_list.click(fn=func_box.show_prompt_result,
|
||||
inputs=[self.pro_prompt_list, self.pro_prompt_state, self.pro_results, self.pro_edit_txt, self.pro_name_txt],
|
||||
outputs=[self.pro_results, self.pro_edit_txt, self.pro_name_txt])
|
||||
self.pro_new_btn.click(fn=func_box.prompt_save,
|
||||
inputs=[self.pro_edit_txt, self.pro_name_txt, self.pro_fp_state],
|
||||
outputs=[self.pro_edit_txt, self.pro_name_txt, self.pro_private_check,
|
||||
self.pro_func_prompt, self.pro_fp_state, self.tabs_chatbot])
|
||||
self.pro_reuse_btn.click(
|
||||
fn=func_box.reuse_chat,
|
||||
inputs=[self.pro_results, self.chatbot, self.history, self.pro_name_txt, self.txt],
|
||||
outputs=[self.chatbot, self.history, self.txt, self.tabs_chatbot, self.pro_name_txt, self.examples_column]
|
||||
)
|
||||
|
||||
def draw_function_chat(self):
|
||||
prompt_list, devs_document = get_conf('prompt_list', 'devs_document')
|
||||
with gr.TabItem('Function', id='func_tab'):
|
||||
with gr.Accordion("基础功能区", open=False) as self.area_basic_fn:
|
||||
with gr.Row():
|
||||
for k in functional:
|
||||
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
|
||||
functional[k]["Button"] = gr.Button(k, variant=variant)
|
||||
with gr.Accordion("上传你的Prompt", open=False) as self.area_basic_fn:
|
||||
jump_link = f'<a href="{devs_document}" target="_blank">Developer Documentation</a>'
|
||||
self.pro_devs_link = gr.HTML(jump_link)
|
||||
self.pro_upload_btn = gr.File(file_count='single', file_types=['.yaml', '.json'],
|
||||
label=f'上传你的Prompt文件, 编写格式请遵循上述开发者文档', )
|
||||
self.pro_private_check = gr.CheckboxGroup(choices=prompt_list['key'], value=prompt_list['value'],
|
||||
label='选择展示Prompt')
|
||||
self.pro_func_prompt = gr.Dataset(components=[gr.HTML()], label="Prompt List", visible=False,
|
||||
samples=[['...', ""] for i in range(20)], type='index',
|
||||
samples_per_page=10)
|
||||
self.pro_fp_state = gr.State(self.pro_func_prompt)
|
||||
|
||||
def signals_prompt_func(self):
|
||||
self.pro_private_check.select(fn=func_box.prompt_reduce,
|
||||
inputs=[self.pro_private_check, self.pro_fp_state],
|
||||
outputs=[self.pro_func_prompt, self.pro_fp_state, self.pro_private_check])
|
||||
self.tabs_code = gr.State(0)
|
||||
self.pro_func_prompt.select(fn=func_box.prompt_input,
|
||||
inputs=[self.txt, self.pro_edit_txt, self.pro_name_txt, self.pro_func_prompt, self.pro_fp_state, self.tabs_code],
|
||||
outputs=[self.txt, self.pro_edit_txt, self.pro_name_txt])
|
||||
self.pro_upload_btn.upload(fn=func_box.prompt_upload_refresh,
|
||||
inputs=[self.pro_upload_btn, self.pro_prompt_state],
|
||||
outputs=[self.pro_func_prompt, self.pro_prompt_state, self.pro_private_check])
|
||||
self.chat_tab.select(fn=lambda: 0, inputs=None, outputs=self.tabs_code)
|
||||
self.prompt_tab.select(fn=lambda: 1, inputs=None, outputs=self.tabs_code)
|
||||
|
||||
def draw_public_chat(self):
|
||||
with gr.TabItem('Plugins', id='plug_tab'):
|
||||
with gr.Accordion("上传本地文件可供高亮函数插件调用", open=False) as self.area_file_up:
|
||||
self.file_upload = gr.Files(label="任何文件, 但推荐上传压缩文件(zip, tar)",
|
||||
file_count="multiple")
|
||||
self.file_upload.style()
|
||||
with gr.Accordion("函数插件区", open=True) as self.area_crazy_fn:
|
||||
with gr.Row():
|
||||
for k in crazy_fns:
|
||||
if not crazy_fns[k].get("AsButton", True): continue
|
||||
self.variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary"
|
||||
crazy_fns[k]["Button"] = gr.Button(k, variant=self.variant)
|
||||
crazy_fns[k]["Button"].style(size="sm")
|
||||
with gr.Accordion("更多函数插件/高级用法", open=True, ):
|
||||
dropdown_fn_list = []
|
||||
for k in crazy_fns.keys():
|
||||
if not crazy_fns[k].get("AsButton", True):
|
||||
dropdown_fn_list.append(k)
|
||||
elif crazy_fns[k].get('AdvancedArgs', False):
|
||||
dropdown_fn_list.append(k)
|
||||
self.dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", show_label=False, label="").style(
|
||||
container=False)
|
||||
self.plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
|
||||
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
||||
self.switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary")
|
||||
|
||||
def draw_setting_chat(self):
|
||||
switch_model = get_conf('switch_model')[0]
|
||||
with gr.TabItem('Settings', id='sett_tab'):
|
||||
self.top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01, interactive=True,
|
||||
label="Top-p (nucleus sampling)", ).style(container=False)
|
||||
self.temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True,
|
||||
label="Temperature", ).style(container=False)
|
||||
self.max_length_sl = gr.Slider(minimum=256, maximum=4096, value=4096, step=1, interactive=True,
|
||||
label="MaxLength", ).style(container=False)
|
||||
self.pro_tf_slider = gr.Slider(minimum=0.01, maximum=1.0, value=0.70, step=0.01, interactive=True,
|
||||
label="Term Frequency系数").style(container=False)
|
||||
self.models_box = gr.CheckboxGroup(choices=switch_model['key'], value=switch_model['value'], label="对话模式")
|
||||
self.system_prompt = gr.Textbox(show_label=True, lines=2, placeholder=f"System Prompt",
|
||||
label="System prompt", value=self.initial_prompt)
|
||||
# temp = gr.Markdown(self.description)
|
||||
|
||||
def draw_goals_auto(self):
|
||||
with gr.Row():
|
||||
self.ai_name = gr.Textbox(show_label=False, placeholder="给Ai一个名字").style(container=False)
|
||||
with gr.Row():
|
||||
self.ai_role = gr.Textbox(lines=5, show_label=False, placeholder="请输入你的需求").style(
|
||||
container=False)
|
||||
with gr.Row():
|
||||
self.ai_goal_list = gr.Dataframe(headers=['Goals'], interactive=True, row_count=4,
|
||||
col_count=(1, 'fixed'), type='array')
|
||||
with gr.Row():
|
||||
self.ai_budget = gr.Number(show_label=False, value=0.0,
|
||||
info="关于本次项目的预算,超过预算自动停止,默认无限").style(container=False)
|
||||
|
||||
|
||||
def draw_next_auto(self):
|
||||
with gr.Row():
|
||||
self.text_continue = gr.Textbox(visible=False, show_label=False,
|
||||
placeholder="请根据提示输入执行命令").style(container=False)
|
||||
with gr.Row():
|
||||
self.submit_start = gr.Button("Start", variant='primary')
|
||||
self.submit_next = gr.Button("Next", visible=False, variant='primary')
|
||||
self.submit_stop = gr.Button("Stop", variant="stop")
|
||||
self.agent_obj = gr.State({'obj': None, "start": self.submit_start,
|
||||
"next": self.submit_next, "text": self.text_continue})
|
||||
|
||||
|
||||
def signals_input_setting(self):
|
||||
# 注册input
|
||||
self.input_combo = [self.cookies, self.max_length_sl, self.md_dropdown,
|
||||
self.input_copy, self.top_p, self.temperature, self.chatbot, self.history,
|
||||
self.system_prompt, self.models_box, self.plugin_advanced_arg]
|
||||
self.output_combo = [self.cookies, self.chatbot, self.history, self.status]
|
||||
self.predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=self.input_combo, outputs=self.output_combo)
|
||||
self.clear_agrs = dict(fn=self.__clear_input, inputs=[self.txt], outputs=[self.txt, self.input_copy,
|
||||
self.examples_column])
|
||||
# 提交按钮、重置按钮
|
||||
self.cancel_handles.append(self.txt.submit(**self.clear_agrs).then(**self.predict_args))
|
||||
self.cancel_handles.append(self.submitBtn.click(**self.clear_agrs).then(**self.predict_args))
|
||||
# self.cpopyBtn.click(fn=func_box.copy_result, inputs=[self.history], outputs=[self.status])
|
||||
self.resetBtn.click(lambda: ([], [], "已重置"), None, [self.chatbot, self.history, self.status])
|
||||
|
||||
def signals_function(self):
|
||||
# 基础功能区的回调函数注册
|
||||
for k in functional:
|
||||
self.click_handle = functional[k]["Button"].click(**self.clear_agrs).then(fn=ArgsGeneralWrapper(predict),
|
||||
inputs=[*self.input_combo, gr.State(True), gr.State(k)],
|
||||
outputs=self.output_combo)
|
||||
self.cancel_handles.append(self.click_handle)
|
||||
|
||||
def signals_public(self):
|
||||
# 文件上传区,接收文件后与chatbot的互动
|
||||
self.file_upload.upload(on_file_uploaded, [self.file_upload, self.chatbot, self.txt], [self.chatbot, self.txt])
|
||||
# 函数插件-固定按钮区
|
||||
for k in crazy_fns:
|
||||
if not crazy_fns[k].get("AsButton", True): continue
|
||||
self.click_handle = crazy_fns[k]["Button"].click(**self.clear_agrs).then(
|
||||
ArgsGeneralWrapper(crazy_fns[k]["Function"]),
|
||||
[*self.input_combo, gr.State(PORT), gr.State(crazy_fns[k].get('Parameters', False))],
|
||||
self.output_combo)
|
||||
self.click_handle.then(on_report_generated, [self.cookies, self.file_upload, self.chatbot],
|
||||
[self.cookies, self.file_upload, self.chatbot])
|
||||
# self.click_handle.then(fn=lambda x: '', inputs=[], outputs=self.txt)
|
||||
self.cancel_handles.append(self.click_handle)
|
||||
|
||||
# 函数插件-下拉菜单与随变按钮的互动
|
||||
def on_dropdown_changed(k):
|
||||
# 按钮颜色随变
|
||||
variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary"
|
||||
ret = {self.switchy_bt: self.switchy_bt.update(value=k, variant=variant)}
|
||||
# 参数取随变
|
||||
fns_value = func_box.txt_converter_json(str(crazy_fns[k].get('Parameters', '')))
|
||||
fns_lable = f"插件[{k}]的高级参数说明:\n" + crazy_fns[k].get("ArgsReminder", f"没有提供高级参数功能说明")
|
||||
temp_dict = dict(visible=True, interactive=True, value=str(fns_value), label=fns_lable)
|
||||
# 是否唤起高级插件参数区
|
||||
if crazy_fns[k].get("AdvancedArgs", False):
|
||||
ret.update({self.plugin_advanced_arg: gr.update(**temp_dict)})
|
||||
else:
|
||||
ret.update({self.plugin_advanced_arg: gr.update(visible=False, label=f"插件[{k}]不需要高级参数。")})
|
||||
return ret
|
||||
|
||||
self.dropdown.select(on_dropdown_changed, [self.dropdown], [self.switchy_bt, self.plugin_advanced_arg])
|
||||
|
||||
# 随变按钮的回调函数注册
|
||||
def route(k, ipaddr: gr.Request, *args, **kwargs):
|
||||
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
||||
append = list(args)
|
||||
append[-2] = func_box.txt_converter_json(append[-2])
|
||||
append.insert(-1, ipaddr)
|
||||
args = tuple(append)
|
||||
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
|
||||
|
||||
self.click_handle = self.switchy_bt.click(**self.clear_agrs).then(route, [self.switchy_bt, *self.input_combo, gr.State(PORT)], self.output_combo)
|
||||
self.click_handle.then(on_report_generated, [self.cookies, self.file_upload, self.chatbot],
|
||||
[self.cookies, self.file_upload, self.chatbot])
|
||||
self.cancel_handles.append(self.click_handle)
|
||||
# 终止按钮的回调函数注册
|
||||
self.stopBtn.click(fn=None, inputs=None, outputs=None, cancels=self.cancel_handles)
|
||||
|
||||
def on_md_dropdown_changed(k):
|
||||
return {self.chatbot: gr.update(label="当前模型:" + k)}
|
||||
|
||||
self.md_dropdown.select(on_md_dropdown_changed, [self.md_dropdown], [self.chatbot])
|
||||
|
||||
def signals_auto_input(self):
|
||||
self.auto_input_combo = [self.ai_name, self.ai_role, self.ai_goal_list, self.ai_budget,
|
||||
self.cookies, self.chatbot, self.history,
|
||||
self.agent_obj]
|
||||
self.auto_output_combo = [self.cookies, self.chatbot, self.history, self.status,
|
||||
self.agent_obj, self.submit_start, self.submit_next, self.text_continue]
|
||||
|
||||
|
||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||
def auto_opentab_delay(self, is_open=False):
|
||||
import threading, webbrowser, time
|
||||
|
||||
print(f"如果浏览器没有自动打开,请复制并转到以下URL:")
|
||||
print(f"\t(亮色主题): http://localhost:{PORT}")
|
||||
print(f"\t(暗色主题): {self.__url}/?__theme=dark")
|
||||
if is_open:
|
||||
def open():
|
||||
time.sleep(2) # 打开浏览器
|
||||
webbrowser.open_new_tab(f"http://localhost:{PORT}/?__theme=dark")
|
||||
|
||||
threading.Thread(target=open, name="open-browser", daemon=True).start()
|
||||
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
|
||||
# threading.Thread(target=warm_up_modules, name="warm-up", daemon=True).start()
|
||||
|
||||
|
||||
def main(self):
|
||||
|
||||
with gr.Blocks(title="Chatbot for KSO ", theme=set_theme, analytics_enabled=False, css=custom_css) as self.demo:
|
||||
# 绘制页面title
|
||||
self.draw_title()
|
||||
# 绘制一个ROW,row会让底下的元素自动排成一行
|
||||
with gr.Row().style(justify='between'):
|
||||
# 绘制列1
|
||||
with gr.Column(scale=44):
|
||||
with gr.Tabs() as self.tabs_copilot:
|
||||
# 绘制对话模组
|
||||
with gr.TabItem('Chat-Copilot'):
|
||||
with gr.Row():
|
||||
# self.cpopyBtn = gr.Button("复制回答", variant="secondary").style(size="sm")
|
||||
self.resetBtn = gr.Button("新建对话", variant="primary", elem_id='empty_btn').style(
|
||||
size="sm")
|
||||
self.stopBtn = gr.Button("中止对话", variant="stop").style(size="sm")
|
||||
with gr.Tabs() as self.tabs_inputs:
|
||||
self.draw_function_chat()
|
||||
self.draw_public_chat()
|
||||
self.draw_setting_chat()
|
||||
|
||||
# 绘制autogpt模组
|
||||
with gr.TabItem('Auto-GPT'):
|
||||
self.draw_next_auto()
|
||||
self.draw_goals_auto()
|
||||
# 绘制列2
|
||||
with gr.Column(scale=100):
|
||||
with gr.Tabs() as self.tabs_chatbot:
|
||||
with gr.TabItem('Chatbot', id='chatbot') as self.chat_tab:
|
||||
# self.draw_chatbot()
|
||||
pass
|
||||
with gr.TabItem('Prompt检索/编辑') as self.prompt_tab:
|
||||
self.draw_prompt()
|
||||
|
||||
with self.chat_tab: # 使用 gr.State()对组件进行拷贝时,如果之前绘制了Markdown格式,会导致启动崩溃,所以将 markdown相关绘制放在最后
|
||||
self.draw_chatbot()
|
||||
self.draw_examples()
|
||||
with self.prompt_tab:
|
||||
self.draw_temp_edit()
|
||||
# 函数注册,需要在Blocks下进行
|
||||
self.signals_sm_btn()
|
||||
self.signals_input_setting()
|
||||
self.signals_function()
|
||||
self.signals_prompt_func()
|
||||
self.signals_public()
|
||||
self.signals_prompt_edit()
|
||||
# self.signals_auto_input()
|
||||
adv_plugins = gr.State([i for i in crazy_fns])
|
||||
self.demo.load(fn=func_box.refresh_load_data, postprocess=False,
|
||||
inputs=[self.chatbot, self.history, self.pro_fp_state, adv_plugins],
|
||||
outputs=[self.pro_func_prompt, self.pro_fp_state, self.chatbot, self.history, self.guidance_plugins, self.guidance_plugins_state])
|
||||
|
||||
# Start
|
||||
self.auto_opentab_delay()
|
||||
self.demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION,
|
||||
blocked_paths=["config.py", "config_private.py", "docker-compose.yml", "Dockerfile"])
|
||||
|
||||
|
||||
def check_proxy_free():
|
||||
proxy_state = func_box.Shell(f'lsof -i :{PORT}').read()[1].splitlines()
|
||||
if proxy_state != ["", ""]:
|
||||
print('Kill Old Server')
|
||||
for i in proxy_state[1:]:
|
||||
func_box.Shell(f'kill -9 {i.split()[1]}').read()
|
||||
import time
|
||||
time.sleep(5)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
PORT = LOCAL_PORT if WEB_PORT <= 0 else WEB_PORT
|
||||
check_proxy_free()
|
||||
ChatBot().main()
|
||||
gr.close_all()
|
||||
check_proxy_free()
|
||||
|
||||
@ -11,7 +11,9 @@ def check_proxy(proxies):
|
||||
country = data['country_name']
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
||||
elif 'error' in data:
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:未知"
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
||||
else:
|
||||
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
||||
print(result)
|
||||
return result
|
||||
except:
|
||||
@ -115,7 +117,7 @@ def auto_update(raise_error=False):
|
||||
with open('./version', 'r', encoding='utf8') as f:
|
||||
current_version = f.read()
|
||||
current_version = json.loads(current_version)['version']
|
||||
if (remote_version - current_version) >= 0.01:
|
||||
if (remote_version - current_version) >= 0.01-1e-5:
|
||||
from colorful import print亮黄
|
||||
print亮黄(
|
||||
f'\n新版本可用。新版本:{remote_version},当前版本:{current_version}。{new_feature}')
|
||||
@ -137,7 +139,7 @@ def auto_update(raise_error=False):
|
||||
else:
|
||||
return
|
||||
except:
|
||||
msg = '自动更新程序:已禁用'
|
||||
msg = '自动更新程序:已禁用。建议排查:代理网络配置。'
|
||||
if raise_error:
|
||||
from toolbox import trimmed_format_exc
|
||||
msg += trimmed_format_exc()
|
||||
|
||||
134
config.py
134
config.py
@ -1,36 +1,27 @@
|
||||
# [step 1]>> 例如: API_KEY = "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" (此key无效)
|
||||
API_KEY = "sk-此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
||||
"""
|
||||
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
|
||||
读取优先级:环境变量 > config_private.py > config.py
|
||||
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
All the following configurations also support using environment variables to override,
|
||||
and the environment variable configuration format can be seen in docker-compose.yml.
|
||||
Configuration reading priority: environment variable > config_private.py > config.py
|
||||
"""
|
||||
|
||||
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
||||
|
||||
|
||||
prompt_list = {'key': ['所有人', '个人'], 'value': []}
|
||||
|
||||
switch_model = {'key': ['input加密', '隐私模式'], 'value': ['input加密']}
|
||||
|
||||
private_key = 'uhA51pHtjisfjij'
|
||||
|
||||
import func_box
|
||||
import os
|
||||
devs_document = "/file="+os.path.join(func_box.base_path, 'README.md')
|
||||
|
||||
#增加关于AZURE的配置信息, 可以在AZURE网页中找到
|
||||
AZURE_ENDPOINT = "https://你的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "填入api版本"
|
||||
AZURE_ENGINE = "填入ENGINE"
|
||||
|
||||
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
|
||||
USE_PROXY = False
|
||||
|
||||
LOCAL_PORT = 7891
|
||||
if USE_PROXY:
|
||||
# 填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
|
||||
# 例如 "socks5h://localhost:11284"
|
||||
# [协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
|
||||
# [地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了(localhost意思是代理软件安装在本机上)
|
||||
# [端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
|
||||
|
||||
# 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5/http)、地址(localhost)和端口(11284)
|
||||
"""
|
||||
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
|
||||
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
|
||||
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
|
||||
[地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了(localhost意思是代理软件安装在本机上)
|
||||
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
|
||||
"""
|
||||
# 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5h / http)、地址(localhost)和端口(11284)
|
||||
proxies = {
|
||||
# [协议]:// [地址] :[端口]
|
||||
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
|
||||
@ -39,78 +30,87 @@ if USE_PROXY:
|
||||
else:
|
||||
proxies = None
|
||||
|
||||
# [step 3]>> 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(高危设置! 常规情况下不要修改! 通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 举例: API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://reverse-proxy-url/v1/chat/completions"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
|
||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
DEFAULT_WORKER_NUM = 3
|
||||
|
||||
|
||||
# [step 3]>> 以下配置可以优化体验,但大部分场合下并不需要修改 # 废弃了,移步到theme.py 的 #main_chatbot中修改
|
||||
# 对话窗的高度
|
||||
CHATBOT_HEIGHT = 1115
|
||||
|
||||
# 主题
|
||||
THEME = "Default"
|
||||
|
||||
# 代码高亮
|
||||
CODE_HIGHLIGHT = True
|
||||
|
||||
|
||||
# 窗口布局
|
||||
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||
DARK_MODE = True # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||
DARK_MODE = True # 暗色模式 / 亮色模式
|
||||
|
||||
|
||||
# 发送请求到OpenAI后,等待多久判定为超时
|
||||
TIMEOUT_SECONDS = 30
|
||||
|
||||
|
||||
# 网页的端口, -1代表随机端口
|
||||
WEB_PORT = -1
|
||||
|
||||
|
||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||
MAX_RETRY = 2
|
||||
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 同时它必须被包含在AVAIL_LLM_MODELS切换列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt35", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "newbing-free", "stack-claude"]
|
||||
# P.S. 其他可用的模型还包括 ["newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
|
||||
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "claude-1-100k", "claude-2", "internlm", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
||||
|
||||
# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
|
||||
ChatGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||
|
||||
|
||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
LOCAL_MODEL_QUANT = "FP16" # 默认 "FP16" "INT4" 启用量化INT4版本 "INT8" 启用量化INT8版本
|
||||
|
||||
# OpenAI的API_URL
|
||||
API_URL = "https://api.openai.com/v1/chat/completions"
|
||||
PROXY_API_URL = '' # 你的网关应用
|
||||
|
||||
# 设置gradio的并行线程数(不需要修改)
|
||||
CONCURRENT_COUNT = 100
|
||||
|
||||
|
||||
# 是否在提交时自动清空输入框
|
||||
AUTO_CLEAR_TXT = False
|
||||
|
||||
|
||||
# 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"]
|
||||
THEME = "Default"
|
||||
|
||||
|
||||
# 加一个live2d装饰
|
||||
ADD_WAIFU = False
|
||||
|
||||
# 川虎JS
|
||||
ADD_CHUANHU = True
|
||||
|
||||
# 设置用户名和密码(不需要修改)(相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个)
|
||||
# [("username", "password"), ("username2", "password2"), ...]
|
||||
AUTHENTICATION = []
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(常规情况下,不要修改!!)
|
||||
# (高危设置!通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式 {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 例如 API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://ai.open.com/api/conversation"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
||||
CUSTOM_PATH = "/"
|
||||
|
||||
# 如果需要使用newbing,把newbing的长长的cookie放到这里
|
||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
||||
# 从现在起,如果您调用"newbing-free"模型,则无需填写NEWBING_COOKIES
|
||||
NEWBING_COOKIES = """
|
||||
your bing cookies here
|
||||
"""
|
||||
|
||||
# 极少数情况下,openai的官方KEY需要伴随组织编码(格式如org-xxxxxxxxxxxxxxxxxxxxxxxx)使用
|
||||
API_ORG = ""
|
||||
|
||||
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llm/README.md
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
@ -118,7 +118,27 @@ SLACK_CLAUDE_USER_TOKEN = ''
|
||||
|
||||
|
||||
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
|
||||
AZURE_ENDPOINT = "https://你的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "填入api版本"
|
||||
AZURE_ENGINE = "填入ENGINE"
|
||||
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
|
||||
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
||||
|
||||
|
||||
# 使用Newbing
|
||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
||||
NEWBING_COOKIES = """
|
||||
put your new bing cookies here
|
||||
"""
|
||||
|
||||
|
||||
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md
|
||||
ENABLE_AUDIO = False
|
||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||
|
||||
|
||||
# Claude API KEY
|
||||
ANTHROPIC_API_KEY = ""
|
||||
|
||||
|
||||
# 自定义API KEY格式
|
||||
CUSTOM_API_KEY_PATTERN = ""
|
||||
@ -61,7 +61,7 @@ def get_core_functions():
|
||||
},
|
||||
"找图片": {
|
||||
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," +
|
||||
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n",
|
||||
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n",
|
||||
"Suffix": r"",
|
||||
"Visible": False,
|
||||
},
|
||||
@ -76,11 +76,3 @@ def get_core_functions():
|
||||
"Suffix": r"",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_guidance():
|
||||
pass
|
||||
|
||||
|
||||
def get_guidance():
|
||||
pass
|
||||
@ -20,28 +20,19 @@ def get_crazy_functions():
|
||||
from crazy_functions.解析项目源代码 import 解析一个Lua项目
|
||||
from crazy_functions.解析项目源代码 import 解析一个CSharp项目
|
||||
from crazy_functions.总结word文档 import 总结word文档
|
||||
from crazy_functions.辅助回答 import 猜你想问
|
||||
from crazy_functions.解析JupyterNotebook import 解析ipynb文件
|
||||
from crazy_functions.对话历史存档 import 对话历史存档
|
||||
from crazy_functions.对话历史存档 import 载入对话历史存档
|
||||
from crazy_functions.对话历史存档 import 删除所有本地对话历史记录
|
||||
|
||||
from crazy_functions.批量Markdown翻译 import Markdown英译中
|
||||
function_plugins = {
|
||||
"猜你想问": {
|
||||
"Function": HotReload(猜你想问)
|
||||
},
|
||||
"解析整个Python项目": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"AsButton": False,
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": HotReload(解析一个Python项目)
|
||||
},
|
||||
|
||||
"保存当前的对话": {
|
||||
"AsButton": True,
|
||||
"Function": HotReload(对话历史存档)
|
||||
},
|
||||
"载入对话历史存档(先上传存档或输入路径)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton":False,
|
||||
"Function": HotReload(载入对话历史存档)
|
||||
},
|
||||
@ -49,78 +40,77 @@ def get_crazy_functions():
|
||||
"AsButton":False,
|
||||
"Function": HotReload(删除所有本地对话历史记录)
|
||||
},
|
||||
|
||||
"[测试功能] 解析Jupyter Notebook文件": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton":False,
|
||||
"Function": HotReload(解析ipynb文件),
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "若输入0,则不解析notebook中的Markdown块", # 高级参数输入区的显示提示
|
||||
},
|
||||
"批量总结Word文档": {
|
||||
"AsButton": False,
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"Function": HotReload(总结word文档)
|
||||
},
|
||||
"解析整个C++项目头文件": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个C项目的头文件)
|
||||
},
|
||||
"解析整个C++项目(.cpp/.hpp/.c/.h)": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个C项目)
|
||||
},
|
||||
"解析整个Go项目": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个Golang项目)
|
||||
},
|
||||
"解析整个Rust项目": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个Rust项目)
|
||||
},
|
||||
"解析整个Java项目": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个Java项目)
|
||||
},
|
||||
"解析整个前端项目(js,ts,css等)": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个前端项目)
|
||||
},
|
||||
"解析整个Lua项目": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个Lua项目)
|
||||
},
|
||||
"解析整个CSharp项目": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析一个CSharp项目)
|
||||
},
|
||||
"读Tex论文写摘要": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": HotReload(读文章写摘要)
|
||||
},
|
||||
"Markdown/Readme英译中": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"AsButton": False,
|
||||
"Color": "stop",
|
||||
"Function": HotReload(Markdown英译中)
|
||||
},
|
||||
"批量生成函数注释": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(批量生成函数注释)
|
||||
},
|
||||
"保存当前的对话": {
|
||||
"Function": HotReload(对话历史存档)
|
||||
},
|
||||
"[多线程Demo] 解析此项目本身(源码自译解)": {
|
||||
"Function": HotReload(解析项目本身),
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析项目本身)
|
||||
},
|
||||
# "[老旧的Demo] 把本项目源代码切换成全英文": {
|
||||
# # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
@ -129,8 +119,7 @@ def get_crazy_functions():
|
||||
# },
|
||||
"[插件demo] 历史上的今天": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Function": HotReload(高阶功能模板函数),
|
||||
"AsButton": False,
|
||||
"Function": HotReload(高阶功能模板函数)
|
||||
},
|
||||
|
||||
}
|
||||
@ -149,69 +138,69 @@ def get_crazy_functions():
|
||||
|
||||
function_plugins.update({
|
||||
"批量翻译PDF文档(多线程)": {
|
||||
"Color": "primary",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Color": "stop",
|
||||
"AsButton": True, # 加入下拉菜单中
|
||||
"Function": HotReload(批量翻译PDF文档)
|
||||
},
|
||||
"询问多个GPT模型": {
|
||||
"Color": "primary", # 按钮颜色
|
||||
"Color": "stop", # 按钮颜色
|
||||
"Function": HotReload(同时问询)
|
||||
},
|
||||
"[测试功能] 批量总结PDF文档": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Function": HotReload(批量总结PDF文档)
|
||||
},
|
||||
# "[测试功能] 批量总结PDF文档pdfminer": {
|
||||
# "Color": "primary",
|
||||
# "Color": "stop",
|
||||
# "AsButton": False, # 加入下拉菜单中
|
||||
# "Function": HotReload(批量总结PDF文档pdfminer)
|
||||
# },
|
||||
"谷歌学术检索助手(输入谷歌学术搜索页url)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(谷歌检索小助手)
|
||||
},
|
||||
"理解PDF文档内容 (模仿ChatPDF)": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"AsButton": True, # 加入下拉菜单中
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(理解PDF文档内容标准文件输入)
|
||||
},
|
||||
"英文Latex项目全文润色(输入路径或上传压缩包)": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(Latex英文润色)
|
||||
},
|
||||
"英文Latex项目全文纠错(输入路径或上传压缩包)": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(Latex英文纠错)
|
||||
},
|
||||
"中文Latex项目全文润色(输入路径或上传压缩包)": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(Latex中文润色)
|
||||
},
|
||||
"Latex项目全文中译英(输入路径或上传压缩包)": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(Latex中译英)
|
||||
},
|
||||
"Latex项目全文英译中(输入路径或上传压缩包)": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(Latex英译中)
|
||||
},
|
||||
"批量Markdown中译英(输入路径或上传压缩包)": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(Markdown中译英)
|
||||
},
|
||||
@ -221,11 +210,12 @@ def get_crazy_functions():
|
||||
|
||||
###################### 第三组插件 ###########################
|
||||
# [第三组插件]: 尚未充分测试的函数插件
|
||||
|
||||
try:
|
||||
from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
|
||||
function_plugins.update({
|
||||
"一键下载arxiv论文并翻译摘要(先在input输入编号,如1812.10695)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(下载arxiv论文并翻译摘要)
|
||||
}
|
||||
@ -237,7 +227,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(连接网络回答问题)
|
||||
}
|
||||
@ -245,7 +235,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(连接bing搜索回答问题)
|
||||
}
|
||||
@ -257,7 +247,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.解析项目源代码 import 解析任意code项目
|
||||
function_plugins.update({
|
||||
"解析项目源代码(手动指定和筛选源代码文件类型)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
|
||||
@ -271,7 +261,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
|
||||
function_plugins.update({
|
||||
"询问多个GPT模型(手动指定询问哪些模型)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
|
||||
@ -285,7 +275,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.图片生成 import 图片生成
|
||||
function_plugins.update({
|
||||
"图片生成(先切换模型到openai或api2d)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "在这里输入分辨率, 如256x256(默认)", # 高级参数输入区的显示提示
|
||||
@ -299,7 +289,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.总结音视频 import 总结音视频
|
||||
function_plugins.update({
|
||||
"批量总结音视频(输入路径或上传压缩包)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如:解析为简体中文(默认)。",
|
||||
@ -309,51 +299,11 @@ def get_crazy_functions():
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
from crazy_functions.解析项目源代码 import 解析任意code项目
|
||||
function_plugins.update({
|
||||
"解析项目源代码(手动指定和筛选源代码文件类型)": {
|
||||
"Color": "primary",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
|
||||
"Function": HotReload(解析任意code项目)
|
||||
},
|
||||
})
|
||||
from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
|
||||
function_plugins.update({
|
||||
"询问多个GPT模型(手动指定询问哪些模型)": {
|
||||
"Color": "primary",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
|
||||
"Function": HotReload(同时问询_指定模型)
|
||||
},
|
||||
})
|
||||
from crazy_functions.图片生成 import 图片生成
|
||||
function_plugins.update({
|
||||
"图片生成(先切换模型到openai或api2d)": {
|
||||
"Color": "primary",
|
||||
"AsButton": True,
|
||||
"AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
|
||||
"ArgsReminder": "在这里输入分辨率, 如'256x256'(默认), '512x512', '1024x1024'", # 高级参数输入区的显示提示
|
||||
"Function": HotReload(图片生成)
|
||||
},
|
||||
})
|
||||
from crazy_functions.总结音视频 import 总结音视频
|
||||
function_plugins.update({
|
||||
"批量总结音视频(输入路径或上传压缩包)": {
|
||||
"Color": "primary",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "调用openai api 使用whisper-1模型, 目前支持的格式:mp4, m4a, wav, mpga, mpeg, mp3。此处可以输入解析提示,例如:解析为简体中文(默认)。",
|
||||
"Function": HotReload(总结音视频)
|
||||
}
|
||||
})
|
||||
try:
|
||||
from crazy_functions.数学动画生成manim import 动画生成
|
||||
function_plugins.update({
|
||||
"数学动画生成(Manim)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(动画生成)
|
||||
}
|
||||
@ -365,7 +315,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.批量Markdown翻译 import Markdown翻译指定语言
|
||||
function_plugins.update({
|
||||
"Markdown翻译(手动指定语言)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "请输入要翻译成哪种语言,默认为Chinese。",
|
||||
@ -379,7 +329,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.Langchain知识库 import 知识库问答
|
||||
function_plugins.update({
|
||||
"[功能尚不稳定] 构建知识库(请先上传文件素材)": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "待注入的知识库名称id, 默认为default",
|
||||
@ -393,7 +343,7 @@ def get_crazy_functions():
|
||||
from crazy_functions.Langchain知识库 import 读取知识库作答
|
||||
function_plugins.update({
|
||||
"[功能尚不稳定] 知识库问答": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "待提取的知识库名称id, 默认为default, 您需要首先调用构建知识库",
|
||||
@ -403,11 +353,37 @@ def get_crazy_functions():
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
try:
|
||||
from crazy_functions.交互功能函数模板 import 交互功能模板函数
|
||||
function_plugins.update({
|
||||
"交互功能模板函数": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(交互功能模板函数)
|
||||
}
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
# try:
|
||||
# from crazy_functions.chatglm微调工具 import 微调数据集生成
|
||||
# function_plugins.update({
|
||||
# "黑盒模型学习: 微调数据集生成 (先上传数据集)": {
|
||||
# "Color": "stop",
|
||||
# "AsButton": False,
|
||||
# "AdvancedArgs": True,
|
||||
# "ArgsReminder": "针对数据集输入(如 绿帽子*深蓝色衬衫*黑色运动裤)给出指令,例如您可以将以下命令复制到下方: --llm_to_learn=azure-gpt-3.5 --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、过去经历进行描写。要求:100字以内,用第二人称。' --system_prompt=''",
|
||||
# "Function": HotReload(微调数据集生成)
|
||||
# }
|
||||
# })
|
||||
# except:
|
||||
# print('Load function plugin failed')
|
||||
|
||||
try:
|
||||
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
|
||||
function_plugins.update({
|
||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||
"Color": "primary",
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||
@ -416,8 +392,8 @@ def get_crazy_functions():
|
||||
})
|
||||
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
|
||||
function_plugins.update({
|
||||
"Arixv翻译(输入arxivID)[需Latex]": {
|
||||
"Color": "primary",
|
||||
"Arixv论文精细翻译(输入arxivID)[需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder":
|
||||
@ -427,8 +403,8 @@ def get_crazy_functions():
|
||||
}
|
||||
})
|
||||
function_plugins.update({
|
||||
"本地论文翻译(上传Latex压缩包)[需Latex]": {
|
||||
"Color": "primary",
|
||||
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder":
|
||||
@ -440,11 +416,27 @@ def get_crazy_functions():
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
|
||||
try:
|
||||
from toolbox import get_conf
|
||||
ENABLE_AUDIO, = get_conf('ENABLE_AUDIO')
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.语音助手 import 语音助手
|
||||
function_plugins.update({
|
||||
"实时音频采集": {
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Function": HotReload(语音助手)
|
||||
}
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
# try:
|
||||
# from crazy_functions.虚空终端 import 终端
|
||||
# function_plugins.update({
|
||||
# "超级终端": {
|
||||
# "Color": "primary",
|
||||
# "Color": "stop",
|
||||
# "AsButton": False,
|
||||
# # "AdvancedArgs": True,
|
||||
# # "ArgsReminder": "",
|
||||
@ -454,5 +446,4 @@ def get_crazy_functions():
|
||||
# except:
|
||||
# print('Load function plugin failed')
|
||||
|
||||
###################### 第n组插件 ###########################
|
||||
return function_plugins
|
||||
|
||||
@ -30,7 +30,7 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
from .crazy_utils import try_install_deps
|
||||
try_install_deps(['zh_langchain==0.2.1'])
|
||||
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'])
|
||||
|
||||
# < --------------------读取参数--------------- >
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
|
||||
@ -157,7 +157,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_utils import Latex精细分解与转化, 编译Latex
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([ f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
@ -234,7 +234,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
try:
|
||||
import glob, os, time, subprocess
|
||||
subprocess.Popen(['pdflatex', '-version'])
|
||||
from .latex_utils import Latex精细分解与转化, 编译Latex
|
||||
from .latex_fns.latex_actions import Latex精细分解与转化, 编译Latex
|
||||
except Exception as e:
|
||||
chatbot.append([ f"解析项目: {txt}",
|
||||
f"尝试执行Latex指令失败。Latex没有安装, 或者不在环境变量PATH中。安装方法https://tug.org/texlive/。报错信息\n\n```\n\n{trimmed_format_exc()}\n\n```\n\n"])
|
||||
|
||||
141
crazy_functions/chatglm微调工具.py
Normal file
141
crazy_functions/chatglm微调工具.py
Normal file
@ -0,0 +1,141 @@
|
||||
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
import datetime, json
|
||||
|
||||
def fetch_items(list_of_items, batch_size):
|
||||
for i in range(0, len(list_of_items), batch_size):
|
||||
yield list_of_items[i:i + batch_size]
|
||||
|
||||
def string_to_options(arguments):
|
||||
import argparse
|
||||
import shlex
|
||||
|
||||
# Create an argparse.ArgumentParser instance
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Add command-line arguments
|
||||
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||||
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||||
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||||
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||||
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
|
||||
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
|
||||
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
|
||||
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
|
||||
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
|
||||
|
||||
|
||||
|
||||
# Parse the arguments
|
||||
args = parser.parse_args(shlex.split(arguments))
|
||||
|
||||
return args
|
||||
|
||||
@CatchException
|
||||
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
args = plugin_kwargs.get("advanced_arg", None)
|
||||
if args is None:
|
||||
chatbot.append(("没给定指令", "退出"))
|
||||
yield from update_ui(chatbot=chatbot, history=history); return
|
||||
else:
|
||||
arguments = string_to_options(arguments=args)
|
||||
|
||||
dat = []
|
||||
with open(txt, 'r', encoding='utf8') as f:
|
||||
for line in f.readlines():
|
||||
json_dat = json.loads(line)
|
||||
dat.append(json_dat["content"])
|
||||
|
||||
llm_kwargs['llm_model'] = arguments.llm_to_learn
|
||||
for batch in fetch_items(dat, arguments.batch):
|
||||
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)],
|
||||
inputs_show_user_array=[f"Show Nothing" for _ in (batch)],
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[[] for _ in (batch)],
|
||||
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
|
||||
max_workers=10 # OpenAI所允许的最大并行过载
|
||||
)
|
||||
|
||||
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
|
||||
for b, r in zip(batch, res[1::2]):
|
||||
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
|
||||
|
||||
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
|
||||
return
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
import subprocess
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
args = plugin_kwargs.get("advanced_arg", None)
|
||||
if args is None:
|
||||
chatbot.append(("没给定指令", "退出"))
|
||||
yield from update_ui(chatbot=chatbot, history=history); return
|
||||
else:
|
||||
arguments = string_to_options(arguments=args)
|
||||
|
||||
|
||||
|
||||
pre_seq_len = arguments.pre_seq_len # 128
|
||||
learning_rate = arguments.learning_rate # 2e-2
|
||||
num_gpus = arguments.num_gpus # 1
|
||||
json_dataset = arguments.json_dataset # 't_code.json'
|
||||
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
|
||||
|
||||
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
|
||||
--do_train \
|
||||
--train_file AdvertiseGen/{json_dataset} \
|
||||
--validation_file AdvertiseGen/{json_dataset} \
|
||||
--preprocessing_num_workers 20 \
|
||||
--prompt_column content \
|
||||
--response_column summary \
|
||||
--overwrite_cache \
|
||||
--model_name_or_path THUDM/chatglm2-6b \
|
||||
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
|
||||
--overwrite_output_dir \
|
||||
--max_source_length 256 \
|
||||
--max_target_length 256 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 16 \
|
||||
--predict_with_generate \
|
||||
--max_steps 100 \
|
||||
--logging_steps 10 \
|
||||
--save_steps 20 \
|
||||
--learning_rate {learning_rate} \
|
||||
--pre_seq_len {pre_seq_len} \
|
||||
--quantization_bit 4"
|
||||
|
||||
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
|
||||
try:
|
||||
process.communicate(timeout=3600*24)
|
||||
except subprocess.TimeoutExpired:
|
||||
process.kill()
|
||||
return
|
||||
@ -195,9 +195,12 @@ def test_Latex():
|
||||
# txt = r"https://arxiv.org/abs/2303.08774"
|
||||
# txt = r"https://arxiv.org/abs/2303.12712"
|
||||
# txt = r"C:\Users\fuqingxu\arxiv_cache\2303.12712\workfolder"
|
||||
txt = r"2306.17157" # 这个paper有个input命令文件名大小写错误!
|
||||
|
||||
|
||||
# txt = r"2306.17157" # 这个paper有个input命令文件名大小写错误!
|
||||
# txt = "https://arxiv.org/abs/2205.14135"
|
||||
# txt = r"C:\Users\fuqingxu\arxiv_cache\2205.14135\workfolder"
|
||||
# txt = r"C:\Users\fuqingxu\arxiv_cache\2205.14135\workfolder"
|
||||
txt = r"2210.03629"
|
||||
txt = r"2307.04964"
|
||||
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
cli_printer.print(cb) # print(cb)
|
||||
|
||||
@ -211,8 +214,22 @@ def test_Latex():
|
||||
# # for cookies, cb, hist, msg in silence_stdout(编译Latex)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# cli_printer.print(cb) # print(cb)
|
||||
|
||||
def test_chatglm_finetune():
|
||||
from crazy_functions.chatglm微调工具 import 微调数据集生成, 启动微调
|
||||
txt = 'build/dev.json'
|
||||
plugin_kwargs = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、人设进行描写。要求:100字以内,用第二人称。' --system_prompt=''" }
|
||||
|
||||
# for cookies, cb, hist, msg in (微调数据集生成)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# cli_printer.print(cb)
|
||||
|
||||
plugin_kwargs = {"advanced_arg":
|
||||
" --pre_seq_len=128 --learning_rate=2e-2 --num_gpus=1 --json_dataset='t_code.json' --ptuning_directory='/home/hmp/ChatGLM2-6B/ptuning' " }
|
||||
|
||||
for cookies, cb, hist, msg in (启动微调)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
cli_printer.print(cb)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test_解析一个Python项目()
|
||||
# test_Latex英文润色()
|
||||
# test_Markdown中译英()
|
||||
@ -226,7 +243,7 @@ def test_Latex():
|
||||
# test_数学动画生成manim()
|
||||
# test_Langchain知识库()
|
||||
# test_Langchain知识库读取()
|
||||
if __name__ == "__main__":
|
||||
test_Latex()
|
||||
# test_chatglm_finetune()
|
||||
input("程序完成,回车退出。")
|
||||
print("退出。")
|
||||
@ -130,6 +130,11 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||
return final_result
|
||||
|
||||
def can_multi_process(llm):
|
||||
if llm.startswith('gpt-'): return True
|
||||
if llm.startswith('api2d-'): return True
|
||||
if llm.startswith('azure-'): return True
|
||||
return False
|
||||
|
||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
@ -175,16 +180,16 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
except: max_workers = 8
|
||||
if max_workers <= 0: max_workers = 3
|
||||
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
|
||||
if not (llm_kwargs['llm_model'].startswith('gpt-') or llm_kwargs['llm_model'].startswith('api2d-') or llm_kwargs['llm_model'].startswith('proxy-gpt')):
|
||||
if not can_multi_process(llm_kwargs['llm_model']):
|
||||
max_workers = 1
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||
n_frag = len(inputs_array)
|
||||
# 用户反馈
|
||||
chatbot.append([None, ""])
|
||||
chatbot.append(["请开始多线程操作。", ""])
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
# 跨线程传递
|
||||
mutable = [[f"", time.time(), "等待中"] for _ in range(n_frag)]
|
||||
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
|
||||
|
||||
# 子线程任务
|
||||
def _req_gpt(index, inputs, history, sys_prompt):
|
||||
@ -272,8 +277,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||
observe_win.append(print_something_really_funny)
|
||||
# 在前端打印些好玩的东西
|
||||
stat_str = ''.join([f'`{inputs_show_user_array[thread_index][0:5]}...{inputs_show_user_array[thread_index][-5:]}`\t'
|
||||
f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
if not done else f'`{mutable[thread_index][2]}`\n\n'
|
||||
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
|
||||
# 在前端打印些好玩的东西
|
||||
|
||||
@ -1,312 +1,16 @@
|
||||
from toolbox import update_ui, update_ui_lastest_msg # 刷新Gradio前端界面
|
||||
from toolbox import zip_folder, objdump, objload, promote_file_to_downloadzone
|
||||
from .latex_toolbox import PRESERVE, TRANSFORM
|
||||
from .latex_toolbox import set_forbidden_text, set_forbidden_text_begin_end, set_forbidden_text_careful_brace
|
||||
from .latex_toolbox import reverse_forbidden_text_careful_brace, reverse_forbidden_text, convert_to_linklist, post_process
|
||||
from .latex_toolbox import fix_content, find_main_tex_file, merge_tex_files, compile_latex_with_timeout
|
||||
|
||||
import os, shutil
|
||||
import re
|
||||
import numpy as np
|
||||
|
||||
pj = os.path.join
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
Part One
|
||||
Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1)
|
||||
========================================================================
|
||||
"""
|
||||
PRESERVE = 0
|
||||
TRANSFORM = 1
|
||||
|
||||
def set_forbidden_text(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper
|
||||
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
|
||||
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
|
||||
everything between "\begin{equation}" and "\end{equation}"
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
mask[res.span()[0]:res.span()[1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\begin{abstract} blablablablablabla. \end{abstract}
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
if not forbid_wrapper:
|
||||
mask[res.span()[0]:res.span()[1]] = TRANSFORM
|
||||
else:
|
||||
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
|
||||
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
|
||||
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
|
||||
return text, mask
|
||||
|
||||
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper (text become untouchable for GPT).
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = -1
|
||||
p = begin = end = res.regs[0][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
p += 1
|
||||
end = p+1
|
||||
mask[begin:end] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = 0
|
||||
p = begin = end = res.regs[1][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
p += 1
|
||||
end = p
|
||||
mask[begin:end] = TRANSFORM
|
||||
if forbid_wrapper:
|
||||
mask[res.regs[0][0]:begin] = PRESERVE
|
||||
mask[end:res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
|
||||
"""
|
||||
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
|
||||
Add it to preserve area
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
def search_with_line_limit(text, mask):
|
||||
for res in pattern_compile.finditer(text):
|
||||
cmd = res.group(1) # begin{what}
|
||||
this = res.group(2) # content between begin and end
|
||||
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
|
||||
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
|
||||
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
|
||||
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
|
||||
this, this_mask = search_with_line_limit(this, this_mask)
|
||||
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
|
||||
else:
|
||||
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
return search_with_line_limit(text, mask)
|
||||
|
||||
class LinkedListNode():
|
||||
"""
|
||||
Linked List Node
|
||||
"""
|
||||
def __init__(self, string, preserve=True) -> None:
|
||||
self.string = string
|
||||
self.preserve = preserve
|
||||
self.next = None
|
||||
# self.begin_line = 0
|
||||
# self.begin_char = 0
|
||||
|
||||
def convert_to_linklist(text, mask):
|
||||
root = LinkedListNode("", preserve=True)
|
||||
current_node = root
|
||||
for c, m, i in zip(text, mask, range(len(text))):
|
||||
if (m==PRESERVE and current_node.preserve) \
|
||||
or (m==TRANSFORM and not current_node.preserve):
|
||||
# add
|
||||
current_node.string += c
|
||||
else:
|
||||
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
|
||||
current_node = current_node.next
|
||||
return root
|
||||
"""
|
||||
========================================================================
|
||||
Latex Merge File
|
||||
========================================================================
|
||||
"""
|
||||
|
||||
def 寻找Latex主文件(file_manifest, mode):
|
||||
"""
|
||||
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
||||
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
|
||||
"""
|
||||
canidates = []
|
||||
for texf in file_manifest:
|
||||
if os.path.basename(texf).startswith('merge'):
|
||||
continue
|
||||
with open(texf, 'r', encoding='utf8') as f:
|
||||
file_content = f.read()
|
||||
if r'\documentclass' in file_content:
|
||||
canidates.append(texf)
|
||||
else:
|
||||
continue
|
||||
|
||||
if len(canidates) == 0:
|
||||
raise RuntimeError('无法找到一个主Tex文件(包含documentclass关键字)')
|
||||
elif len(canidates) == 1:
|
||||
return canidates[0]
|
||||
else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||
canidates_score = []
|
||||
# 给出一些判定模板文档的词作为扣分项
|
||||
unexpected_words = ['\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
|
||||
expected_words = ['\input', '\ref', '\cite']
|
||||
for texf in canidates:
|
||||
canidates_score.append(0)
|
||||
with open(texf, 'r', encoding='utf8') as f:
|
||||
file_content = f.read()
|
||||
for uw in unexpected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] -= 1
|
||||
for uw in expected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] += 1
|
||||
select = np.argmax(canidates_score) # 取评分最高者返回
|
||||
return canidates[select]
|
||||
|
||||
def rm_comments(main_file):
|
||||
new_file_remove_comment_lines = []
|
||||
for l in main_file.splitlines():
|
||||
# 删除整行的空注释
|
||||
if l.lstrip().startswith("%"):
|
||||
pass
|
||||
else:
|
||||
new_file_remove_comment_lines.append(l)
|
||||
main_file = '\n'.join(new_file_remove_comment_lines)
|
||||
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
|
||||
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
return main_file
|
||||
|
||||
def merge_tex_files_(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
"""
|
||||
main_file = rm_comments(main_file)
|
||||
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
|
||||
f = s.group(1)
|
||||
fp = os.path.join(project_foler, f)
|
||||
if os.path.exists(fp):
|
||||
# e.g., \input{srcs/07_appendix.tex}
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as fx:
|
||||
c = fx.read()
|
||||
else:
|
||||
# e.g., \input{srcs/07_appendix}
|
||||
assert os.path.exists(fp+'.tex'), f'即找不到{fp},也找不到{fp}.tex,Tex源文件缺失!'
|
||||
with open(fp+'.tex', 'r', encoding='utf-8', errors='replace') as fx:
|
||||
c = fx.read()
|
||||
c = merge_tex_files_(project_foler, c, mode)
|
||||
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
|
||||
return main_file
|
||||
|
||||
def merge_tex_files(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
P.S. 顺便把CTEX塞进去以支持中文
|
||||
P.S. 顺便把Latex的注释去除
|
||||
"""
|
||||
main_file = merge_tex_files_(project_foler, main_file, mode)
|
||||
main_file = rm_comments(main_file)
|
||||
|
||||
if mode == 'translate_zh':
|
||||
# find paper documentclass
|
||||
pattern = re.compile(r'\\documentclass.*\n')
|
||||
match = pattern.search(main_file)
|
||||
assert match is not None, "Cannot find documentclass statement!"
|
||||
position = match.end()
|
||||
add_ctex = '\\usepackage{ctex}\n'
|
||||
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
|
||||
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
|
||||
# fontset=windows
|
||||
import platform
|
||||
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
|
||||
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
|
||||
# find paper abstract
|
||||
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
|
||||
match_opt1 = pattern_opt1.search(main_file)
|
||||
match_opt2 = pattern_opt2.search(main_file)
|
||||
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
|
||||
return main_file
|
||||
|
||||
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
Post process
|
||||
========================================================================
|
||||
"""
|
||||
def mod_inbraket(match):
|
||||
"""
|
||||
为啥chatgpt会把cite里面的逗号换成中文逗号呀
|
||||
"""
|
||||
# get the matched string
|
||||
cmd = match.group(1)
|
||||
str_to_modify = match.group(2)
|
||||
# modify the matched string
|
||||
str_to_modify = str_to_modify.replace(':', ':') # 前面是中文冒号,后面是英文冒号
|
||||
str_to_modify = str_to_modify.replace(',', ',') # 前面是中文逗号,后面是英文逗号
|
||||
# str_to_modify = 'BOOM'
|
||||
return "\\" + cmd + "{" + str_to_modify + "}"
|
||||
|
||||
def fix_content(final_tex, node_string):
|
||||
"""
|
||||
Fix common GPT errors to increase success rate
|
||||
"""
|
||||
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
|
||||
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
|
||||
|
||||
if "Traceback" in final_tex and "[Local Message]" in final_tex:
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\\begin') != final_tex.count('\\begin'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
|
||||
# walk and replace any _ without \
|
||||
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
|
||||
|
||||
def compute_brace_level(string):
|
||||
# this function count the number of { and }
|
||||
brace_level = 0
|
||||
for c in string:
|
||||
if c == "{": brace_level += 1
|
||||
elif c == "}": brace_level -= 1
|
||||
return brace_level
|
||||
def join_most(tex_t, tex_o):
|
||||
# this function join translated string and original string when something goes wrong
|
||||
p_t = 0
|
||||
p_o = 0
|
||||
def find_next(string, chars, begin):
|
||||
p = begin
|
||||
while p < len(string):
|
||||
if string[p] in chars: return p, string[p]
|
||||
p += 1
|
||||
return None, None
|
||||
while True:
|
||||
res1, char = find_next(tex_o, ['{','}'], p_o)
|
||||
if res1 is None: break
|
||||
res2, char = find_next(tex_t, [char], p_t)
|
||||
if res2 is None: break
|
||||
p_o = res1 + 1
|
||||
p_t = res2 + 1
|
||||
return tex_t[:p_t] + tex_o[p_o:]
|
||||
|
||||
if compute_brace_level(final_tex) != compute_brace_level(node_string):
|
||||
# 出问题了,还原部分原文,保证括号正确
|
||||
final_tex = join_most(final_tex, node_string)
|
||||
return final_tex
|
||||
|
||||
def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
"""
|
||||
@ -318,13 +22,14 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
|
||||
|
||||
# 吸收title与作者以上的部分
|
||||
text, mask = set_forbidden_text(text, mask, r"(.*?)\\maketitle", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, r"^(.*?)\\maketitle", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, r"^(.*?)\\begin{document}", re.DOTALL)
|
||||
# 吸收iffalse注释
|
||||
text, mask = set_forbidden_text(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
|
||||
# 吸收在42行以内的begin-end组合
|
||||
text, mask = set_forbidden_text_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=42)
|
||||
# 吸收匿名公式
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\$\$(.*?)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\$\$([^$]+)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
|
||||
# 吸收其他杂项
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\\section\{(.*?)\}", r"\\section\*\{(.*?)\}", r"\\subsection\{(.*?)\}", r"\\subsubsection\{(.*?)\}" ])
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\\bibliography\{(.*?)\}", r"\\bibliographystyle\{(.*?)\}" ])
|
||||
@ -348,77 +53,9 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
text, mask = reverse_forbidden_text(text, mask, r"\\begin\{abstract\}(.*?)\\end\{abstract\}", re.DOTALL, forbid_wrapper=True)
|
||||
root = convert_to_linklist(text, mask)
|
||||
|
||||
# 修复括号
|
||||
node = root
|
||||
while True:
|
||||
string = node.string
|
||||
if node.preserve:
|
||||
node = node.next
|
||||
if node is None: break
|
||||
continue
|
||||
def break_check(string):
|
||||
str_stack = [""] # (lv, index)
|
||||
for i, c in enumerate(string):
|
||||
if c == '{':
|
||||
str_stack.append('{')
|
||||
elif c == '}':
|
||||
if len(str_stack) == 1:
|
||||
print('stack fix')
|
||||
return i
|
||||
str_stack.pop(-1)
|
||||
else:
|
||||
str_stack[-1] += c
|
||||
return -1
|
||||
bp = break_check(string)
|
||||
# 最后一步处理,增强稳健性
|
||||
root = post_process(root)
|
||||
|
||||
if bp == -1:
|
||||
pass
|
||||
elif bp == 0:
|
||||
node.string = string[:1]
|
||||
q = LinkedListNode(string[1:], False)
|
||||
q.next = node.next
|
||||
node.next = q
|
||||
else:
|
||||
node.string = string[:bp]
|
||||
q = LinkedListNode(string[bp:], False)
|
||||
q.next = node.next
|
||||
node.next = q
|
||||
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 屏蔽空行和太短的句子
|
||||
node = root
|
||||
while True:
|
||||
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
|
||||
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
|
||||
node = node.next
|
||||
if node is None: break
|
||||
node = root
|
||||
while True:
|
||||
if node.next and node.preserve and node.next.preserve:
|
||||
node.string += node.next.string
|
||||
node.next = node.next.next
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 将前后断行符脱离
|
||||
node = root
|
||||
prev_node = None
|
||||
while True:
|
||||
if not node.preserve:
|
||||
lstriped_ = node.string.lstrip().lstrip('\n')
|
||||
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
|
||||
prev_node.string += node.string[:-len(lstriped_)]
|
||||
node.string = lstriped_
|
||||
rstriped_ = node.string.rstrip().rstrip('\n')
|
||||
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
|
||||
node.next.string = node.string[len(rstriped_):] + node.next.string
|
||||
node.string = rstriped_
|
||||
# =====
|
||||
prev_node = node
|
||||
node = node.next
|
||||
if node is None: break
|
||||
# 输出html调试文件,用红色标注处保留区(PRESERVE),用黑色标注转换区(TRANSFORM)
|
||||
with open(pj(project_folder, 'debug_log.html'), 'w', encoding='utf8') as f:
|
||||
segment_parts_for_gpt = []
|
||||
@ -429,7 +66,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
show_html = node.string.replace('\n','<br/>')
|
||||
if not node.preserve:
|
||||
segment_parts_for_gpt.append(node.string)
|
||||
f.write(f'<p style="color:black;">#{show_html}#</p>')
|
||||
f.write(f'<p style="color:black;">#{node.range}{show_html}#</p>')
|
||||
else:
|
||||
f.write(f'<p style="color:red;">{show_html}</p>')
|
||||
node = node.next
|
||||
@ -440,8 +77,6 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
return_dict['segment_parts_for_gpt'] = segment_parts_for_gpt
|
||||
return return_dict
|
||||
|
||||
|
||||
|
||||
class LatexPaperSplit():
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
@ -456,18 +91,32 @@ class LatexPaperSplit():
|
||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
||||
self.msg_declare = "为了防止大语言模型的意外谬误产生扩散影响,禁止移除或修改此警告。}}\\\\"
|
||||
|
||||
def merge_result(self, arr, mode, msg):
|
||||
|
||||
def merge_result(self, arr, mode, msg, buggy_lines=[], buggy_line_surgery_n_lines=10):
|
||||
"""
|
||||
Merge the result after the GPT process completed
|
||||
"""
|
||||
result_string = ""
|
||||
p = 0
|
||||
node_cnt = 0
|
||||
line_cnt = 0
|
||||
|
||||
for node in self.nodes:
|
||||
if node.preserve:
|
||||
line_cnt += node.string.count('\n')
|
||||
result_string += node.string
|
||||
else:
|
||||
result_string += fix_content(arr[p], node.string)
|
||||
p += 1
|
||||
translated_txt = fix_content(arr[node_cnt], node.string)
|
||||
begin_line = line_cnt
|
||||
end_line = line_cnt + translated_txt.count('\n')
|
||||
|
||||
# reverse translation if any error
|
||||
if any([begin_line-buggy_line_surgery_n_lines <= b_line <= end_line+buggy_line_surgery_n_lines for b_line in buggy_lines]):
|
||||
translated_txt = node.string
|
||||
|
||||
result_string += translated_txt
|
||||
node_cnt += 1
|
||||
line_cnt += translated_txt.count('\n')
|
||||
|
||||
if mode == 'translate_zh':
|
||||
pattern = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
match = pattern.search(result_string)
|
||||
@ -482,6 +131,7 @@ class LatexPaperSplit():
|
||||
result_string = result_string[:position] + self.msg + msg + self.msg_declare + result_string[position:]
|
||||
return result_string
|
||||
|
||||
|
||||
def split(self, txt, project_folder, opts):
|
||||
"""
|
||||
break down latex file to a linked list,
|
||||
@ -503,7 +153,6 @@ class LatexPaperSplit():
|
||||
return self.sp
|
||||
|
||||
|
||||
|
||||
class LatexPaperFileGroup():
|
||||
"""
|
||||
use tokenizer to break down text according to max_token_limit
|
||||
@ -531,7 +180,7 @@ class LatexPaperFileGroup():
|
||||
self.sp_file_index.append(index)
|
||||
self.sp_file_tag.append(self.file_paths[index])
|
||||
else:
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from ..crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit)
|
||||
for j, segment in enumerate(segments):
|
||||
self.sp_file_contents.append(segment)
|
||||
@ -552,41 +201,14 @@ class LatexPaperFileGroup():
|
||||
f.write(res)
|
||||
return manifest
|
||||
|
||||
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
||||
|
||||
# write html
|
||||
try:
|
||||
import shutil
|
||||
from .crazy_utils import construct_html
|
||||
from toolbox import gen_time_str
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
final = []
|
||||
for c,r in zip(sp_file_contents, sp_file_result):
|
||||
final.append(c)
|
||||
final.append(r)
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
trans = k
|
||||
ch.add_row(a=orig, b=trans)
|
||||
create_report_file_name = f"{gen_time_str()}.trans.html"
|
||||
ch.save_file(create_report_file_name)
|
||||
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
|
||||
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
print('writing html result failed:', trimmed_format_exc())
|
||||
|
||||
def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, mode='proofread', switch_prompt=None, opts=[]):
|
||||
import time, os, re
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .latex_utils import LatexPaperFileGroup, merge_tex_files, LatexPaperSplit, 寻找Latex主文件
|
||||
from ..crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .latex_actions import LatexPaperFileGroup, LatexPaperSplit
|
||||
|
||||
# <-------- 寻找主tex文件 ---------->
|
||||
maintex = 寻找Latex主文件(file_manifest, mode)
|
||||
maintex = find_main_tex_file(file_manifest, mode)
|
||||
chatbot.append((f"定位主Latex文件", f'[Local Message] 分析结果:该项目的Latex主文件是{maintex}, 如果分析错误, 请立即终止程序, 删除或修改歧义文件, 然后重试。主程序即将开始, 请稍候。'))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
time.sleep(3)
|
||||
@ -657,58 +279,54 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
|
||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||
|
||||
|
||||
# <-------- 写出文件 ---------->
|
||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||
final_tex = lps.merge_result(pfg.file_result, mode, msg)
|
||||
objdump((lps, pfg.file_result, mode, msg), file=pj(project_folder,'merge_result.pkl'))
|
||||
|
||||
with open(project_folder + f'/merge_{mode}.tex', 'w', encoding='utf-8', errors='replace') as f:
|
||||
if mode != 'translate_zh' or "binary" in final_tex: f.write(final_tex)
|
||||
|
||||
|
||||
# <-------- 整理结果, 退出 ---------->
|
||||
chatbot.append((f"完成了吗?", 'GPT结果已输出, 正在编译PDF'))
|
||||
chatbot.append((f"完成了吗?", 'GPT结果已输出, 即将编译PDF'))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# <-------- 返回 ---------->
|
||||
return project_folder + f'/merge_{mode}.tex'
|
||||
|
||||
|
||||
|
||||
def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work_folder_modified):
|
||||
def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work_folder_modified, fixed_line=[]):
|
||||
try:
|
||||
with open(log_path, 'r', encoding='utf-8', errors='replace') as f:
|
||||
log = f.read()
|
||||
with open(file_path, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_lines = f.readlines()
|
||||
import re
|
||||
buggy_lines = re.findall(tex_name+':([0-9]{1,5}):', log)
|
||||
buggy_lines = [int(l) for l in buggy_lines]
|
||||
buggy_lines = sorted(buggy_lines)
|
||||
print("removing lines that has errors", buggy_lines)
|
||||
file_lines.pop(buggy_lines[0]-1)
|
||||
buggy_line = buggy_lines[0]-1
|
||||
print("reversing tex line that has errors", buggy_line)
|
||||
|
||||
# 重组,逆转出错的段落
|
||||
if buggy_line not in fixed_line:
|
||||
fixed_line.append(buggy_line)
|
||||
|
||||
lps, file_result, mode, msg = objload(file=pj(work_folder_modified,'merge_result.pkl'))
|
||||
final_tex = lps.merge_result(file_result, mode, msg, buggy_lines=fixed_line, buggy_line_surgery_n_lines=5*n_fix)
|
||||
|
||||
with open(pj(work_folder_modified, f"{tex_name_pure}_fix_{n_fix}.tex"), 'w', encoding='utf-8', errors='replace') as f:
|
||||
f.writelines(file_lines)
|
||||
f.write(final_tex)
|
||||
|
||||
return True, f"{tex_name_pure}_fix_{n_fix}", buggy_lines
|
||||
except:
|
||||
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
||||
return False, -1, [-1]
|
||||
|
||||
def compile_latex_with_timeout(command, cwd, timeout=60):
|
||||
import subprocess
|
||||
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
|
||||
try:
|
||||
stdout, stderr = process.communicate(timeout=timeout)
|
||||
except subprocess.TimeoutExpired:
|
||||
process.kill()
|
||||
stdout, stderr = process.communicate()
|
||||
print("Process timed out!")
|
||||
return False
|
||||
return True
|
||||
|
||||
def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_folder_original, work_folder_modified, work_folder, mode='default'):
|
||||
import os, time
|
||||
current_dir = os.getcwd()
|
||||
n_fix = 1
|
||||
fixed_line = []
|
||||
max_try = 32
|
||||
chatbot.append([f"正在编译PDF文档", f'编译已经开始。当前工作路径为{work_folder},如果程序停顿5分钟以上,请直接去该路径下取回翻译结果,或者重启之后再度尝试 ...']); yield from update_ui(chatbot=chatbot, history=history)
|
||||
chatbot.append([f"正在编译PDF文档", '...']); yield from update_ui(chatbot=chatbot, history=history); time.sleep(1); chatbot[-1] = list(chatbot[-1]) # 刷新界面
|
||||
@ -716,6 +334,10 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
|
||||
while True:
|
||||
import os
|
||||
may_exist_bbl = pj(work_folder_modified, f'merge.bbl')
|
||||
target_bbl = pj(work_folder_modified, f'{main_file_modified}.bbl')
|
||||
if os.path.exists(may_exist_bbl) and not os.path.exists(target_bbl):
|
||||
shutil.copyfile(may_exist_bbl, target_bbl)
|
||||
|
||||
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
@ -744,13 +366,11 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
|
||||
|
||||
# <---------- 检查结果 ----------->
|
||||
results_ = ""
|
||||
original_pdf_success = os.path.exists(pj(work_folder_original, f'{main_file_original}.pdf'))
|
||||
@ -767,10 +387,19 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
if modified_pdf_success:
|
||||
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
||||
origin_pdf = pj(work_folder_original, f'{main_file_original}.pdf') # get pdf path
|
||||
if os.path.exists(pj(work_folder, '..', 'translation')):
|
||||
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
|
||||
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
# 将两个PDF拼接
|
||||
if original_pdf_success:
|
||||
try:
|
||||
from .latex_toolbox import merge_pdfs
|
||||
concat_pdf = pj(work_folder_modified, f'comparison.pdf')
|
||||
merge_pdfs(origin_pdf, result_pdf, concat_pdf)
|
||||
promote_file_to_downloadzone(concat_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
except Exception as e:
|
||||
pass
|
||||
return True # 成功啦
|
||||
else:
|
||||
if n_fix>=max_try: break
|
||||
@ -782,6 +411,7 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
tex_name_pure=f'{main_file_modified}',
|
||||
n_fix=n_fix,
|
||||
work_folder_modified=work_folder_modified,
|
||||
fixed_line=fixed_line
|
||||
)
|
||||
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
if not can_retry: break
|
||||
@ -789,4 +419,29 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
return False # 失败啦
|
||||
|
||||
|
||||
|
||||
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
||||
# write html
|
||||
try:
|
||||
import shutil
|
||||
from ..crazy_utils import construct_html
|
||||
from toolbox import gen_time_str
|
||||
ch = construct_html()
|
||||
orig = ""
|
||||
trans = ""
|
||||
final = []
|
||||
for c,r in zip(sp_file_contents, sp_file_result):
|
||||
final.append(c)
|
||||
final.append(r)
|
||||
for i, k in enumerate(final):
|
||||
if i%2==0:
|
||||
orig = k
|
||||
if i%2==1:
|
||||
trans = k
|
||||
ch.add_row(a=orig, b=trans)
|
||||
create_report_file_name = f"{gen_time_str()}.trans.html"
|
||||
ch.save_file(create_report_file_name)
|
||||
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
|
||||
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
print('writing html result failed:', trimmed_format_exc())
|
||||
456
crazy_functions/latex_fns/latex_toolbox.py
Normal file
456
crazy_functions/latex_fns/latex_toolbox.py
Normal file
@ -0,0 +1,456 @@
|
||||
import os, shutil
|
||||
import re
|
||||
import numpy as np
|
||||
PRESERVE = 0
|
||||
TRANSFORM = 1
|
||||
|
||||
pj = os.path.join
|
||||
|
||||
class LinkedListNode():
|
||||
"""
|
||||
Linked List Node
|
||||
"""
|
||||
def __init__(self, string, preserve=True) -> None:
|
||||
self.string = string
|
||||
self.preserve = preserve
|
||||
self.next = None
|
||||
self.range = None
|
||||
# self.begin_line = 0
|
||||
# self.begin_char = 0
|
||||
|
||||
def convert_to_linklist(text, mask):
|
||||
root = LinkedListNode("", preserve=True)
|
||||
current_node = root
|
||||
for c, m, i in zip(text, mask, range(len(text))):
|
||||
if (m==PRESERVE and current_node.preserve) \
|
||||
or (m==TRANSFORM and not current_node.preserve):
|
||||
# add
|
||||
current_node.string += c
|
||||
else:
|
||||
current_node.next = LinkedListNode(c, preserve=(m==PRESERVE))
|
||||
current_node = current_node.next
|
||||
return root
|
||||
|
||||
def post_process(root):
|
||||
# 修复括号
|
||||
node = root
|
||||
while True:
|
||||
string = node.string
|
||||
if node.preserve:
|
||||
node = node.next
|
||||
if node is None: break
|
||||
continue
|
||||
def break_check(string):
|
||||
str_stack = [""] # (lv, index)
|
||||
for i, c in enumerate(string):
|
||||
if c == '{':
|
||||
str_stack.append('{')
|
||||
elif c == '}':
|
||||
if len(str_stack) == 1:
|
||||
print('stack fix')
|
||||
return i
|
||||
str_stack.pop(-1)
|
||||
else:
|
||||
str_stack[-1] += c
|
||||
return -1
|
||||
bp = break_check(string)
|
||||
|
||||
if bp == -1:
|
||||
pass
|
||||
elif bp == 0:
|
||||
node.string = string[:1]
|
||||
q = LinkedListNode(string[1:], False)
|
||||
q.next = node.next
|
||||
node.next = q
|
||||
else:
|
||||
node.string = string[:bp]
|
||||
q = LinkedListNode(string[bp:], False)
|
||||
q.next = node.next
|
||||
node.next = q
|
||||
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 屏蔽空行和太短的句子
|
||||
node = root
|
||||
while True:
|
||||
if len(node.string.strip('\n').strip(''))==0: node.preserve = True
|
||||
if len(node.string.strip('\n').strip(''))<42: node.preserve = True
|
||||
node = node.next
|
||||
if node is None: break
|
||||
node = root
|
||||
while True:
|
||||
if node.next and node.preserve and node.next.preserve:
|
||||
node.string += node.next.string
|
||||
node.next = node.next.next
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 将前后断行符脱离
|
||||
node = root
|
||||
prev_node = None
|
||||
while True:
|
||||
if not node.preserve:
|
||||
lstriped_ = node.string.lstrip().lstrip('\n')
|
||||
if (prev_node is not None) and (prev_node.preserve) and (len(lstriped_)!=len(node.string)):
|
||||
prev_node.string += node.string[:-len(lstriped_)]
|
||||
node.string = lstriped_
|
||||
rstriped_ = node.string.rstrip().rstrip('\n')
|
||||
if (node.next is not None) and (node.next.preserve) and (len(rstriped_)!=len(node.string)):
|
||||
node.next.string = node.string[len(rstriped_):] + node.next.string
|
||||
node.string = rstriped_
|
||||
# =====
|
||||
prev_node = node
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 标注节点的行数范围
|
||||
node = root
|
||||
n_line = 0
|
||||
expansion = 2
|
||||
while True:
|
||||
n_l = node.string.count('\n')
|
||||
node.range = [n_line-expansion, n_line+n_l+expansion] # 失败时,扭转的范围
|
||||
n_line = n_line+n_l
|
||||
node = node.next
|
||||
if node is None: break
|
||||
return root
|
||||
|
||||
|
||||
"""
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1)
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
"""
|
||||
|
||||
|
||||
def set_forbidden_text(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper
|
||||
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
|
||||
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
|
||||
everything between "\begin{equation}" and "\end{equation}"
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
mask[res.span()[0]:res.span()[1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\begin{abstract} blablablablablabla. \end{abstract}
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
if not forbid_wrapper:
|
||||
mask[res.span()[0]:res.span()[1]] = TRANSFORM
|
||||
else:
|
||||
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
|
||||
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
|
||||
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
|
||||
return text, mask
|
||||
|
||||
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper (text become untouchable for GPT).
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = -1
|
||||
p = begin = end = res.regs[0][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
p += 1
|
||||
end = p+1
|
||||
mask[begin:end] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
brace_level = 0
|
||||
p = begin = end = res.regs[1][0]
|
||||
for _ in range(1024*16):
|
||||
if text[p] == '}' and brace_level == 0: break
|
||||
elif text[p] == '}': brace_level -= 1
|
||||
elif text[p] == '{': brace_level += 1
|
||||
p += 1
|
||||
end = p
|
||||
mask[begin:end] = TRANSFORM
|
||||
if forbid_wrapper:
|
||||
mask[res.regs[0][0]:begin] = PRESERVE
|
||||
mask[end:res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
|
||||
"""
|
||||
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
|
||||
Add it to preserve area
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
def search_with_line_limit(text, mask):
|
||||
for res in pattern_compile.finditer(text):
|
||||
cmd = res.group(1) # begin{what}
|
||||
this = res.group(2) # content between begin and end
|
||||
this_mask = mask[res.regs[2][0]:res.regs[2][1]]
|
||||
white_list = ['document', 'abstract', 'lemma', 'definition', 'sproof',
|
||||
'em', 'emph', 'textit', 'textbf', 'itemize', 'enumerate']
|
||||
if (cmd in white_list) or this.count('\n') >= limit_n_lines: # use a magical number 42
|
||||
this, this_mask = search_with_line_limit(this, this_mask)
|
||||
mask[res.regs[2][0]:res.regs[2][1]] = this_mask
|
||||
else:
|
||||
mask[res.regs[0][0]:res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
return search_with_line_limit(text, mask)
|
||||
|
||||
|
||||
|
||||
"""
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
Latex Merge File
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
"""
|
||||
|
||||
def find_main_tex_file(file_manifest, mode):
|
||||
"""
|
||||
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
||||
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
|
||||
"""
|
||||
canidates = []
|
||||
for texf in file_manifest:
|
||||
if os.path.basename(texf).startswith('merge'):
|
||||
continue
|
||||
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
|
||||
file_content = f.read()
|
||||
if r'\documentclass' in file_content:
|
||||
canidates.append(texf)
|
||||
else:
|
||||
continue
|
||||
|
||||
if len(canidates) == 0:
|
||||
raise RuntimeError('无法找到一个主Tex文件(包含documentclass关键字)')
|
||||
elif len(canidates) == 1:
|
||||
return canidates[0]
|
||||
else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||
canidates_score = []
|
||||
# 给出一些判定模板文档的词作为扣分项
|
||||
unexpected_words = ['\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
|
||||
expected_words = ['\input', '\ref', '\cite']
|
||||
for texf in canidates:
|
||||
canidates_score.append(0)
|
||||
with open(texf, 'r', encoding='utf8', errors='ignore') as f:
|
||||
file_content = f.read()
|
||||
for uw in unexpected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] -= 1
|
||||
for uw in expected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] += 1
|
||||
select = np.argmax(canidates_score) # 取评分最高者返回
|
||||
return canidates[select]
|
||||
|
||||
def rm_comments(main_file):
|
||||
new_file_remove_comment_lines = []
|
||||
for l in main_file.splitlines():
|
||||
# 删除整行的空注释
|
||||
if l.lstrip().startswith("%"):
|
||||
pass
|
||||
else:
|
||||
new_file_remove_comment_lines.append(l)
|
||||
main_file = '\n'.join(new_file_remove_comment_lines)
|
||||
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
|
||||
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
return main_file
|
||||
|
||||
def find_tex_file_ignore_case(fp):
|
||||
dir_name = os.path.dirname(fp)
|
||||
base_name = os.path.basename(fp)
|
||||
if not base_name.endswith('.tex'): base_name+='.tex'
|
||||
if os.path.exists(pj(dir_name, base_name)): return pj(dir_name, base_name)
|
||||
# go case in-sensitive
|
||||
import glob
|
||||
for f in glob.glob(dir_name+'/*.tex'):
|
||||
base_name_s = os.path.basename(fp)
|
||||
if base_name_s.lower() == base_name.lower(): return f
|
||||
return None
|
||||
|
||||
def merge_tex_files_(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
"""
|
||||
main_file = rm_comments(main_file)
|
||||
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
|
||||
f = s.group(1)
|
||||
fp = os.path.join(project_foler, f)
|
||||
fp = find_tex_file_ignore_case(fp)
|
||||
if fp:
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
|
||||
else:
|
||||
raise RuntimeError(f'找不到{fp},Tex源文件缺失!')
|
||||
c = merge_tex_files_(project_foler, c, mode)
|
||||
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
|
||||
return main_file
|
||||
|
||||
def merge_tex_files(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
P.S. 顺便把CTEX塞进去以支持中文
|
||||
P.S. 顺便把Latex的注释去除
|
||||
"""
|
||||
main_file = merge_tex_files_(project_foler, main_file, mode)
|
||||
main_file = rm_comments(main_file)
|
||||
|
||||
if mode == 'translate_zh':
|
||||
# find paper documentclass
|
||||
pattern = re.compile(r'\\documentclass.*\n')
|
||||
match = pattern.search(main_file)
|
||||
assert match is not None, "Cannot find documentclass statement!"
|
||||
position = match.end()
|
||||
add_ctex = '\\usepackage{ctex}\n'
|
||||
add_url = '\\usepackage{url}\n' if '{url}' not in main_file else ''
|
||||
main_file = main_file[:position] + add_ctex + add_url + main_file[position:]
|
||||
# fontset=windows
|
||||
import platform
|
||||
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
|
||||
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
|
||||
# find paper abstract
|
||||
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
|
||||
match_opt1 = pattern_opt1.search(main_file)
|
||||
match_opt2 = pattern_opt2.search(main_file)
|
||||
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
|
||||
return main_file
|
||||
|
||||
|
||||
"""
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
Post process
|
||||
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||
"""
|
||||
def mod_inbraket(match):
|
||||
"""
|
||||
为啥chatgpt会把cite里面的逗号换成中文逗号呀
|
||||
"""
|
||||
# get the matched string
|
||||
cmd = match.group(1)
|
||||
str_to_modify = match.group(2)
|
||||
# modify the matched string
|
||||
str_to_modify = str_to_modify.replace(':', ':') # 前面是中文冒号,后面是英文冒号
|
||||
str_to_modify = str_to_modify.replace(',', ',') # 前面是中文逗号,后面是英文逗号
|
||||
# str_to_modify = 'BOOM'
|
||||
return "\\" + cmd + "{" + str_to_modify + "}"
|
||||
|
||||
def fix_content(final_tex, node_string):
|
||||
"""
|
||||
Fix common GPT errors to increase success rate
|
||||
"""
|
||||
final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex)
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex)
|
||||
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
|
||||
|
||||
if "Traceback" in final_tex and "[Local Message]" in final_tex:
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\\begin') != final_tex.count('\\begin'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
|
||||
# walk and replace any _ without \
|
||||
final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex)
|
||||
|
||||
def compute_brace_level(string):
|
||||
# this function count the number of { and }
|
||||
brace_level = 0
|
||||
for c in string:
|
||||
if c == "{": brace_level += 1
|
||||
elif c == "}": brace_level -= 1
|
||||
return brace_level
|
||||
def join_most(tex_t, tex_o):
|
||||
# this function join translated string and original string when something goes wrong
|
||||
p_t = 0
|
||||
p_o = 0
|
||||
def find_next(string, chars, begin):
|
||||
p = begin
|
||||
while p < len(string):
|
||||
if string[p] in chars: return p, string[p]
|
||||
p += 1
|
||||
return None, None
|
||||
while True:
|
||||
res1, char = find_next(tex_o, ['{','}'], p_o)
|
||||
if res1 is None: break
|
||||
res2, char = find_next(tex_t, [char], p_t)
|
||||
if res2 is None: break
|
||||
p_o = res1 + 1
|
||||
p_t = res2 + 1
|
||||
return tex_t[:p_t] + tex_o[p_o:]
|
||||
|
||||
if compute_brace_level(final_tex) != compute_brace_level(node_string):
|
||||
# 出问题了,还原部分原文,保证括号正确
|
||||
final_tex = join_most(final_tex, node_string)
|
||||
return final_tex
|
||||
|
||||
def compile_latex_with_timeout(command, cwd, timeout=60):
|
||||
import subprocess
|
||||
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
|
||||
try:
|
||||
stdout, stderr = process.communicate(timeout=timeout)
|
||||
except subprocess.TimeoutExpired:
|
||||
process.kill()
|
||||
stdout, stderr = process.communicate()
|
||||
print("Process timed out!")
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
|
||||
def merge_pdfs(pdf1_path, pdf2_path, output_path):
|
||||
import PyPDF2
|
||||
Percent = 0.8
|
||||
# Open the first PDF file
|
||||
with open(pdf1_path, 'rb') as pdf1_file:
|
||||
pdf1_reader = PyPDF2.PdfFileReader(pdf1_file)
|
||||
# Open the second PDF file
|
||||
with open(pdf2_path, 'rb') as pdf2_file:
|
||||
pdf2_reader = PyPDF2.PdfFileReader(pdf2_file)
|
||||
# Create a new PDF file to store the merged pages
|
||||
output_writer = PyPDF2.PdfFileWriter()
|
||||
# Determine the number of pages in each PDF file
|
||||
num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages)
|
||||
# Merge the pages from the two PDF files
|
||||
for page_num in range(num_pages):
|
||||
# Add the page from the first PDF file
|
||||
if page_num < pdf1_reader.numPages:
|
||||
page1 = pdf1_reader.getPage(page_num)
|
||||
else:
|
||||
page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
|
||||
# Add the page from the second PDF file
|
||||
if page_num < pdf2_reader.numPages:
|
||||
page2 = pdf2_reader.getPage(page_num)
|
||||
else:
|
||||
page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader)
|
||||
# Create a new empty page with double width
|
||||
new_page = PyPDF2.PageObject.createBlankPage(
|
||||
width = int(int(page1.mediaBox.getWidth()) + int(page2.mediaBox.getWidth()) * Percent),
|
||||
height = max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight())
|
||||
)
|
||||
new_page.mergeTranslatedPage(page1, 0, 0)
|
||||
new_page.mergeTranslatedPage(page2, int(int(page1.mediaBox.getWidth())-int(page2.mediaBox.getWidth())* (1-Percent)), 0)
|
||||
output_writer.addPage(new_page)
|
||||
# Save the merged PDF file
|
||||
with open(output_path, 'wb') as output_file:
|
||||
output_writer.write(output_file)
|
||||
130
crazy_functions/live_audio/aliyunASR.py
Normal file
130
crazy_functions/live_audio/aliyunASR.py
Normal file
@ -0,0 +1,130 @@
|
||||
import time, threading, json
|
||||
|
||||
|
||||
class AliyunASR():
|
||||
|
||||
def test_on_sentence_begin(self, message, *args):
|
||||
# print("test_on_sentence_begin:{}".format(message))
|
||||
pass
|
||||
|
||||
def test_on_sentence_end(self, message, *args):
|
||||
# print("test_on_sentence_end:{}".format(message))
|
||||
message = json.loads(message)
|
||||
self.parsed_sentence = message['payload']['result']
|
||||
self.event_on_entence_end.set()
|
||||
print(self.parsed_sentence)
|
||||
|
||||
def test_on_start(self, message, *args):
|
||||
# print("test_on_start:{}".format(message))
|
||||
pass
|
||||
|
||||
def test_on_error(self, message, *args):
|
||||
print("on_error args=>{}".format(args))
|
||||
pass
|
||||
|
||||
def test_on_close(self, *args):
|
||||
self.aliyun_service_ok = False
|
||||
pass
|
||||
|
||||
def test_on_result_chg(self, message, *args):
|
||||
# print("test_on_chg:{}".format(message))
|
||||
message = json.loads(message)
|
||||
self.parsed_text = message['payload']['result']
|
||||
self.event_on_result_chg.set()
|
||||
|
||||
def test_on_completed(self, message, *args):
|
||||
# print("on_completed:args=>{} message=>{}".format(args, message))
|
||||
pass
|
||||
|
||||
|
||||
def audio_convertion_thread(self, uuid):
|
||||
# 在一个异步线程中采集音频
|
||||
import nls # pip install git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
import tempfile
|
||||
from scipy import io
|
||||
from toolbox import get_conf
|
||||
from .audio_io import change_sample_rate
|
||||
from .audio_io import RealtimeAudioDistribution
|
||||
NEW_SAMPLERATE = 16000
|
||||
rad = RealtimeAudioDistribution()
|
||||
rad.clean_up()
|
||||
temp_folder = tempfile.gettempdir()
|
||||
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
|
||||
if len(TOKEN) == 0:
|
||||
TOKEN = self.get_token()
|
||||
self.aliyun_service_ok = True
|
||||
URL="wss://nls-gateway.aliyuncs.com/ws/v1"
|
||||
sr = nls.NlsSpeechTranscriber(
|
||||
url=URL,
|
||||
token=TOKEN,
|
||||
appkey=APPKEY,
|
||||
on_sentence_begin=self.test_on_sentence_begin,
|
||||
on_sentence_end=self.test_on_sentence_end,
|
||||
on_start=self.test_on_start,
|
||||
on_result_changed=self.test_on_result_chg,
|
||||
on_completed=self.test_on_completed,
|
||||
on_error=self.test_on_error,
|
||||
on_close=self.test_on_close,
|
||||
callback_args=[uuid.hex]
|
||||
)
|
||||
|
||||
r = sr.start(aformat="pcm",
|
||||
enable_intermediate_result=True,
|
||||
enable_punctuation_prediction=True,
|
||||
enable_inverse_text_normalization=True)
|
||||
|
||||
while not self.stop:
|
||||
# time.sleep(self.capture_interval)
|
||||
audio = rad.read(uuid.hex)
|
||||
if audio is not None:
|
||||
# convert to pcm file
|
||||
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
|
||||
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
|
||||
io.wavfile.write(temp_file, NEW_SAMPLERATE, dsdata)
|
||||
# read pcm binary
|
||||
with open(temp_file, "rb") as f: data = f.read()
|
||||
# print('audio len:', len(audio), '\t ds len:', len(dsdata), '\t need n send:', len(data)//640)
|
||||
slices = zip(*(iter(data),) * 640) # 640个字节为一组
|
||||
for i in slices: sr.send_audio(bytes(i))
|
||||
else:
|
||||
time.sleep(0.1)
|
||||
|
||||
if not self.aliyun_service_ok:
|
||||
self.stop = True
|
||||
self.stop_msg = 'Aliyun音频服务异常,请检查ALIYUN_TOKEN和ALIYUN_APPKEY是否过期。'
|
||||
r = sr.stop()
|
||||
|
||||
def get_token(self):
|
||||
from toolbox import get_conf
|
||||
import json
|
||||
from aliyunsdkcore.request import CommonRequest
|
||||
from aliyunsdkcore.client import AcsClient
|
||||
AccessKey_ID, AccessKey_secret = get_conf('ALIYUN_ACCESSKEY', 'ALIYUN_SECRET')
|
||||
|
||||
# 创建AcsClient实例
|
||||
client = AcsClient(
|
||||
AccessKey_ID,
|
||||
AccessKey_secret,
|
||||
"cn-shanghai"
|
||||
)
|
||||
|
||||
# 创建request,并设置参数。
|
||||
request = CommonRequest()
|
||||
request.set_method('POST')
|
||||
request.set_domain('nls-meta.cn-shanghai.aliyuncs.com')
|
||||
request.set_version('2019-02-28')
|
||||
request.set_action_name('CreateToken')
|
||||
|
||||
try:
|
||||
response = client.do_action_with_exception(request)
|
||||
print(response)
|
||||
jss = json.loads(response)
|
||||
if 'Token' in jss and 'Id' in jss['Token']:
|
||||
token = jss['Token']['Id']
|
||||
expireTime = jss['Token']['ExpireTime']
|
||||
print("token = " + token)
|
||||
print("expireTime = " + str(expireTime))
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
return token
|
||||
51
crazy_functions/live_audio/audio_io.py
Normal file
51
crazy_functions/live_audio/audio_io.py
Normal file
@ -0,0 +1,51 @@
|
||||
import numpy as np
|
||||
from scipy import interpolate
|
||||
|
||||
def Singleton(cls):
|
||||
_instance = {}
|
||||
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
|
||||
return _singleton
|
||||
|
||||
|
||||
@Singleton
|
||||
class RealtimeAudioDistribution():
|
||||
def __init__(self) -> None:
|
||||
self.data = {}
|
||||
self.max_len = 1024*1024
|
||||
self.rate = 48000 # 只读,每秒采样数量
|
||||
|
||||
def clean_up(self):
|
||||
self.data = {}
|
||||
|
||||
def feed(self, uuid, audio):
|
||||
self.rate, audio_ = audio
|
||||
# print('feed', len(audio_), audio_[-25:])
|
||||
if uuid not in self.data:
|
||||
self.data[uuid] = audio_
|
||||
else:
|
||||
new_arr = np.concatenate((self.data[uuid], audio_))
|
||||
if len(new_arr) > self.max_len: new_arr = new_arr[-self.max_len:]
|
||||
self.data[uuid] = new_arr
|
||||
|
||||
def read(self, uuid):
|
||||
if uuid in self.data:
|
||||
res = self.data.pop(uuid)
|
||||
print('\r read-', len(res), '-', max(res), end='', flush=True)
|
||||
else:
|
||||
res = None
|
||||
return res
|
||||
|
||||
def change_sample_rate(audio, old_sr, new_sr):
|
||||
duration = audio.shape[0] / old_sr
|
||||
|
||||
time_old = np.linspace(0, duration, audio.shape[0])
|
||||
time_new = np.linspace(0, duration, int(audio.shape[0] * new_sr / old_sr))
|
||||
|
||||
interpolator = interpolate.interp1d(time_old, audio.T)
|
||||
new_audio = interpolator(time_new).T
|
||||
return new_audio.astype(np.int16)
|
||||
@ -144,11 +144,11 @@ def 下载arxiv论文并翻译摘要(txt, llm_kwargs, plugin_kwargs, chatbot, hi
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import pdfminer, bs4
|
||||
import bs4
|
||||
except:
|
||||
report_execption(chatbot, history,
|
||||
a = f"解析项目: {txt}",
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。")
|
||||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4```。")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
63
crazy_functions/交互功能函数模板.py
Normal file
63
crazy_functions/交互功能函数模板.py
Normal file
@ -0,0 +1,63 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
|
||||
@CatchException
|
||||
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "交互功能函数模板。在执行完成之后, 可以将自身的状态存储到cookie中, 等待用户的再次调用。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
state = chatbot._cookies.get('plugin_state_0001', None) # 初始化插件状态
|
||||
|
||||
if state is None:
|
||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.交互功能函数模板->交互功能模板函数' # 赋予插件锁定 锁定插件回调路径,当下一次用户提交时,会直接转到该函数
|
||||
chatbot._cookies['plugin_state_0001'] = 'wait_user_keyword' # 赋予插件状态
|
||||
|
||||
chatbot.append(("第一次调用:", "请输入关键词, 我将为您查找相关壁纸, 建议使用英文单词, 插件锁定中,请直接提交即可。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
if state == 'wait_user_keyword':
|
||||
chatbot._cookies['lock_plugin'] = None # 解除插件锁定,避免遗忘导致死锁
|
||||
chatbot._cookies['plugin_state_0001'] = None # 解除插件状态,避免遗忘导致死锁
|
||||
|
||||
# 解除插件锁定
|
||||
chatbot.append((f"获取关键词:{txt}", ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
page_return = get_image_page_by_keyword(txt)
|
||||
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=inputs, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="When you want to show an image, use markdown format. e.g. . If there are no image url provided, answer 'no image url provided'"
|
||||
)
|
||||
chatbot[-1] = [chatbot[-1][0], gpt_say]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------------
|
||||
|
||||
def get_image_page_by_keyword(keyword):
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
response = requests.get(f'https://wallhaven.cc/search?q={keyword}', timeout=2)
|
||||
res = "image urls: \n"
|
||||
for image_element in BeautifulSoup(response.content, 'html.parser').findAll("img"):
|
||||
try:
|
||||
res += image_element["data-src"]
|
||||
res += "\n"
|
||||
except:
|
||||
pass
|
||||
return res
|
||||
@ -27,22 +27,20 @@ def gen_image(llm_kwargs, prompt, resolution="256x256"):
|
||||
}
|
||||
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
||||
print(response.content)
|
||||
|
||||
try:
|
||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||
except:
|
||||
raise RuntimeError(response.content.decode())
|
||||
|
||||
# 文件保存到本地
|
||||
r = requests.get(image_url, proxies=proxies)
|
||||
file_path = 'gpt_log/image_gen/'
|
||||
os.makedirs(file_path, exist_ok=True)
|
||||
file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
|
||||
with open(file_path + file_name, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
return image_url, file_path + file_name
|
||||
with open(file_path+file_name, 'wb+') as f: f.write(r.content)
|
||||
|
||||
|
||||
return image_url, file_path+file_name
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
|
||||
@ -12,7 +12,7 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
|
||||
file_name = 'chatGPT对话历史' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
||||
os.makedirs('./gpt_log/', exist_ok=True)
|
||||
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
|
||||
from theme import advanced_css
|
||||
from themes.theme import advanced_css
|
||||
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
|
||||
for i, contents in enumerate(chatbot):
|
||||
for j, content in enumerate(contents):
|
||||
|
||||
@ -14,17 +14,19 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
||||
doc = Document(fp)
|
||||
file_content = "\n".join([para.text for para in doc.paragraphs])
|
||||
else:
|
||||
try:
|
||||
import win32com.client
|
||||
word = win32com.client.Dispatch("Word.Application")
|
||||
word.visible = False
|
||||
# 打开文件
|
||||
print('fp', os.getcwd())
|
||||
doc = word.Documents.Open(os.getcwd() + '/' + fp)
|
||||
# file_content = doc.Content.Text
|
||||
doc = word.ActiveDocument
|
||||
file_content = doc.Range().Text
|
||||
doc.Close()
|
||||
word.Quit()
|
||||
except:
|
||||
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
||||
|
||||
print(file_content)
|
||||
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
||||
|
||||
@ -1,121 +1,107 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
|
||||
from toolbox import CatchException, report_execption, write_results_to_file
|
||||
import re
|
||||
import unicodedata
|
||||
fast_debug = False
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
from .crazy_utils import input_clipping
|
||||
|
||||
def is_paragraph_break(match):
|
||||
"""
|
||||
根据给定的匹配结果来判断换行符是否表示段落分隔。
|
||||
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
|
||||
也可以根据之前的内容长度来判断段落是否已经足够长。
|
||||
"""
|
||||
prev_char, next_char = match.groups()
|
||||
|
||||
# 句子结束标志
|
||||
sentence_endings = ".!?"
|
||||
|
||||
# 设定一个最小段落长度阈值
|
||||
min_paragraph_length = 140
|
||||
|
||||
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
|
||||
return "\n\n"
|
||||
else:
|
||||
return " "
|
||||
|
||||
def normalize_text(text):
|
||||
"""
|
||||
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。
|
||||
例如,将连字 "fi" 转换为 "f" 和 "i"。
|
||||
"""
|
||||
# 对文本进行归一化处理,分解连字
|
||||
normalized_text = unicodedata.normalize("NFKD", text)
|
||||
|
||||
# 替换其他特殊字符
|
||||
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
|
||||
|
||||
return cleaned_text
|
||||
|
||||
def clean_text(raw_text):
|
||||
"""
|
||||
对从 PDF 提取出的原始文本进行清洗和格式化处理。
|
||||
1. 对原始文本进行归一化处理。
|
||||
2. 替换跨行的连词
|
||||
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换
|
||||
"""
|
||||
# 对文本进行归一化处理
|
||||
normalized_text = normalize_text(raw_text)
|
||||
|
||||
# 替换跨行的连词
|
||||
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
|
||||
|
||||
# 根据前后相邻字符的特点,找到原文本中的换行符
|
||||
newlines = re.compile(r'(\S)\n(\S)')
|
||||
|
||||
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
|
||||
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
|
||||
|
||||
return final_text.strip()
|
||||
|
||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import time, glob, os, fitz
|
||||
print('begin analysis on:', file_manifest)
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with fitz.open(fp) as doc:
|
||||
file_content = ""
|
||||
for page in doc:
|
||||
file_content += page.get_text()
|
||||
file_content = clean_text(file_content)
|
||||
print(file_content)
|
||||
file_write_buffer = []
|
||||
for file_name in file_manifest:
|
||||
print('begin analysis on:', file_name)
|
||||
############################## <第 0 步,切割PDF> ##################################
|
||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||
# 的长度必须小于 2500 个 Token
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||||
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from request_llm.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||
|
||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||
final_results = []
|
||||
final_results.append(paper_meta)
|
||||
|
||||
############################## <第 2 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
i_say_show_user = f'首先你在中文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
|
||||
iteration_results = []
|
||||
last_iteration_result = paper_meta # 初始值是摘要
|
||||
MAX_WORD_TOTAL = 4096 * 0.7
|
||||
n_fragment = len(paper_fragments)
|
||||
if n_fragment >= 20: print('文章极长,不能达到预期效果')
|
||||
for i in range(n_fragment):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extract the main idea of this section with Chinese." # 提示
|
||||
)
|
||||
iteration_results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
|
||||
############################## <第 3 步,整理history,提取总结> ##################################
|
||||
final_results.extend(iteration_results)
|
||||
final_results.append(f'Please conclude this paper discussed above。')
|
||||
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
|
||||
NUM_OF_WORD = 1000
|
||||
i_say = """
|
||||
1. Mark the title of the paper (with Chinese translation)
|
||||
2. list all the authors' names (use English)
|
||||
3. mark the first author's affiliation (output Chinese translation only)
|
||||
4. mark the keywords of this article (use English)
|
||||
5. link to the paper, Github code link (if available, fill in Github:None if not)
|
||||
6. summarize according to the following four points.Be sure to use Chinese answers (proper nouns need to be marked in English)
|
||||
- (1):What is the research background of this article?
|
||||
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
|
||||
- (3):What is the research methodology proposed in this paper?
|
||||
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
|
||||
Follow the format of the output that follows:
|
||||
1. Title: xxx\n\n
|
||||
2. Authors: xxx\n\n
|
||||
3. Affiliation: xxx\n\n
|
||||
4. Keywords: xxx\n\n
|
||||
5. Urls: xxx or xxx , xxx \n\n
|
||||
6. Summary: \n\n
|
||||
- (1):xxx;\n
|
||||
- (2):xxx;\n
|
||||
- (3):xxx;\n
|
||||
- (4):xxx.\n\n
|
||||
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
|
||||
do not have too much repetitive information, numerical values using the original numbers.
|
||||
"""
|
||||
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
|
||||
file_write_buffer.extend(final_results)
|
||||
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
inputs=i_say, inputs_show_user='开始最终总结',
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
|
||||
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
|
||||
)
|
||||
final_results.append(gpt_say)
|
||||
file_write_buffer.extend([i_say, gpt_say])
|
||||
############################## <第 4 步,设置一个token上限> ##################################
|
||||
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
||||
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
||||
|
||||
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.append(i_say_show_user); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
if not fast_debug: time.sleep(2)
|
||||
|
||||
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
|
||||
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
|
||||
chatbot.append((i_say, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_results_to_file(history)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_results_to_file(file_write_buffer, file_name=gen_time_str())
|
||||
promote_file_to_downloadzone(res.split('\t')[-1], chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=final_results) # 刷新界面
|
||||
|
||||
|
||||
@CatchException
|
||||
@ -151,10 +137,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
return
|
||||
|
||||
# 搜索需要处理的文件清单
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
|
||||
@ -53,10 +53,9 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
)
|
||||
iteration_results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
|
||||
############################## <第 3 步,整理history> ##################################
|
||||
final_results.extend(iteration_results)
|
||||
# 将摘要添加到历史中,方便"猜你想问"使用
|
||||
history.extend([last_iteration_result])
|
||||
final_results.append(f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。')
|
||||
# 接下来两句话只显示在界面上,不起实际作用
|
||||
i_say_show_user = f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。'; gpt_say = "[Local Message] 收到。"
|
||||
@ -113,4 +112,3 @@ def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chat
|
||||
txt = file_manifest[0]
|
||||
# 开始正式执行任务
|
||||
yield from 解析PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
|
||||
@ -144,13 +144,3 @@ def 解析ipynb文件(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_p
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from ipynb解释(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, )
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import json
|
||||
filename = ''
|
||||
code = parseNotebook(filename)
|
||||
print(code)
|
||||
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
||||
notebook = f.read()
|
||||
print(notebook)
|
||||
@ -6,7 +6,7 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
@ -35,7 +35,7 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
|
||||
195
crazy_functions/语音助手.py
Normal file
195
crazy_functions/语音助手.py
Normal file
@ -0,0 +1,195 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, get_conf, markdown_convertion
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
import threading, time
|
||||
import numpy as np
|
||||
from .live_audio.aliyunASR import AliyunASR
|
||||
import json
|
||||
|
||||
class WatchDog():
|
||||
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
|
||||
self.last_feed = None
|
||||
self.timeout = timeout
|
||||
self.bark_fn = bark_fn
|
||||
self.interval = interval
|
||||
self.msg = msg
|
||||
self.kill_dog = False
|
||||
|
||||
def watch(self):
|
||||
while True:
|
||||
if self.kill_dog: break
|
||||
if time.time() - self.last_feed > self.timeout:
|
||||
if len(self.msg) > 0: print(self.msg)
|
||||
self.bark_fn()
|
||||
break
|
||||
time.sleep(self.interval)
|
||||
|
||||
def begin_watch(self):
|
||||
self.last_feed = time.time()
|
||||
th = threading.Thread(target=self.watch)
|
||||
th.daemon = True
|
||||
th.start()
|
||||
|
||||
def feed(self):
|
||||
self.last_feed = time.time()
|
||||
|
||||
def chatbot2history(chatbot):
|
||||
history = []
|
||||
for c in chatbot:
|
||||
for q in c:
|
||||
if q not in ["[请讲话]", "[等待GPT响应]", "[正在等您说完问题]"]:
|
||||
history.append(q.strip('<div class="markdown-body">').strip('</div>').strip('<p>').strip('</p>'))
|
||||
return history
|
||||
|
||||
class AsyncGptTask():
|
||||
def __init__(self) -> None:
|
||||
self.observe_future = []
|
||||
self.observe_future_chatbot_index = []
|
||||
|
||||
def gpt_thread_worker(self, i_say, llm_kwargs, history, sys_prompt, observe_window, index):
|
||||
try:
|
||||
MAX_TOKEN_ALLO = 2560
|
||||
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||
observe_window=observe_window[index], console_slience=True)
|
||||
except ConnectionAbortedError as token_exceed_err:
|
||||
print('至少一个线程任务Token溢出而失败', e)
|
||||
except Exception as e:
|
||||
print('至少一个线程任务意外失败', e)
|
||||
|
||||
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
|
||||
self.observe_future.append([""])
|
||||
self.observe_future_chatbot_index.append(chatbot_index)
|
||||
cur_index = len(self.observe_future)-1
|
||||
th_new = threading.Thread(target=self.gpt_thread_worker, args=(i_say, llm_kwargs, history, system_prompt, self.observe_future, cur_index))
|
||||
th_new.daemon = True
|
||||
th_new.start()
|
||||
|
||||
def update_chatbot(self, chatbot):
|
||||
for of, ofci in zip(self.observe_future, self.observe_future_chatbot_index):
|
||||
try:
|
||||
chatbot[ofci] = list(chatbot[ofci])
|
||||
chatbot[ofci][1] = markdown_convertion(of[0])
|
||||
except:
|
||||
self.observe_future = []
|
||||
self.observe_future_chatbot_index = []
|
||||
return chatbot
|
||||
|
||||
class InterviewAssistant(AliyunASR):
|
||||
def __init__(self):
|
||||
self.capture_interval = 0.5 # second
|
||||
self.stop = False
|
||||
self.parsed_text = ""
|
||||
self.parsed_sentence = ""
|
||||
self.buffered_sentence = ""
|
||||
self.event_on_result_chg = threading.Event()
|
||||
self.event_on_entence_end = threading.Event()
|
||||
self.event_on_commit_question = threading.Event()
|
||||
|
||||
def __del__(self):
|
||||
self.stop = True
|
||||
self.stop_msg = ""
|
||||
self.commit_wd.kill_dog = True
|
||||
self.plugin_wd.kill_dog = True
|
||||
|
||||
def init(self, chatbot):
|
||||
# 初始化音频采集线程
|
||||
self.captured_audio = np.array([])
|
||||
self.keep_latest_n_second = 10
|
||||
self.commit_after_pause_n_second = 1.5
|
||||
self.ready_audio_flagment = None
|
||||
self.stop = False
|
||||
self.plugin_wd = WatchDog(timeout=5, bark_fn=self.__del__, msg="程序终止")
|
||||
self.aut = threading.Thread(target=self.audio_convertion_thread, args=(chatbot._cookies['uuid'],))
|
||||
self.aut.daemon = True
|
||||
self.aut.start()
|
||||
# th2 = threading.Thread(target=self.audio2txt_thread, args=(chatbot._cookies['uuid'],))
|
||||
# th2.daemon = True
|
||||
# th2.start()
|
||||
|
||||
def no_audio_for_a_while(self):
|
||||
if len(self.buffered_sentence) < 7: # 如果一句话小于7个字,暂不提交
|
||||
self.commit_wd.begin_watch()
|
||||
else:
|
||||
self.event_on_commit_question.set()
|
||||
|
||||
def begin(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
# main plugin function
|
||||
self.init(chatbot)
|
||||
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.plugin_wd.begin_watch()
|
||||
self.agt = AsyncGptTask()
|
||||
self.commit_wd = WatchDog(timeout=self.commit_after_pause_n_second, bark_fn=self.no_audio_for_a_while, interval=0.2)
|
||||
self.commit_wd.begin_watch()
|
||||
|
||||
while not self.stop:
|
||||
self.event_on_result_chg.wait(timeout=0.25) # run once every 0.25 second
|
||||
chatbot = self.agt.update_chatbot(chatbot) # 将子线程的gpt结果写入chatbot
|
||||
history = chatbot2history(chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.plugin_wd.feed()
|
||||
|
||||
if self.event_on_result_chg.is_set():
|
||||
# update audio decode result
|
||||
self.event_on_result_chg.clear()
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1][0] = self.buffered_sentence + self.parsed_text
|
||||
history = chatbot2history(chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.commit_wd.feed()
|
||||
|
||||
if self.event_on_entence_end.is_set():
|
||||
# called when a sentence has ended
|
||||
self.event_on_entence_end.clear()
|
||||
self.parsed_text = self.parsed_sentence
|
||||
self.buffered_sentence += self.parsed_sentence
|
||||
|
||||
if self.event_on_commit_question.is_set():
|
||||
# called when a question should be commited
|
||||
self.event_on_commit_question.clear()
|
||||
if len(self.buffered_sentence) == 0: raise RuntimeError
|
||||
|
||||
self.commit_wd.begin_watch()
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1] = [self.buffered_sentence, "[等待GPT响应]"]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# add gpt task 创建子线程请求gpt,避免线程阻塞
|
||||
history = chatbot2history(chatbot)
|
||||
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
|
||||
|
||||
self.buffered_sentence = ""
|
||||
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if len(self.stop_msg) != 0:
|
||||
raise RuntimeError(self.stop_msg)
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# pip install -U openai-whisper
|
||||
chatbot.append(["对话助手函数插件:使用时,双手离开鼠标键盘吧", "音频助手, 正在听您讲话(点击“停止”键可终止程序)..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import nls
|
||||
from scipy import io
|
||||
except:
|
||||
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade aliyun-python-sdk-core==2.13.3 pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
APPKEY = get_conf('ALIYUN_APPKEY')
|
||||
if APPKEY == "":
|
||||
chatbot.append(["导入依赖失败", "没有阿里云语音识别APPKEY和TOKEN, 详情见https://help.aliyun.com/document_detail/450255.html"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
ia = InterviewAssistant()
|
||||
yield from ia.begin(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
@ -13,13 +13,8 @@ def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
show_say = txt
|
||||
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
|
||||
else:
|
||||
|
||||
prompt = history[-1]+"\n分析上述回答,再列出用户可能提出的三个问题。"
|
||||
show_say = '分析上述回答,再列出用户可能提出的三个问题。'
|
||||
try:
|
||||
prompt = history[-1]+f"\n{show_say}"
|
||||
except IndexError:
|
||||
prompt = system_prompt+"\n再列出用户可能提出的三个问题。"
|
||||
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=show_say,
|
||||
@ -28,8 +23,6 @@ def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
history=history,
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
|
||||
chatbot[-1] = (show_say, gpt_say)
|
||||
history.extend([show_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@ -1,13 +1,12 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime, re
|
||||
|
||||
import datetime
|
||||
@CatchException
|
||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
@ -19,34 +18,12 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
for i in range(5):
|
||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?用中文列举两条,然后分别给出描述事件的两个英文单词。' + '当你给出关键词时,使用以下json格式:{"KeyWords":[EnglishKeyWord1,EnglishKeyWord2]}。'
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt='输出格式示例:1908年,美国消防救援事业发展的“美国消防协会”成立。关键词:{"KeyWords":["Fire","American"]}。'
|
||||
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
|
||||
)
|
||||
gpt_say = get_images(gpt_say)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
def get_images(gpt_say):
|
||||
def get_image_by_keyword(keyword):
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
response = requests.get(f'https://wallhaven.cc/search?q={keyword}', timeout=2)
|
||||
for image_element in BeautifulSoup(response.content, 'html.parser').findAll("img"):
|
||||
if "data-src" in image_element: break
|
||||
return image_element["data-src"]
|
||||
|
||||
for keywords in re.findall('{"KeyWords":\[(.*?)\]}', gpt_say):
|
||||
keywords = [n.strip('"') for n in keywords.split(',')]
|
||||
try:
|
||||
description = keywords[0]
|
||||
url = get_image_by_keyword(keywords[0])
|
||||
img_tag = f"\n\n"
|
||||
gpt_say += img_tag
|
||||
except:
|
||||
continue
|
||||
return gpt_say
|
||||
@ -6,7 +6,7 @@
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_nolocalllms:
|
||||
image: ghcr.io/binary-husky/gpt_academic_nolocal:master
|
||||
image: ghcr.io/binary-husky/gpt_academic_nolocal:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal)
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
@ -33,7 +33,7 @@ services:
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_with_chatglm:
|
||||
image: ghcr.io/binary-husky/gpt_academic_chatglm_moss:master
|
||||
image: ghcr.io/binary-husky/gpt_academic_chatglm_moss:master # (Auto Built by Dockerfile: docs/Dockerfile+ChatGLM)
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
@ -63,7 +63,7 @@ services:
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_with_rwkv:
|
||||
image: fuqingxu/gpt_academic:jittorllms # [option 2] 如果需要运行ChatGLM本地模型
|
||||
image: ghcr.io/binary-husky/gpt_academic_jittorllms:master
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
@ -85,33 +85,18 @@ services:
|
||||
# 与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 使用代理网络拉取最新代码
|
||||
# command: >
|
||||
# bash -c " truncate -s -1 /etc/proxychains.conf &&
|
||||
# echo \"socks5 127.0.0.1 10880\" >> /etc/proxychains.conf &&
|
||||
# echo '[gpt-academic] 正在从github拉取最新代码...' &&
|
||||
# proxychains git pull &&
|
||||
# echo '[jittorllms] 正在从github拉取最新代码...' &&
|
||||
# proxychains git --git-dir=request_llm/jittorllms/.git --work-tree=request_llm/jittorllms pull --force &&
|
||||
# python3 -u main.py"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
command: >
|
||||
bash -c " echo '[gpt-academic] 正在从github拉取最新代码...' &&
|
||||
git pull &&
|
||||
pip install -r requirements.txt &&
|
||||
echo '[jittorllms] 正在从github拉取最新代码...' &&
|
||||
git --git-dir=request_llm/jittorllms/.git --work-tree=request_llm/jittorllms pull --force &&
|
||||
python3 -u main.py"
|
||||
python3 -u main.py
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案四】 chatgpt + Latex
|
||||
## 【方案四】 ChatGPT + Latex
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_with_latex:
|
||||
image: ghcr.io/binary-husky/gpt_academic_with_latex:master
|
||||
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
|
||||
@ -26,7 +26,7 @@ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
|
||||
RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
# 下载分支
|
||||
WORKDIR /gpt
|
||||
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b jittor
|
||||
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git
|
||||
WORKDIR /gpt/chatgpt_academic
|
||||
RUN $useProxyNetwork python3 -m pip install -r requirements.txt
|
||||
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
|
||||
|
||||
@ -13,7 +13,7 @@ RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/
|
||||
|
||||
# 下载分支
|
||||
WORKDIR /gpt
|
||||
RUN git clone https://github.com/binary-husky/chatgpt_academic.git -b jittor
|
||||
RUN git clone https://github.com/binary-husky/chatgpt_academic.git
|
||||
WORKDIR /gpt/chatgpt_academic
|
||||
RUN python3 -m pip install -r requirements.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 57 KiB |
@ -1,465 +0,0 @@
|
||||
|
||||
// custom javascript here
|
||||
|
||||
const MAX_HISTORY_LENGTH = 32;
|
||||
|
||||
var key_down_history = [];
|
||||
var currentIndex = -1;
|
||||
var user_input_ta;
|
||||
|
||||
var gradioContainer = null;
|
||||
var user_input_ta = null;
|
||||
var chat_txt = null;
|
||||
var userInfoDiv = null;
|
||||
var appTitleDiv = null;
|
||||
var chatbot = null;
|
||||
var chatbotWrap = null;
|
||||
var apSwitch = null;
|
||||
var messageBotDivs = null;
|
||||
var loginUserForm = null;
|
||||
var logginUser = null;
|
||||
|
||||
var userLogged = false;
|
||||
var usernameGotten = false;
|
||||
var historyLoaded = false;
|
||||
|
||||
var ga = document.getElementsByTagName("gradio-app");
|
||||
var targetNode = ga[0];
|
||||
var isInIframe = (window.self !== window.top);
|
||||
var language = navigator.language.slice(0,2);
|
||||
|
||||
var forView_i18n = {
|
||||
'zh': "仅供查看",
|
||||
'en': "For viewing only",
|
||||
'ja': "閲覧専用",
|
||||
'fr': "Pour consultation seulement",
|
||||
'es': "Solo para visualización",
|
||||
};
|
||||
|
||||
var deleteConfirm_i18n_pref = {
|
||||
'zh': "你真的要删除 ",
|
||||
'en': "Are you sure you want to delete ",
|
||||
'ja': "本当に ",
|
||||
};
|
||||
var deleteConfirm_i18n_suff = {
|
||||
'zh': " 吗?",
|
||||
'en': " ?",
|
||||
'ja': " を削除してもよろしいですか?",
|
||||
};
|
||||
var deleteConfirm_msg_pref = "Are you sure you want to delete ";
|
||||
var deleteConfirm_msg_suff = " ?";
|
||||
|
||||
// gradio 页面加载好了么??? 我能动你的元素了么??
|
||||
function gradioLoaded(mutations) {
|
||||
for (var i = 0; i < mutations.length; i++) {
|
||||
if (mutations[i].addedNodes.length) {
|
||||
loginUserForm = document.querySelector(".gradio-container > .main > .wrap > .panel > .form")
|
||||
gradioContainer = document.querySelector(".gradio-container");
|
||||
chat_txt = document.getElementById('chat_txt');
|
||||
userInfoDiv = document.getElementById("user_info");
|
||||
appTitleDiv = document.getElementById("app_title");
|
||||
chatbot = document.querySelector('#废弃');
|
||||
chatbotWrap = document.querySelector('#废弃 > .wrap');
|
||||
apSwitch = document.querySelector('.apSwitch input[type="checkbox"]');
|
||||
|
||||
if (loginUserForm) {
|
||||
localStorage.setItem("userLogged", true);
|
||||
userLogged = true;
|
||||
}
|
||||
|
||||
if (gradioContainer && apSwitch) { // gradioCainter 加载出来了没?
|
||||
adjustDarkMode();
|
||||
}
|
||||
if (chat_txt) { // chat_txt 加载出来了没?
|
||||
selectHistory();
|
||||
}
|
||||
if (userInfoDiv && appTitleDiv) { // userInfoDiv 和 appTitleDiv 加载出来了没?
|
||||
if (!usernameGotten) {
|
||||
getUserInfo();
|
||||
}
|
||||
setTimeout(showOrHideUserInfo(), 2000);
|
||||
}
|
||||
if (chatbot) { // chatbot 加载出来了没?
|
||||
setChatbotHeight();
|
||||
}
|
||||
if (chatbotWrap) {
|
||||
if (!historyLoaded) {
|
||||
loadHistoryHtml();
|
||||
}
|
||||
setChatbotScroll();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function webLocale() {
|
||||
// console.log("webLocale", language);
|
||||
if (forView_i18n.hasOwnProperty(language)) {
|
||||
var forView = forView_i18n[language];
|
||||
var forViewStyle = document.createElement('style');
|
||||
forViewStyle.innerHTML = '.wrap>.history-message>:last-child::after { content: "' + forView + '"!important; }';
|
||||
document.head.appendChild(forViewStyle);
|
||||
}
|
||||
if (deleteConfirm_i18n_pref.hasOwnProperty(language)) {
|
||||
deleteConfirm_msg_pref = deleteConfirm_i18n_pref[language];
|
||||
deleteConfirm_msg_suff = deleteConfirm_i18n_suff[language];
|
||||
}
|
||||
}
|
||||
|
||||
function showConfirmationDialog(a, file, c) {
|
||||
if (file != "") {
|
||||
var result = confirm(deleteConfirm_msg_pref + file + deleteConfirm_msg_suff);
|
||||
if (result) {
|
||||
return [a, file, c];
|
||||
}
|
||||
}
|
||||
return [a, "CANCELED", c];
|
||||
}
|
||||
|
||||
function selectHistory() {
|
||||
user_input_ta = chat_txt.querySelector("textarea");
|
||||
if (user_input_ta) {
|
||||
observer.disconnect(); // 停止监听
|
||||
// 在 textarea 上监听 keydown 事件
|
||||
user_input_ta.addEventListener("keydown", function (event) {
|
||||
var value = user_input_ta.value.trim();
|
||||
// 判断按下的是否为方向键
|
||||
if (event.code === 'ArrowUp' || event.code === 'ArrowDown') {
|
||||
// 如果按下的是方向键,且输入框中有内容,且历史记录中没有该内容,则不执行操作
|
||||
if (value && key_down_history.indexOf(value) === -1)
|
||||
return;
|
||||
// 对于需要响应的动作,阻止默认行为。
|
||||
event.preventDefault();
|
||||
var length = key_down_history.length;
|
||||
if (length === 0) {
|
||||
currentIndex = -1; // 如果历史记录为空,直接将当前选中的记录重置
|
||||
return;
|
||||
}
|
||||
if (currentIndex === -1) {
|
||||
currentIndex = length;
|
||||
}
|
||||
if (event.code === 'ArrowUp' && currentIndex > 0) {
|
||||
currentIndex--;
|
||||
user_input_ta.value = key_down_history[currentIndex];
|
||||
} else if (event.code === 'ArrowDown' && currentIndex < length - 1) {
|
||||
currentIndex++;
|
||||
user_input_ta.value = key_down_history[currentIndex];
|
||||
}
|
||||
user_input_ta.selectionStart = user_input_ta.value.length;
|
||||
user_input_ta.selectionEnd = user_input_ta.value.length;
|
||||
const input_event = new InputEvent("input", { bubbles: true, cancelable: true });
|
||||
user_input_ta.dispatchEvent(input_event);
|
||||
} else if (event.code === "Enter") {
|
||||
if (value) {
|
||||
currentIndex = -1;
|
||||
if (key_down_history.indexOf(value) === -1) {
|
||||
key_down_history.push(value);
|
||||
if (key_down_history.length > MAX_HISTORY_LENGTH) {
|
||||
key_down_history.shift();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
var username = null;
|
||||
function getUserInfo() {
|
||||
if (usernameGotten) {
|
||||
return;
|
||||
}
|
||||
userLogged = localStorage.getItem('userLogged');
|
||||
if (userLogged) {
|
||||
username = userInfoDiv.innerText;
|
||||
if (username) {
|
||||
if (username.includes("getting user info…")) {
|
||||
setTimeout(getUserInfo, 500);
|
||||
return;
|
||||
} else if (username === " ") {
|
||||
localStorage.removeItem("username");
|
||||
localStorage.removeItem("userLogged")
|
||||
userLogged = false;
|
||||
usernameGotten = true;
|
||||
return;
|
||||
} else {
|
||||
username = username.match(/User:\s*(.*)/)[1] || username;
|
||||
localStorage.setItem("username", username);
|
||||
usernameGotten = true;
|
||||
clearHistoryHtml();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function toggleUserInfoVisibility(shouldHide) {
|
||||
if (userInfoDiv) {
|
||||
if (shouldHide) {
|
||||
userInfoDiv.classList.add("hideK");
|
||||
} else {
|
||||
userInfoDiv.classList.remove("hideK");
|
||||
}
|
||||
}
|
||||
}
|
||||
function showOrHideUserInfo() {
|
||||
var sendBtn = document.getElementById("submit_btn");
|
||||
|
||||
// Bind mouse/touch events to show/hide user info
|
||||
appTitleDiv.addEventListener("mouseenter", function () {
|
||||
toggleUserInfoVisibility(false);
|
||||
});
|
||||
userInfoDiv.addEventListener("mouseenter", function () {
|
||||
toggleUserInfoVisibility(false);
|
||||
});
|
||||
sendBtn.addEventListener("mouseenter", function () {
|
||||
toggleUserInfoVisibility(false);
|
||||
});
|
||||
|
||||
appTitleDiv.addEventListener("mouseleave", function () {
|
||||
toggleUserInfoVisibility(true);
|
||||
});
|
||||
userInfoDiv.addEventListener("mouseleave", function () {
|
||||
toggleUserInfoVisibility(true);
|
||||
});
|
||||
sendBtn.addEventListener("mouseleave", function () {
|
||||
toggleUserInfoVisibility(true);
|
||||
});
|
||||
|
||||
appTitleDiv.ontouchstart = function () {
|
||||
toggleUserInfoVisibility(false);
|
||||
};
|
||||
userInfoDiv.ontouchstart = function () {
|
||||
toggleUserInfoVisibility(false);
|
||||
};
|
||||
sendBtn.ontouchstart = function () {
|
||||
toggleUserInfoVisibility(false);
|
||||
};
|
||||
|
||||
appTitleDiv.ontouchend = function () {
|
||||
setTimeout(function () {
|
||||
toggleUserInfoVisibility(true);
|
||||
}, 3000);
|
||||
};
|
||||
userInfoDiv.ontouchend = function () {
|
||||
setTimeout(function () {
|
||||
toggleUserInfoVisibility(true);
|
||||
}, 3000);
|
||||
};
|
||||
sendBtn.ontouchend = function () {
|
||||
setTimeout(function () {
|
||||
toggleUserInfoVisibility(true);
|
||||
}, 3000); // Delay 1 second to hide user info
|
||||
};
|
||||
|
||||
// Hide user info after 2 second
|
||||
setTimeout(function () {
|
||||
toggleUserInfoVisibility(true);
|
||||
}, 2000);
|
||||
}
|
||||
|
||||
function toggleDarkMode(isEnabled) {
|
||||
if (isEnabled) {
|
||||
document.body.classList.add("dark");
|
||||
document.body.style.setProperty("background-color", "var(--neutral-950)", "important");
|
||||
} else {
|
||||
document.body.classList.remove("dark");
|
||||
document.body.style.backgroundColor = "";
|
||||
}
|
||||
}
|
||||
function adjustDarkMode() {
|
||||
const darkModeQuery = window.matchMedia("(prefers-color-scheme: dark)");
|
||||
|
||||
// 根据当前颜色模式设置初始状态
|
||||
apSwitch.checked = darkModeQuery.matches;
|
||||
toggleDarkMode(darkModeQuery.matches);
|
||||
// 监听颜色模式变化
|
||||
darkModeQuery.addEventListener("change", (e) => {
|
||||
apSwitch.checked = e.matches;
|
||||
toggleDarkMode(e.matches);
|
||||
});
|
||||
// apSwitch = document.querySelector('.apSwitch input[type="checkbox"]');
|
||||
apSwitch.addEventListener("change", (e) => {
|
||||
toggleDarkMode(e.target.checked);
|
||||
});
|
||||
}
|
||||
|
||||
function setChatbotHeight() {
|
||||
const screenWidth = window.innerWidth;
|
||||
const statusDisplay = document.querySelector('#status_display');
|
||||
const statusDisplayHeight = statusDisplay ? statusDisplay.offsetHeight : 0;
|
||||
const wrap = chatbot.querySelector('.wrap');
|
||||
const vh = window.innerHeight * 0.01;
|
||||
document.documentElement.style.setProperty('--vh', `${vh}px`);
|
||||
if (isInIframe) {
|
||||
chatbot.style.height = `700px`;
|
||||
wrap.style.maxHeight = `calc(700px - var(--line-sm) * 1rem - 2 * var(--block-label-margin))`
|
||||
} else {
|
||||
if (screenWidth <= 320) {
|
||||
chatbot.style.height = `calc(var(--vh, 1vh) * 100 - ${statusDisplayHeight + 150}px)`;
|
||||
wrap.style.maxHeight = `calc(var(--vh, 1vh) * 100 - ${statusDisplayHeight + 150}px - var(--line-sm) * 1rem - 2 * var(--block-label-margin))`;
|
||||
} else if (screenWidth <= 499) {
|
||||
chatbot.style.height = `calc(var(--vh, 1vh) * 100 - ${statusDisplayHeight + 100}px)`;
|
||||
wrap.style.maxHeight = `calc(var(--vh, 1vh) * 100 - ${statusDisplayHeight + 100}px - var(--line-sm) * 1rem - 2 * var(--block-label-margin))`;
|
||||
} else {
|
||||
chatbot.style.height = `calc(var(--vh, 1vh) * 100 - ${statusDisplayHeight + 160}px)`;
|
||||
wrap.style.maxHeight = `calc(var(--vh, 1vh) * 100 - ${statusDisplayHeight + 160}px - var(--line-sm) * 1rem - 2 * var(--block-label-margin))`;
|
||||
}
|
||||
}
|
||||
}
|
||||
function setChatbotScroll() {
|
||||
var scrollHeight = chatbotWrap.scrollHeight;
|
||||
chatbotWrap.scrollTo(0,scrollHeight)
|
||||
}
|
||||
var rangeInputs = null;
|
||||
var numberInputs = null;
|
||||
function setSlider() {
|
||||
rangeInputs = document.querySelectorAll('input[type="range"]');
|
||||
numberInputs = document.querySelectorAll('input[type="number"]')
|
||||
setSliderRange();
|
||||
rangeInputs.forEach(rangeInput => {
|
||||
rangeInput.addEventListener('input', setSliderRange);
|
||||
});
|
||||
numberInputs.forEach(numberInput => {
|
||||
numberInput.addEventListener('input', setSliderRange);
|
||||
})
|
||||
}
|
||||
function setSliderRange() {
|
||||
var range = document.querySelectorAll('input[type="range"]');
|
||||
range.forEach(range => {
|
||||
range.style.backgroundSize = (range.value - range.min) / (range.max - range.min) * 100 + '% 100%';
|
||||
});
|
||||
}
|
||||
|
||||
function addChuanhuButton(botElement) {
|
||||
var rawMessage = null;
|
||||
var mdMessage = null;
|
||||
rawMessage = botElement.querySelector('.raw-message');
|
||||
mdMessage = botElement.querySelector('.md-message');
|
||||
if (!rawMessage) {
|
||||
var buttons = botElement.querySelectorAll('button.chuanhu-btn');
|
||||
for (var i = 0; i < buttons.length; i++) {
|
||||
buttons[i].parentNode.removeChild(buttons[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
var copyButton = null;
|
||||
var toggleButton = null;
|
||||
copyButton = botElement.querySelector('button.copy-bot-btn');
|
||||
toggleButton = botElement.querySelector('button.toggle-md-btn');
|
||||
if (copyButton) copyButton.remove();
|
||||
if (toggleButton) toggleButton.remove();
|
||||
|
||||
// Copy bot button
|
||||
var copyButton = document.createElement('button');
|
||||
copyButton.classList.add('chuanhu-btn');
|
||||
copyButton.classList.add('copy-bot-btn');
|
||||
copyButton.setAttribute('aria-label', 'Copy');
|
||||
copyButton.innerHTML = copyIcon;
|
||||
copyButton.addEventListener('click', () => {
|
||||
const textToCopy = rawMessage.innerText;
|
||||
navigator.clipboard
|
||||
.writeText(textToCopy)
|
||||
.then(() => {
|
||||
copyButton.innerHTML = copiedIcon;
|
||||
setTimeout(() => {
|
||||
copyButton.innerHTML = copyIcon;
|
||||
}, 1500);
|
||||
})
|
||||
.catch(() => {
|
||||
console.error("copy failed");
|
||||
});
|
||||
});
|
||||
botElement.appendChild(copyButton);
|
||||
|
||||
// Toggle button
|
||||
var toggleButton = document.createElement('button');
|
||||
toggleButton.classList.add('chuanhu-btn');
|
||||
toggleButton.classList.add('toggle-md-btn');
|
||||
toggleButton.setAttribute('aria-label', 'Toggle');
|
||||
var renderMarkdown = mdMessage.classList.contains('hideM');
|
||||
toggleButton.innerHTML = renderMarkdown ? mdIcon : rawIcon;
|
||||
toggleButton.addEventListener('click', () => {
|
||||
renderMarkdown = mdMessage.classList.contains('hideM');
|
||||
if (renderMarkdown){
|
||||
renderMarkdownText(botElement);
|
||||
toggleButton.innerHTML=rawIcon;
|
||||
} else {
|
||||
removeMarkdownText(botElement);
|
||||
toggleButton.innerHTML=mdIcon;
|
||||
}
|
||||
});
|
||||
botElement.insertBefore(toggleButton, copyButton);
|
||||
}
|
||||
|
||||
function renderMarkdownText(message) {
|
||||
var mdDiv = message.querySelector('.md-message');
|
||||
if (mdDiv) mdDiv.classList.remove('hideM');
|
||||
var rawDiv = message.querySelector('.raw-message');
|
||||
if (rawDiv) rawDiv.classList.add('hideM');
|
||||
}
|
||||
function removeMarkdownText(message) {
|
||||
var rawDiv = message.querySelector('.raw-message');
|
||||
if (rawDiv) rawDiv.classList.remove('hideM');
|
||||
var mdDiv = message.querySelector('.md-message');
|
||||
if (mdDiv) mdDiv.classList.add('hideM');
|
||||
}
|
||||
|
||||
let timeoutId;
|
||||
let isThrottled = false;
|
||||
var mmutation
|
||||
// 监听所有元素中 bot message 的变化,为 bot 消息添加复制按钮。
|
||||
var mObserver = new MutationObserver(function (mutationsList) {
|
||||
for (mmutation of mutationsList) {
|
||||
if (mmutation.type === 'childList') {
|
||||
for (var node of mmutation.addedNodes) {
|
||||
if (node.nodeType === 1 && node.classList.contains('message') && node.getAttribute('data-testid') === 'bot') {
|
||||
saveHistoryHtml();
|
||||
document.querySelectorAll('#废弃>.wrap>.message-wrap .message.bot').forEach(addChuanhuButton);
|
||||
}
|
||||
if (node.tagName === 'INPUT' && node.getAttribute('type') === 'range') {
|
||||
setSlider();
|
||||
}
|
||||
}
|
||||
for (var node of mmutation.removedNodes) {
|
||||
if (node.nodeType === 1 && node.classList.contains('message') && node.getAttribute('data-testid') === 'bot') {
|
||||
saveHistoryHtml();
|
||||
document.querySelectorAll('#废弃>.wrap>.message-wrap .message.bot').forEach(addChuanhuButton);
|
||||
}
|
||||
}
|
||||
} else if (mmutation.type === 'attributes') {
|
||||
if (mmutation.target.nodeType === 1 && mmutation.target.classList.contains('message') && mmutation.target.getAttribute('data-testid') === 'bot') {
|
||||
if (isThrottled) break; // 为了防止重复不断疯狂渲染,加上等待_(:з」∠)_
|
||||
isThrottled = true;
|
||||
clearTimeout(timeoutId);
|
||||
timeoutId = setTimeout(() => {
|
||||
isThrottled = false;
|
||||
document.querySelectorAll('#废弃>.wrap>.message-wrap .message.bot').forEach(addChuanhuButton);
|
||||
saveHistoryHtml();
|
||||
}, 500);
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
mObserver.observe(document.documentElement, { attributes: true, childList: true, subtree: true });
|
||||
|
||||
|
||||
// 监视页面内部 DOM 变动
|
||||
var observer = new MutationObserver(function (mutations) {
|
||||
gradioLoaded(mutations);
|
||||
});
|
||||
observer.observe(targetNode, { childList: true, subtree: true });
|
||||
|
||||
// 监视页面变化
|
||||
window.addEventListener("DOMContentLoaded", function () {
|
||||
isInIframe = (window.self !== window.top);
|
||||
historyLoaded = false;
|
||||
});
|
||||
window.addEventListener('resize', setChatbotHeight);
|
||||
window.addEventListener('scroll', setChatbotHeight);
|
||||
window.matchMedia("(prefers-color-scheme: dark)").addEventListener("change", adjustDarkMode);
|
||||
|
||||
// button svg code
|
||||
const copyIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><rect x="9" y="9" width="13" height="13" rx="2" ry="2"></rect><path d="M5 15H4a2 2 0 0 1-2-2V4a2 2 0 0 1 2-2h9a2 2 0 0 1 2 2v1"></path></svg></span>';
|
||||
const copiedIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><polyline points="20 6 9 17 4 12"></polyline></svg></span>';
|
||||
const mdIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="1" viewBox="0 0 14 18" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><g transform-origin="center" transform="scale(0.85)"><path d="M1.5,0 L12.5,0 C13.3284271,-1.52179594e-16 14,0.671572875 14,1.5 L14,16.5 C14,17.3284271 13.3284271,18 12.5,18 L1.5,18 C0.671572875,18 1.01453063e-16,17.3284271 0,16.5 L0,1.5 C-1.01453063e-16,0.671572875 0.671572875,1.52179594e-16 1.5,0 Z" stroke-width="1.8"></path><line x1="3.5" y1="3.5" x2="10.5" y2="3.5"></line><line x1="3.5" y1="6.5" x2="8" y2="6.5"></line></g><path d="M4,9 L10,9 C10.5522847,9 11,9.44771525 11,10 L11,13.5 C11,14.0522847 10.5522847,14.5 10,14.5 L4,14.5 C3.44771525,14.5 3,14.0522847 3,13.5 L3,10 C3,9.44771525 3.44771525,9 4,9 Z" stroke="none" fill="currentColor"></path></svg></span>';
|
||||
const rawIcon = '<span><svg stroke="currentColor" fill="none" stroke-width="1.8" viewBox="0 0 18 14" stroke-linecap="round" stroke-linejoin="round" height=".8em" width=".8em" xmlns="http://www.w3.org/2000/svg"><g transform-origin="center" transform="scale(0.85)"><polyline points="4 3 0 7 4 11"></polyline><polyline points="14 3 18 7 14 11"></polyline><line x1="12" y1="0" x2="6" y2="14"></line></g></svg></span>';
|
||||
@ -1,2 +0,0 @@
|
||||
|
||||
// external javascript here
|
||||
@ -1,8 +0,0 @@
|
||||
<div style="display: flex; justify-content: space-between;">
|
||||
<span>
|
||||
<label class="apSwitch" for="checkbox">
|
||||
<input type="checkbox" id="checkbox">
|
||||
<div class="apSlider"></div>
|
||||
</label>
|
||||
</span>
|
||||
</div>
|
||||
@ -1,9 +0,0 @@
|
||||
<b>{label}</b>
|
||||
<div class="progress-bar">
|
||||
<div class="progress" style="width: {usage_percent}%;">
|
||||
<span class="progress-text">{usage_percent}%</span>
|
||||
</div>
|
||||
</div>
|
||||
<div style="display: flex; justify-content: space-between;">
|
||||
<span>${rounded_usage}</span><span>${usage_limit}</span>
|
||||
</div>
|
||||
@ -1 +0,0 @@
|
||||
<div class="versions">{versions}</div>
|
||||
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 18 KiB |
@ -49,7 +49,7 @@ def markdown_convertion(txt):
|
||||
"""
|
||||
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。
|
||||
"""
|
||||
pre = '<div class="md-message">'
|
||||
pre = '<div class="markdown-body">'
|
||||
suf = '</div>'
|
||||
if txt.startswith(pre) and txt.endswith(suf):
|
||||
# print('警告,输入了已经经过转化的字符串,二次转化可能出问题')
|
||||
|
||||
@ -265,7 +265,7 @@
|
||||
"例如chatglm&gpt-3.5-turbo&api2d-gpt-4": "e.g. chatglm&gpt-3.5-turbo&api2d-gpt-4",
|
||||
"先切换模型到openai或api2d": "Switch the model to openai or api2d first",
|
||||
"在这里输入分辨率": "Enter the resolution here",
|
||||
"如'256x256', '512x512', '1024x1024'": "e.g. '256x256', '512x512', '1024x1024'",
|
||||
"如256x256": "e.g. 256x256",
|
||||
"默认": "Default",
|
||||
"建议您复制一个config_private.py放自己的秘密": "We suggest you to copy a config_private.py file to keep your secrets, such as API and proxy URLs, from being accidentally uploaded to Github and seen by others.",
|
||||
"如API和代理网址": "Such as API and proxy URLs",
|
||||
@ -1667,5 +1667,423 @@
|
||||
"段音频的主要内容": "The main content of the segment audio is",
|
||||
"z$ 分别是空间直角坐标系中的三个坐标": "z$, respectively, are the three coordinates in the spatial rectangular coordinate system",
|
||||
"这个是怎么识别的呢我也不清楚": "I'm not sure how this is recognized",
|
||||
"从现在起": "From now on"
|
||||
"从现在起": "From now on",
|
||||
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
|
||||
"联网的ChatGPT_bing版": "OnlineChatGPT_BingEdition",
|
||||
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
|
||||
"Langchain知识库": "LangchainKnowledgeBase",
|
||||
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
|
||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateChineseToEnglishInLatexAndRecompilePDF",
|
||||
"sprint亮靛": "SprintIndigo",
|
||||
"寻找Latex主文件": "FindLatexMainFile",
|
||||
"专业词汇声明": "ProfessionalTerminologyDeclaration",
|
||||
"Latex精细分解与转化": "DecomposeAndConvertLatex",
|
||||
"编译Latex": "CompileLatex",
|
||||
"如果您是论文原作者": "If you are the original author of the paper",
|
||||
"正在编译对比PDF": "Compiling the comparison PDF",
|
||||
"将 \\include 命令转换为 \\input 命令": "Converting the \\include command to the \\input command",
|
||||
"取评分最高者返回": "Returning the highest-rated one",
|
||||
"不要修改!! 高危设置!通过修改此设置": "Do not modify!! High-risk setting! By modifying this setting",
|
||||
"Tex源文件缺失!": "Tex source file is missing!",
|
||||
"6.25 加入判定latex模板的代码": "Added code to determine the latex template on June 25",
|
||||
"正在精细切分latex文件": "Finely splitting the latex file",
|
||||
"获取response失败": "Failed to get response",
|
||||
"手动指定语言": "Manually specify the language",
|
||||
"输入arxivID": "Enter arxivID",
|
||||
"对输入的word文档进行摘要生成": "Generate a summary of the input word document",
|
||||
"将指定目录下的PDF文件从英文翻译成中文": "Translate PDF files from English to Chinese in the specified directory",
|
||||
"如果分析错误": "If the analysis is incorrect",
|
||||
"尝试第": "Try the",
|
||||
"用户填3": "User fills in 3",
|
||||
"请在此处追加更细致的矫错指令": "Please append more detailed correction instructions here",
|
||||
"为了防止大语言模型的意外谬误产生扩散影响": "To prevent the accidental spread of errors in large language models",
|
||||
"前面是中文冒号": "The colon before is in Chinese",
|
||||
"内含已经翻译的Tex文档": "Contains a Tex document that has been translated",
|
||||
"成功啦": "Success!",
|
||||
"刷新页面即可以退出UpdateKnowledgeArchive模式": "Refresh the page to exit UpdateKnowledgeArchive mode",
|
||||
"或者不在环境变量PATH中": "Or not in the environment variable PATH",
|
||||
"--读取文件": "--Read the file",
|
||||
"才能继续下面的步骤": "To continue with the next steps",
|
||||
"代理数据解析失败": "Proxy data parsing failed",
|
||||
"详见项目主README.md": "See the main README.md of the project for details",
|
||||
"临时存储用于调试": "Temporarily stored for debugging",
|
||||
"屏蔽空行和太短的句子": "Filter out empty lines and sentences that are too short",
|
||||
"gpt 多线程请求": "GPT multi-threaded request",
|
||||
"编译已经开始": "Compilation has started",
|
||||
"无法找到一个主Tex文件": "Cannot find a main Tex file",
|
||||
"修复括号": "Fix parentheses",
|
||||
"请您不要删除或修改这行警告": "Please do not delete or modify this warning",
|
||||
"请登录OpenAI查看详情 https": "Please log in to OpenAI to view details at https",
|
||||
"调用函数": "Call a function",
|
||||
"请查看终端的输出或耐心等待": "Please check the output in the terminal or wait patiently",
|
||||
"LatexEnglishCorrection+高亮修正位置": "Latex English correction + highlight correction position",
|
||||
"行": "line",
|
||||
"Newbing 请求失败": "Newbing request failed",
|
||||
"转化PDF编译是否成功": "Check if the conversion to PDF and compilation were successful",
|
||||
"建议更换代理协议": "Recommend changing the proxy protocol",
|
||||
"========================================= 插件主程序1 =====================================================": "========================================= Plugin Main Program 1 =====================================================",
|
||||
"终端": "terminal",
|
||||
"请先上传文件素材": "Please upload file materials first",
|
||||
"前面是中文逗号": "There is a Chinese comma in front",
|
||||
"请尝试把以下指令复制到高级参数区": "Please try copying the following instructions to the advanced parameters section",
|
||||
"翻译-": "Translation -",
|
||||
"请耐心等待": "Please be patient",
|
||||
"将前后断行符脱离": "Remove line breaks before and after",
|
||||
"json等": "JSON, etc.",
|
||||
"生成中文PDF": "Generate Chinese PDF",
|
||||
"用红色标注处保留区": "Use red color to highlight the reserved area",
|
||||
"对比PDF编译是否成功": "Compare if the PDF compilation was successful",
|
||||
"回答完问题后": "After answering the question",
|
||||
"其他操作系统表现未知": "Unknown performance on other operating systems",
|
||||
"-构建知识库": "Build knowledge base",
|
||||
"还原原文": "Restore original text",
|
||||
"或者重启之后再度尝试": "Or try again after restarting",
|
||||
"免费": "Free",
|
||||
"仅在Windows系统进行了测试": "Tested only on Windows system",
|
||||
"欢迎加REAME中的QQ联系开发者": "Feel free to contact the developer via QQ in REAME",
|
||||
"当前知识库内的有效文件": "Valid files in the current knowledge base",
|
||||
"您可以到Github Issue区": "You can go to the Github Issue area",
|
||||
"刷新Gradio前端界面": "Refresh the Gradio frontend interface",
|
||||
"吸收title与作者以上的部分": "Include the title and the above part of the author",
|
||||
"给出一些判定模板文档的词作为扣分项": "Provide some words in the template document as deduction items",
|
||||
"--读取参数": "-- Read parameters",
|
||||
"然后进行问答": "And then perform question-answering",
|
||||
"根据自然语言执行插件命令": "Execute plugin commands based on natural language",
|
||||
"*{\\scriptsize\\textbf{警告": "*{\\scriptsize\\textbf{Warning",
|
||||
"但请查收结果": "But please check the results",
|
||||
"翻译内容可靠性无保障": "No guarantee of translation accuracy",
|
||||
"寻找主文件": "Find the main file",
|
||||
"消耗时间的函数": "Time-consuming function",
|
||||
"当前语言模型温度设定": "Current language model temperature setting",
|
||||
"这需要一段时间计算": "This requires some time to calculate",
|
||||
"为啥chatgpt会把cite里面的逗号换成中文逗号呀": "Why does ChatGPT change commas inside 'cite' to Chinese commas?",
|
||||
"发现已经存在翻译好的PDF文档": "Found an already translated PDF document",
|
||||
"待提取的知识库名称id": "Knowledge base name ID to be extracted",
|
||||
"文本碎片重组为完整的tex片段": "Reassemble text fragments into complete tex fragments",
|
||||
"注意事项": "Notes",
|
||||
"参数说明": "Parameter description",
|
||||
"或代理节点": "Or proxy node",
|
||||
"构建知识库": "Building knowledge base",
|
||||
"报错信息如下. 如果是与网络相关的问题": "Error message as follows. If it is related to network issues",
|
||||
"功能描述": "Function description",
|
||||
"禁止移除或修改此警告": "Removal or modification of this warning is prohibited",
|
||||
"Arixv翻译": "Arixv translation",
|
||||
"读取优先级": "Read priority",
|
||||
"包含documentclass关键字": "Contains the documentclass keyword",
|
||||
"根据文本使用GPT模型生成相应的图像": "Generate corresponding images using GPT model based on the text",
|
||||
"图像生成所用到的提示文本": "Prompt text used for image generation",
|
||||
"Your account is not active. OpenAI以账户失效为由": "Your account is not active. OpenAI states that it is due to account expiration",
|
||||
"快捷的调试函数": "Convenient debugging function",
|
||||
"在多Tex文档中": "In multiple Tex documents",
|
||||
"因此选择GenerateImage函数": "Therefore, choose the GenerateImage function",
|
||||
"当前工作路径为": "The current working directory is",
|
||||
"实际得到格式": "Obtained format in reality",
|
||||
"这段代码定义了一个名为TempProxy的空上下文管理器": "This code defines an empty context manager named TempProxy",
|
||||
"吸收其他杂项": "Absorb other miscellaneous items",
|
||||
"请输入要翻译成哪种语言": "Please enter which language to translate into",
|
||||
"的单词": "of the word",
|
||||
"正在尝试自动安装": "Attempting automatic installation",
|
||||
"如果有必要": "If necessary",
|
||||
"开始下载": "Start downloading",
|
||||
"项目Github地址 \\url{https": "Project GitHub address \\url{https",
|
||||
"将根据报错信息修正tex源文件并重试": "The Tex source file will be corrected and retried based on the error message",
|
||||
"发送至azure openai api": "Send to Azure OpenAI API",
|
||||
"吸收匿名公式": "Absorb anonymous formulas",
|
||||
"用该压缩包+ConversationHistoryArchive进行反馈": "Provide feedback using the compressed package + ConversationHistoryArchive",
|
||||
"需要特殊依赖": "Requires special dependencies",
|
||||
"还原部分原文": "Restore part of the original text",
|
||||
"构建完成": "Build completed",
|
||||
"解析arxiv网址失败": "Failed to parse arXiv URL",
|
||||
"输入问题后点击该插件": "Click the plugin after entering the question",
|
||||
"请求子进程": "Requesting subprocess",
|
||||
"请务必用 pip install -r requirements.txt 指令安装依赖": "Please make sure to install the dependencies using the 'pip install -r requirements.txt' command",
|
||||
"如果程序停顿5分钟以上": "If the program pauses for more than 5 minutes",
|
||||
"转化PDF编译已经成功": "Conversion to PDF compilation was successful",
|
||||
"虽然PDF生成失败了": "Although PDF generation failed",
|
||||
"分析上述回答": "Analyze the above answer",
|
||||
"吸收在42行以内的begin-end组合": "Absorb the begin-end combination within 42 lines",
|
||||
"推荐http": "Recommend http",
|
||||
"Latex没有安装": "Latex is not installed",
|
||||
"用latex编译为PDF对修正处做高亮": "Compile to PDF using LaTeX and highlight the corrections",
|
||||
"reverse 操作必须放在最后": "'reverse' operation must be placed at the end",
|
||||
"AZURE OPENAI API拒绝了请求": "AZURE OPENAI API rejected the request",
|
||||
"该项目的Latex主文件是": "The main LaTeX file of this project is",
|
||||
"You are associated with a deactivated account. OpenAI以账户失效为由": "You are associated with a deactivated account. OpenAI considers it as an account expiration",
|
||||
"它*必须*被包含在AVAIL_LLM_MODELS列表中": "It *must* be included in the AVAIL_LLM_MODELS list",
|
||||
"未知指令": "Unknown command",
|
||||
"尝试执行Latex指令失败": "Failed to execute the LaTeX command",
|
||||
"摘要生成后的文档路径": "Path of the document after summary generation",
|
||||
"GPT结果已输出": "GPT result has been outputted",
|
||||
"使用Newbing": "Using Newbing",
|
||||
"其他模型转化效果未知": "Unknown conversion effect of other models",
|
||||
"P.S. 但愿没人把latex模板放在里面传进来": "P.S. Hopefully, no one passes a LaTeX template in it",
|
||||
"定位主Latex文件": "Locate the main LaTeX file",
|
||||
"后面是英文冒号": "English colon follows",
|
||||
"文档越长耗时越长": "The longer the document, the longer it takes.",
|
||||
"压缩包": "Compressed file",
|
||||
"但通常不会出现在正文": "But usually does not appear in the body.",
|
||||
"正在预热文本向量化模组": "Preheating text vectorization module",
|
||||
"5刀": "5 dollars",
|
||||
"提问吧! 但注意": "Ask questions! But be careful",
|
||||
"发送至AZURE OPENAI API": "Send to AZURE OPENAI API",
|
||||
"请仔细鉴别并以原文为准": "Please carefully verify and refer to the original text",
|
||||
"如果需要使用AZURE 详情请见额外文档 docs\\use_azure.md": "If you need to use AZURE, please refer to the additional document docs\\use_azure.md for details",
|
||||
"使用正则表达式查找半行注释": "Use regular expressions to find inline comments",
|
||||
"只有第二步成功": "Only the second step is successful",
|
||||
"P.S. 顺便把CTEX塞进去以支持中文": "P.S. By the way, include CTEX to support Chinese",
|
||||
"安装方法https": "Installation method: https",
|
||||
"则跳过GPT请求环节": "Then skip the GPT request process",
|
||||
"请切换至“UpdateKnowledgeArchive”插件进行知识库访问": "Please switch to the 'UpdateKnowledgeArchive' plugin for knowledge base access",
|
||||
"=================================== 工具函数 ===============================================": "=================================== Utility functions ===============================================",
|
||||
"填入azure openai api的密钥": "Fill in the Azure OpenAI API key",
|
||||
"上传Latex压缩包": "Upload LaTeX compressed file",
|
||||
"远程云服务器部署": "Deploy to remote cloud server",
|
||||
"用黑色标注转换区": "Use black color to annotate the conversion area",
|
||||
"音频文件的路径": "Path to the audio file",
|
||||
"必须包含documentclass": "Must include documentclass",
|
||||
"再列出用户可能提出的三个问题": "List three more questions that the user might ask",
|
||||
"根据需要切换prompt": "Switch the prompt as needed",
|
||||
"将文件复制一份到下载区": "Make a copy of the file in the download area",
|
||||
"次编译": "Second compilation",
|
||||
"Latex文件融合完成": "LaTeX file merging completed",
|
||||
"返回": "Return",
|
||||
"后面是英文逗号": "Comma after this",
|
||||
"对不同latex源文件扣分": "Deduct points for different LaTeX source files",
|
||||
"失败啦": "Failed",
|
||||
"编译BibTex": "Compile BibTeX",
|
||||
"Linux下必须使用Docker安装": "Must install using Docker on Linux",
|
||||
"报错信息": "Error message",
|
||||
"删除或修改歧义文件": "Delete or modify ambiguous files",
|
||||
"-预热文本向量化模组": "- Preheating text vectorization module",
|
||||
"将每次对话记录写入Markdown格式的文件中": "Write each conversation record into a file in Markdown format",
|
||||
"其他类型文献转化效果未知": "Unknown conversion effect for other types of literature",
|
||||
"获取线程锁": "Acquire thread lock",
|
||||
"使用英文": "Use English",
|
||||
"如果存在调试缓存文件": "If there is a debug cache file",
|
||||
"您需要首先调用构建知识库": "You need to call the knowledge base building first",
|
||||
"原始PDF编译是否成功": "Whether the original PDF compilation is successful",
|
||||
"生成 azure openai api请求": "Generate Azure OpenAI API requests",
|
||||
"正在编译PDF": "Compiling PDF",
|
||||
"仅调试": "Debug only",
|
||||
"========================================= 插件主程序2 =====================================================": "========================================= Plugin Main Program 2 =====================================================",
|
||||
"多线程翻译开始": "Multithreaded translation begins",
|
||||
"出问题了": "There is a problem",
|
||||
"版权归原文作者所有": "Copyright belongs to the original author",
|
||||
"当前大语言模型": "Current large language model",
|
||||
"目前对机器学习类文献转化效果最好": "Currently, the best conversion effect for machine learning literature",
|
||||
"这个paper有个input命令文件名大小写错误!": "This paper has an input command with a filename case error!",
|
||||
"期望格式例如": "Expected format, for example",
|
||||
"解决部分词汇翻译不准确的问题": "Resolve the issue of inaccurate translation for some terms",
|
||||
"待注入的知识库名称id": "Name/ID of the knowledge base to be injected",
|
||||
"精细切分latex文件": "Fine-grained segmentation of LaTeX files",
|
||||
"永远给定None": "Always given None",
|
||||
"work_folder = Latex预处理": "work_folder = LaTeX preprocessing",
|
||||
"请直接去该路径下取回翻译结果": "Please directly go to the path to retrieve the translation results",
|
||||
"寻找主tex文件": "Finding the main .tex file",
|
||||
"模型参数": "Model parameters",
|
||||
"返回找到的第一个": "Return the first one found",
|
||||
"编译转化后的PDF": "Compile the converted PDF",
|
||||
"\\SEAFILE_LOCALŅ03047\\我的资料库\\music\\Akie秋绘-未来轮廓.mp3": "\\SEAFILE_LOCALŅ03047\\My Library\\music\\Akie秋绘-未来轮廓.mp3",
|
||||
"拆分过长的latex片段": "Splitting overly long LaTeX fragments",
|
||||
"没有找到任何可读取文件": "No readable files found",
|
||||
"暗色模式 / 亮色模式": "Dark mode / Light mode",
|
||||
"检测到arxiv文档连接": "Detected arXiv document link",
|
||||
"此插件Windows支持最佳": "This plugin has best support for Windows",
|
||||
"from crazy_functions.虚空终端 import 终端": "from crazy_functions.null_terminal import Terminal",
|
||||
"本地论文翻译": "Local paper translation",
|
||||
"输出html调试文件": "Output HTML debugging file",
|
||||
"以下所有配置也都支持利用环境变量覆写": "All the following configurations can also be overridden using environment variables",
|
||||
"PDF文件所在的路径": "Path of the PDF file",
|
||||
"也是可读的": "It is also readable",
|
||||
"将消耗较长时间下载中文向量化模型": "Downloading Chinese vectorization model will take a long time",
|
||||
"环境变量配置格式见docker-compose.yml": "See docker-compose.yml for the format of environment variable configuration",
|
||||
"编译文献交叉引用": "Compile bibliographic cross-references",
|
||||
"默认为default": "Default is 'default'",
|
||||
"或者使用此插件继续上传更多文件": "Or use this plugin to continue uploading more files",
|
||||
"该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成": "This PDF is generated by the GPT-Academic open-source project using a large language model + LaTeX translation plugin",
|
||||
"使用latexdiff生成论文转化前后对比": "Use latexdiff to generate before and after comparison of paper transformation",
|
||||
"正在编译PDF文档": "Compiling PDF document",
|
||||
"读取config.py文件中关于AZURE OPENAI API的信息": "Read the information about AZURE OPENAI API from the config.py file",
|
||||
"配置教程&视频教程": "Configuration tutorial & video tutorial",
|
||||
"临时地启动代理网络": "Temporarily start proxy network",
|
||||
"临时地激活代理网络": "Temporarily activate proxy network",
|
||||
"功能尚不稳定": "Functionality is unstable",
|
||||
"默认为Chinese": "Default is Chinese",
|
||||
"请查收结果": "Please check the results",
|
||||
"将 chatglm 直接对齐到 chatglm2": "Align chatglm directly to chatglm2",
|
||||
"中读取数据构建知识库": "Build a knowledge base by reading data in",
|
||||
"用于给一小段代码上代理": "Used to proxy a small piece of code",
|
||||
"分析结果": "Analysis results",
|
||||
"依赖不足": "Insufficient dependencies",
|
||||
"Markdown翻译": "Markdown translation",
|
||||
"除非您是论文的原作者": "Unless you are the original author of the paper",
|
||||
"test_LangchainKnowledgeBase读取": "test_LangchainKnowledgeBase read",
|
||||
"将多文件tex工程融合为一个巨型tex": "Merge multiple tex projects into one giant tex",
|
||||
"吸收iffalse注释": "Absorb iffalser comments",
|
||||
"您接下来不能再使用其他插件了": "You can no longer use other plugins next",
|
||||
"正在构建知识库": "Building knowledge base",
|
||||
"需Latex": "Requires Latex",
|
||||
"即找不到": "That is not found",
|
||||
"保证括号正确": "Ensure parentheses are correct",
|
||||
"= 2 通过一些Latex模板中常见": "= 2 through some common Latex templates",
|
||||
"请立即终止程序": "Please terminate the program immediately",
|
||||
"解压失败! 需要安装pip install rarfile来解压rar文件": "Decompression failed! Install 'pip install rarfile' to decompress rar files",
|
||||
"请在此处给出自定义翻译命令": "Please provide custom translation command here",
|
||||
"解压失败! 需要安装pip install py7zr来解压7z文件": "Decompression failed! Install 'pip install py7zr' to decompress 7z files",
|
||||
"执行错误": "Execution error",
|
||||
"目前仅支持GPT3.5/GPT4": "Currently only supports GPT3.5/GPT4",
|
||||
"P.S. 顺便把Latex的注释去除": "P.S. Also remove comments from Latex",
|
||||
"写出文件": "Write out the file",
|
||||
"当前报错的latex代码处于第": "The current error in the LaTeX code is on line",
|
||||
"主程序即将开始": "Main program is about to start",
|
||||
"详情信息见requirements.txt": "See details in requirements.txt",
|
||||
"释放线程锁": "Release thread lock",
|
||||
"由于最为关键的转化PDF编译失败": "Due to the critical failure of PDF conversion and compilation",
|
||||
"即将退出": "Exiting soon",
|
||||
"尝试下载": "Attempting to download",
|
||||
"删除整行的空注释": "Remove empty comments from the entire line",
|
||||
"也找不到": "Not found either",
|
||||
"从一批文件": "From a batch of files",
|
||||
"编译结束": "Compilation finished",
|
||||
"调用缓存": "Calling cache",
|
||||
"只有GenerateImage和生成图像相关": "Only GenerateImage and image generation related",
|
||||
"待处理的word文档路径": "Path of the word document to be processed",
|
||||
"是否在提交时自动清空输入框": "Whether to automatically clear the input box upon submission",
|
||||
"检查结果": "Check the result",
|
||||
"生成时间戳": "Generate a timestamp",
|
||||
"编译原始PDF": "Compile the original PDF",
|
||||
"填入ENGINE": "Fill in ENGINE",
|
||||
"填入api版本": "Fill in the API version",
|
||||
"中文Bing版": "Chinese Bing version",
|
||||
"当前支持的格式包括": "Currently supported formats include",
|
||||
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
|
||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
|
||||
"语音助手": "VoiceAssistant",
|
||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||
"chatglm微调工具": "ChatGLMFineTuningTool",
|
||||
"启动微调": "StartFineTuning",
|
||||
"请讲话": "Please speak",
|
||||
"正在听您讲话": "Listening to you",
|
||||
"对这个人外貌、身处的环境、内心世界、过去经历进行描写": "Describe the appearance, environment, inner world, and past experiences of this person",
|
||||
"请向下翻": "Please scroll down",
|
||||
"实时音频采集": "Real-time audio collection",
|
||||
"找不到": "Not found",
|
||||
"在一个异步线程中采集音频": "Collect audio in an asynchronous thread",
|
||||
"azure和api2d请求源": "Azure and API2D request source",
|
||||
"等待ChatGLMFT响应中": "Waiting for ChatGLMFT response",
|
||||
"如果使用ChatGLM2微调模型": "If using ChatGLM2 fine-tuning model",
|
||||
"把文件复制过去": "Copy the file over",
|
||||
"可选": "Optional",
|
||||
"ChatGLMFT响应异常": "ChatGLMFT response exception",
|
||||
"上传本地文件/压缩包供函数插件调用": "Upload local files/compressed packages for function plugin calls",
|
||||
"例如 f37f30e0f9934c34a992f6f64f7eba4f": "For example, f37f30e0f9934c34a992f6f64f7eba4f",
|
||||
"正在等您说完问题": "Waiting for you to finish the question",
|
||||
"解除插件状态": "Release plugin status",
|
||||
"详情见https": "See details at https",
|
||||
"避免线程阻塞": "Avoid thread blocking",
|
||||
"先上传数据集": "Upload dataset first",
|
||||
"请直接提交即可": "Submit directly",
|
||||
"Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数": "Call ChatGLMFT fail, cannot load ChatGLMFT parameters",
|
||||
"插件可读取“输入区”文本/路径作为参数": "The plugin can read text/path in the input area as parameters",
|
||||
"给出指令": "Give instructions",
|
||||
"暂不提交": "Do not submit for now",
|
||||
"如 绿帽子*深蓝色衬衫*黑色运动裤": "E.g. green hat * dark blue shirt * black sports pants",
|
||||
"阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https": "Aliyun real-time speech recognition has high configuration difficulty and is only recommended for advanced users. Refer to https",
|
||||
"ChatGLMFT尚未加载": "ChatGLMFT has not been loaded yet",
|
||||
"输入 clear 以清空对话历史": "Enter 'clear' to clear the conversation history",
|
||||
"可以将自身的状态存储到cookie中": "You can store your own status in cookies",
|
||||
"填入你亲手写的部署名": "Fill in the deployment name you wrote by yourself",
|
||||
"该选项即将被弃用": "This option will be deprecated soon",
|
||||
"代理网络配置": "Proxy network configuration",
|
||||
"每秒采样数量": "Number of samples per second",
|
||||
"使用时": "When using",
|
||||
"想象一个穿着者": "Imagine a wearer",
|
||||
"如果已经存在": "If it already exists",
|
||||
"例如您可以将以下命令复制到下方": "For example, you can copy the following command below",
|
||||
"正在锁定插件": "Locking plugin",
|
||||
"使用": "Use",
|
||||
"读 docs\\use_azure.md": "Read docs\\use_azure.md",
|
||||
"开始最终总结": "Start final summary",
|
||||
"openai的官方KEY需要伴随组织编码": "Openai's official KEY needs to be accompanied by organizational code",
|
||||
"将子线程的gpt结果写入chatbot": "Write the GPT result of the sub-thread into the chatbot",
|
||||
"Arixv论文精细翻译": "Fine translation of Arixv paper",
|
||||
"开始接收chatglmft的回复": "Start receiving replies from chatglmft",
|
||||
"请先将.doc文档转换为.docx文档": "Please convert .doc documents to .docx documents first",
|
||||
"避免多用户干扰": "Avoid multiple user interference",
|
||||
"清空label": "Clear label",
|
||||
"解除插件锁定": "Unlock plugin",
|
||||
"请以以下方式load模型!!!": "Please load the model in the following way!!!",
|
||||
"没给定指令": "No instruction given",
|
||||
"100字以内": "Within 100 words",
|
||||
"获取关键词": "Get keywords",
|
||||
"欢迎使用 MOSS 人工智能助手!": "Welcome to use MOSS AI assistant!",
|
||||
"音频助手": "Audio assistant",
|
||||
"上传Latex项目": "Upload Latex project",
|
||||
"对话助手函数插件": "Chat assistant function plugin",
|
||||
"如果一句话小于7个字": "If a sentence is less than 7 words",
|
||||
"640个字节为一组": "640 bytes per group",
|
||||
"右下角更换模型菜单中可切换openai": "OpenAI can be switched in the model menu in the lower right corner",
|
||||
"双手离开鼠标键盘吧": "Take your hands off the mouse and keyboard",
|
||||
"先删除": "Delete first",
|
||||
"如果要使用ChatGLMFT": "If you want to use ChatGLMFT",
|
||||
"例如 RoPlZrM88DnAFkZK": "For example, RoPlZrM88DnAFkZK",
|
||||
"提取总结": "Extract summary",
|
||||
"ChatGLMFT消耗大量的内存": "ChatGLMFT consumes a lot of memory",
|
||||
"格式如org-123456789abcdefghijklmno的": "In the format of org-123456789abcdefghijklmno",
|
||||
"在执行完成之后": "After execution is complete",
|
||||
"此处填API密钥": "Fill in the API key here",
|
||||
"chatglmft 没有 sys_prompt 接口": "ChatGLMFT does not have a sys_prompt interface",
|
||||
"用第二人称": "Use the second person",
|
||||
"Chuanhu-Small-and-Beautiful主题": "Chuanhu-Small-and-Beautiful theme",
|
||||
"请检查ALIYUN_TOKEN和ALIYUN_APPKEY是否过期": "Please check if ALIYUN_TOKEN and ALIYUN_APPKEY have expired",
|
||||
"还需要填写组织": "You also need to fill in the organization",
|
||||
"会直接转到该函数": "Will directly jump to the function",
|
||||
"初始化插件状态": "Initializing plugin status",
|
||||
"插件锁定中": "Plugin is locked",
|
||||
"如果这里报错": "If there is an error here",
|
||||
"本地Latex论文精细翻译": "Local Latex paper fine translation",
|
||||
"极少数情况下": "In very few cases",
|
||||
"首先你在中文语境下通读整篇论文": "First, read the entire paper in a Chinese context",
|
||||
"点击“停止”键可终止程序": "Click the 'Stop' button to terminate the program",
|
||||
"建议排查": "Suggested troubleshooting",
|
||||
"没有阿里云语音识别APPKEY和TOKEN": "No Aliyun voice recognition APPKEY and TOKEN",
|
||||
"避免遗忘导致死锁": "Avoid forgetting to cause deadlock",
|
||||
"第一次调用": "First call",
|
||||
"解决插件锁定时的界面显示问题": "Solve the interface display problem when the plugin is locked",
|
||||
"初始化音频采集线程": "Initialize audio capture thread",
|
||||
"找不到微调模型检查点": "Cannot find fine-tuning model checkpoint",
|
||||
"色彩主体": "Color theme",
|
||||
"上传文件自动修正路径": "Automatically correct the path when uploading files",
|
||||
"将文件添加到chatbot cookie中": "Add files to chatbot cookie",
|
||||
"正常状态": "Normal state",
|
||||
"建议使用英文单词": "Suggest using English words",
|
||||
"Aliyun音频服务异常": "Aliyun audio service exception",
|
||||
"格式如org-xxxxxxxxxxxxxxxxxxxxxxxx": "Format like org-xxxxxxxxxxxxxxxxxxxxxxxx",
|
||||
"GPT 学术优化": "GPT academic optimization",
|
||||
"要求": "Requirement",
|
||||
"赋予插件状态": "Assign plugin status",
|
||||
"等待GPT响应": "Waiting for GPT response",
|
||||
"MOSS can understand and communicate fluently in the language chosen by the user such as English and 中文. MOSS can perform any language-based tasks.": "MOSS can understand and communicate fluently in the language chosen by the user such as English and Chinese. MOSS can perform any language-based tasks.",
|
||||
"我将为您查找相关壁纸": "I will search for related wallpapers for you",
|
||||
"当下一次用户提交时": "When the next user submits",
|
||||
"赋予插件锁定 锁定插件回调路径": "Assign plugin lock, lock plugin callback path",
|
||||
"处理个别特殊插件的锁定状态": "Handle the lock status of individual special plugins",
|
||||
"add gpt task 创建子线程请求gpt": "Add GPT task, create sub-thread to request GPT",
|
||||
"等待用户的再次调用": "Waiting for the user to call again",
|
||||
"只读": "Read-only",
|
||||
"用于灵活调整复杂功能的各种参数": "Various parameters used to flexibly adjust complex functions",
|
||||
"输入 stop 以终止对话": "Enter stop to terminate the conversation",
|
||||
"缺少ChatGLMFT的依赖": "Missing dependency of ChatGLMFT",
|
||||
"找 API_ORG 设置项": "Find API_ORG setting item",
|
||||
"检查config中的AVAIL_LLM_MODELS选项": "Check the AVAIL_LLM_MODELS option in config",
|
||||
"对这个人外貌、身处的环境、内心世界、人设进行描写": "Describe the appearance, environment, inner world, and character of this person.",
|
||||
"请输入关键词": "Please enter a keyword.",
|
||||
"!!!如果需要运行量化版本": "!!! If you need to run the quantitative version.",
|
||||
"为每一位访问的用户赋予一个独一无二的uuid编码": "Assign a unique uuid code to each visiting user.",
|
||||
"由于提问含不合规内容被Azure过滤": "Due to Azure filtering out questions containing non-compliant content.",
|
||||
"欢迎使用 MOSS 人工智能助手!输入内容即可进行对话": "Welcome to use MOSS AI assistant! Enter the content to start the conversation.",
|
||||
"记住当前的label": "Remember the current label.",
|
||||
"不能正常加载ChatGLMFT的参数!": "Cannot load ChatGLMFT parameters normally!",
|
||||
"建议直接在API_KEY处填写": "It is recommended to fill in directly at API_KEY."
|
||||
}
|
||||
@ -150,26 +150,7 @@
|
||||
"使用中文回答我的问题": "使用中文回答我的問題",
|
||||
"备份一个文件": "備份一個文件",
|
||||
"未知": "未知",
|
||||
"如.md": "#",
|
||||
"**输入参数说明**": "#",
|
||||
"如果这裡拋出異常": "#",
|
||||
"多線程操作已經開始": "#",
|
||||
"備份和下載": "#",
|
||||
"新版本可用": "#",
|
||||
"將要忽略匹配的文件後綴": "#",
|
||||
"可調節線程池的大小避免openai的流量限制錯誤": "#",
|
||||
"使用Unsplash API": "#",
|
||||
"ChatGPT綜合": "#",
|
||||
"從摘要中提取高價值信息": "#",
|
||||
"借助此參數": "#",
|
||||
"知乎": "#",
|
||||
"其他錯誤": "#",
|
||||
"退出": "#",
|
||||
"對話歷史寫入": "#",
|
||||
"問詢記錄": "#",
|
||||
"依次訪問網頁": "#",
|
||||
"NewBing響應異常": "#",
|
||||
"jittorllms尚未加載": "#",
|
||||
"其他錯誤": "其他錯誤",
|
||||
"等待NewBing响应": "等待NewBing回應",
|
||||
"找不到任何CSharp文件": "找不到任何CSharp檔案",
|
||||
"插件demo": "插件範例",
|
||||
@ -300,12 +281,12 @@
|
||||
"上傳本地文件可供紅色函數插件調用": "上傳本地文件供紅色函數插件調用",
|
||||
"生成圖像": "生成圖像",
|
||||
"追加歷史": "追加歷史",
|
||||
"網絡代理狀態": "網路代理狀態",
|
||||
"網絡代理狀態": "網絡代理狀態",
|
||||
"不需要再次轉化": "不需要再次轉換",
|
||||
"帶超時倒計時": "帶有超時倒數計時",
|
||||
"保存當前對話": "儲存目前對話",
|
||||
"等待響應": "等待回應",
|
||||
"依賴檢測通過": "依賴檢查通過",
|
||||
"依賴檢測通過": "依賴檢測通過",
|
||||
"如果要使用ChatGLM": "如果要使用ChatGLM",
|
||||
"對IPynb文件進行解析": "對IPynb檔案進行解析",
|
||||
"先切換模型到openai或api2d": "先切換模型到openai或api2d",
|
||||
@ -411,7 +392,7 @@
|
||||
"中转网址预览": "中轉網址預覽",
|
||||
"自动截断": "自動截斷",
|
||||
"当無法用標點、空行分割時": "當無法用標點、空行分割時",
|
||||
"意外Json結構": "意外的Json結構",
|
||||
"意外Json結構": "意外Json結構",
|
||||
"需要讀取和清理文本的pdf文件路徑": "需要讀取和清理文本的pdf文件路徑",
|
||||
"HotReload的裝飾器函數": "HotReload的裝飾器函數",
|
||||
"chatGPT 分析報告": "chatGPT 分析報告",
|
||||
@ -423,7 +404,7 @@
|
||||
"這個bug沒找到觸發條件": "這個bug沒找到觸發條件",
|
||||
"喚起高級參數輸入區": "喚起高級參數輸入區",
|
||||
"但大部分場合下並不需要修改": "但大部分場合下並不需要修改",
|
||||
"盡量是完整的一個section": "盡量是完整的一個section",
|
||||
"盡量是完整的一個section": "盡量選擇完整的一個章節",
|
||||
"如果OpenAI不響應": "如果OpenAI不響應",
|
||||
"等文本特殊符號轉換為其基本形式來對文本進行歸一化處理": "等文本特殊符號轉換為其基本形式來對文本進行歸一化處理",
|
||||
"你的回答必須簡單明了": "你的回答必須簡單明了",
|
||||
@ -517,7 +498,7 @@
|
||||
"正在提取摘要並下載PDF文檔……": "正在提取摘要並下載PDF文件……",
|
||||
"1. 對原始文本進行歸一化處理": "1. 正規化原始文本",
|
||||
"問題": "問題",
|
||||
"用於基礎的對話功能": "基本對話功能",
|
||||
"用於基礎的對話功能": "用於基礎的對話功能",
|
||||
"獲取設置": "獲取設置",
|
||||
"如果缺少依賴": "如果缺少依賴項",
|
||||
"第6步": "第6步",
|
||||
@ -1111,26 +1092,9 @@
|
||||
"清理规则包括": "清理規則包括",
|
||||
"新版配置": "新版配置",
|
||||
"如果有": "如果有",
|
||||
"高級參數輸入區": "#",
|
||||
"您提供的api-key不滿足要求": "#",
|
||||
"“喂狗”": "#",
|
||||
"有線程鎖": "#",
|
||||
"解析整個CSharp項目": "#",
|
||||
"上下文管理器必須實現兩個方法": "#",
|
||||
"Call MOSS fail 不能正常加載MOSS的參數": "#",
|
||||
"獲取圖片URL": "#",
|
||||
"輸入部分太自由": "#",
|
||||
"Not enough point. API2D賬戶點數不足": "#",
|
||||
"網絡錯誤": "#",
|
||||
"請開始多線程操作": "#",
|
||||
"authors獲取失敗": "#",
|
||||
"、地址": "#",
|
||||
"根據以上分析": "#",
|
||||
"1、英文題目;2、中文題目翻譯;3、作者;4、arxiv公開": "#",
|
||||
"一些普通功能模塊": "#",
|
||||
"參數簡單": "#",
|
||||
"具備以下功能": "#",
|
||||
"優先級2. 獲取config_private中的配置": "#",
|
||||
"Call MOSS fail 不能正常加載MOSS的參數": "Call MOSS fail 不能正常加載MOSS的參數",
|
||||
"根據以上分析": "根據以上分析",
|
||||
"一些普通功能模塊": "一些普通功能模塊",
|
||||
"汇总报告如何远程获取": "如何遠程獲取匯總報告",
|
||||
"热更新prompt": "熱更新提示",
|
||||
"插件调度异常": "插件調度異常",
|
||||
@ -1191,26 +1155,9 @@
|
||||
"函数插件区": "函數插件區",
|
||||
"*** API_KEY 导入成功": "*** API_KEY 導入成功",
|
||||
"请对下面的程序文件做一个概述文件名是": "請對下面的程序文件做一個概述文件名是",
|
||||
"替換跨行的連詞": "#",
|
||||
"內容太長了都會觸發token數量溢出的錯誤": "#",
|
||||
"尚未完成全部響應": "#",
|
||||
"生成帶有段落標籤的HTML代碼": "#",
|
||||
"函數熱更新是指在不停止程序運行的情況下": "#",
|
||||
"將Unsplash API中的PUT_YOUR_QUERY_HERE替換成描述該事件的一個最重要的單詞": "#",
|
||||
"沒有提供高級參數功能說明": "#",
|
||||
"條": "#",
|
||||
"請刷新界面重試": "#",
|
||||
"和openai的連接容易斷掉": "#",
|
||||
"使用 Unsplash API": "#",
|
||||
"完成情況": "#",
|
||||
"迭代上一次的結果": "#",
|
||||
"每個線程都要“餵狗”": "#",
|
||||
"最多收納多少個網頁的結果": "#",
|
||||
"日": "#",
|
||||
"第4步": "#",
|
||||
"找不到任何python文件": "#",
|
||||
"經過充分測試": "#",
|
||||
"缺少的依賴": "#",
|
||||
"內容太長了都會觸發token數量溢出的錯誤": "內容太長了都會觸發token數量溢出的錯誤",
|
||||
"沒有提供高級參數功能說明": "未提供高級參數功能說明",
|
||||
"和openai的連接容易斷掉": "和openai的連接容易斷掉",
|
||||
"分组+迭代处理": "分組+迭代處理",
|
||||
"安装Newbing的依赖": "安裝Newbing的依賴",
|
||||
"批": "批",
|
||||
@ -1511,5 +1458,760 @@
|
||||
"包括": "包括",
|
||||
"或者": "或者",
|
||||
"并执行函数的新版本": "並執行函數的新版本",
|
||||
"论文": "論文"
|
||||
"论文": "論文",
|
||||
"解析一个Golang项目": "ParseAGolangProject",
|
||||
"Latex英文纠错": "LatexEnglishCorrection",
|
||||
"连接bing搜索回答问题": "ConnectToBingSearchForAnswer",
|
||||
"联网的ChatGPT_bing版": "ChatGPT_BingVersionOnline",
|
||||
"总结音视频": "SummarizeAudioAndVideo",
|
||||
"动画生成": "GenerateAnimations",
|
||||
"数学动画生成manim": "GenerateMathematicalAnimationsWithManim",
|
||||
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
|
||||
"知识库问答": "KnowledgeBaseQA",
|
||||
"Langchain知识库": "LangchainKnowledgeBase",
|
||||
"读取知识库作答": "ReadKnowledgeBaseAndAnswerQuestions",
|
||||
"交互功能模板函数": "InteractiveFunctionTemplateFunctions",
|
||||
"交互功能函数模板": "InteractiveFunctionFunctionTemplates",
|
||||
"Latex英文纠错加PDF对比": "LatexEnglishCorrectionWithPDFComparison",
|
||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateLatexToChineseAndRecompilePDF",
|
||||
"语音助手": "VoiceAssistant",
|
||||
"微调数据集生成": "FineTuneDatasetGeneration",
|
||||
"chatglm微调工具": "ChatGLM_FineTuningTool",
|
||||
"启动微调": "StartFineTuning",
|
||||
"sprint亮靛": "SprintLiangDian",
|
||||
"寻找Latex主文件": "FindLatexMainFile",
|
||||
"专业词汇声明": "ProfessionalTerminologyDeclaration",
|
||||
"Latex精细分解与转化": "LatexFineDecompositionAndConversion",
|
||||
"编译Latex": "CompileLatex",
|
||||
"正在等您说完问题": "正在等您說完問題",
|
||||
"最多同时执行5个": "最多同時執行5個",
|
||||
"将文件复制一份到下载区": "將檔案複製一份到下載區",
|
||||
"您接下来不能再使用其他插件了": "您接下來不能再使用其他插件了",
|
||||
"如 绿帽子*深蓝色衬衫*黑色运动裤": "如 綠帽子*深藍色襯衫*黑色運動褲",
|
||||
"首先你在中文语境下通读整篇论文": "首先您在中文語境下通讀整篇論文",
|
||||
"根据给定的切割时长将音频文件切割成多个片段": "根據給定的切割時長將音訊檔切割成多個片段",
|
||||
"接下来两句话只显示在界面上": "接下來兩句話只顯示在介面上",
|
||||
"清空label": "清空標籤",
|
||||
"正在尝试自动安装": "正在嘗試自動安裝",
|
||||
"MOSS消耗大量的内存": "MOSS消耗大量的記憶體",
|
||||
"如果这里报错": "如果這裡報錯",
|
||||
"其他类型文献转化效果未知": "其他類型文獻轉換效果未知",
|
||||
"ChatGPT综合": "ChatGPT綜合",
|
||||
"音频文件的路径": "音訊檔案的路徑",
|
||||
"执行错误": "執行錯誤",
|
||||
"因此选择GenerateImage函数": "因此選擇GenerateImage函數",
|
||||
"从摘要中提取高价值信息": "從摘要中提取高價值資訊",
|
||||
"使用英文": "使用英文",
|
||||
"是否在提交时自动清空输入框": "是否在提交時自動清空輸入框",
|
||||
"生成数学动画": "生成數學動畫",
|
||||
"正在加载Claude组件": "正在載入Claude元件",
|
||||
"参数说明": "參數說明",
|
||||
"建议排查": "建議排查",
|
||||
"将消耗较长时间下载中文向量化模型": "將消耗較長時間下載中文向量化模型",
|
||||
"test_LangchainKnowledgeBase读取": "test_LangchainKnowledgeBase讀取",
|
||||
"安装Claude的依赖": "安裝Claude的相依性",
|
||||
"以下所有配置也都支持利用环境变量覆写": "以下所有配置也都支持利用環境變數覆寫",
|
||||
"需要被切割的音频文件名": "需要被切割的音頻文件名",
|
||||
"保存当前对话": "保存當前對話",
|
||||
"功能、贡献者": "功能、貢獻者",
|
||||
"Chuanhu-Small-and-Beautiful主题": "Chuanhu-小而美主題",
|
||||
"等待Claude响应": "等待Claude響應",
|
||||
"其他模型转化效果未知": "其他模型轉換效果未知",
|
||||
"版权归原文作者所有": "版權歸原文作者所有",
|
||||
"回答完问题后": "回答完問題後",
|
||||
"请先上传文件素材": "請先上傳文件素材",
|
||||
"上传本地文件/压缩包供函数插件调用": "上傳本地文件/壓縮包供函數插件調用",
|
||||
"P.S. 顺便把Latex的注释去除": "P.S. 順便把Latex的註釋去除",
|
||||
"您提供的api-key不满足要求": "您提供的api-key不滿足要求",
|
||||
"切割音频文件": "切割音頻文件",
|
||||
"对不同latex源文件扣分": "對不同latex源文件扣分",
|
||||
"以下是一篇学术论文的基础信息": "以下是一篇學術論文的基礎信息",
|
||||
"问题": "問題",
|
||||
"待注入的知识库名称id": "待注入的知識庫名稱id",
|
||||
"”的主要内容": "”的主要內容",
|
||||
"获取设置": "獲取設置",
|
||||
"str类型": "str類型",
|
||||
"多线程": "多線程",
|
||||
"尝试执行Latex指令失败": "嘗試執行Latex指令失敗",
|
||||
"然后再写一段英文摘要": "然後再寫一段英文摘要",
|
||||
"段音频的主要内容": "段音頻的主要內容",
|
||||
"临时地激活代理网络": "臨時地激活代理網絡",
|
||||
"网络的远程文件": "網絡的遠程文件",
|
||||
"不能正常加载ChatGLMFT的参数!": "無法正常載入ChatGLMFT的參數!",
|
||||
"正在编译PDF文档": "正在編譯PDF文件",
|
||||
"等待ChatGLMFT响应中": "等待ChatGLMFT回應中",
|
||||
"将": "將",
|
||||
"片段": "片段",
|
||||
"修复括号": "修復括號",
|
||||
"条": "條",
|
||||
"建议直接在API_KEY处填写": "建議直接在API_KEY處填寫",
|
||||
"根据需要切换prompt": "根據需要切換prompt",
|
||||
"使用": "使用",
|
||||
"请输入要翻译成哪种语言": "請輸入要翻譯成哪種語言",
|
||||
"实际得到格式": "實際得到格式",
|
||||
"例如 f37f30e0f9934c34a992f6f64f7eba4f": "例如 f37f30e0f9934c34a992f6f64f7eba4f",
|
||||
"请切换至“KnowledgeBaseQA”插件进行知识库访问": "請切換至“KnowledgeBaseQA”插件進行知識庫訪問",
|
||||
"用户填3": "用戶填3",
|
||||
"远程云服务器部署": "遠程雲服務器部署",
|
||||
"未知指令": "未知指令",
|
||||
"每个线程都要“喂狗”": "每個線程都要“喂狗”",
|
||||
"该项目的Latex主文件是": "該項目的Latex主文件是",
|
||||
"设置OpenAI密钥和模型": "設置OpenAI密鑰和模型",
|
||||
"填入你亲手写的部署名": "填入你親手寫的部署名",
|
||||
"仅调试": "僅調試",
|
||||
"依赖不足": "依賴不足",
|
||||
"右下角更换模型菜单中可切换openai": "右下角更換模型菜單中可切換openai",
|
||||
"解析整个CSharp项目": "解析整個CSharp項目",
|
||||
"唤起高级参数输入区": "喚起高級參數輸入區",
|
||||
"这个bug没找到触发条件": "這個bug沒找到觸發條件",
|
||||
"========================================= 插件主程序2 =====================================================": "========================================= 插件主程序2 =====================================================",
|
||||
"经过充分测试": "經過充分測試",
|
||||
"该文件中主要包含三个函数": "該文件中主要包含三個函數",
|
||||
"您可以到Github Issue区": "您可以到Github Issue區",
|
||||
"避免线程阻塞": "避免線程阻塞",
|
||||
"吸收iffalse注释": "吸收iffalse註釋",
|
||||
"from crazy_functions.虚空终端 import 终端": "from crazy_functions.虛空終端 import 終端",
|
||||
"异步方法": "異步方法",
|
||||
"块元提取": "塊元提取",
|
||||
"Your account is not active. OpenAI以账户失效为由": "您的帳戶未啟用。OpenAI以帳戶失效為由",
|
||||
"还原部分原文": "還原部分原文",
|
||||
"如果要使用Claude": "如果要使用Claude",
|
||||
"把文件复制过去": "把文件複製過去",
|
||||
"解压失败! 需要安装pip install rarfile来解压rar文件": "解壓失敗!需要安裝pip install rarfile來解壓rar文件",
|
||||
"正在锁定插件": "正在鎖定插件",
|
||||
"输入 clear 以清空对话历史": "輸入 clear 以清空對話歷史",
|
||||
"P.S. 但愿没人把latex模板放在里面传进来": "P.S. 但願沒人把latex模板放在裡面傳進來",
|
||||
"实时音频采集": "實時音頻採集",
|
||||
"开始最终总结": "開始最終總結",
|
||||
"拒绝服务": "拒絕服務",
|
||||
"配置教程&视频教程": "配置教程&視頻教程",
|
||||
"所有音频都总结完成了吗": "所有音頻都總結完成了嗎",
|
||||
"返回": "返回",
|
||||
"避免不小心传github被别人看到": "避免不小心傳github被別人看到",
|
||||
"否则将导致每个人的Claude问询历史互相渗透": "否則將導致每個人的Claude問詢歷史互相滲透",
|
||||
"提问吧! 但注意": "提問吧!但注意",
|
||||
"待处理的word文档路径": "待處理的word文檔路徑",
|
||||
"欢迎加REAME中的QQ联系开发者": "歡迎加REAME中的QQ聯繫開發者",
|
||||
"建议暂时不要使用": "建議暫時不要使用",
|
||||
"Latex没有安装": "Latex沒有安裝",
|
||||
"在这里放一些网上搜集的demo": "在這裡放一些網上搜集的demo",
|
||||
"实现消息发送、接收等功能": "實現消息發送、接收等功能",
|
||||
"用于与with语句一起使用": "用於與with語句一起使用",
|
||||
"解压失败! 需要安装pip install py7zr来解压7z文件": "解壓失敗! 需要安裝pip install py7zr來解壓7z文件",
|
||||
"借助此参数": "借助此參數",
|
||||
"判定为数据流的结束": "判定為數據流的結束",
|
||||
"提取文件扩展名": "提取文件擴展名",
|
||||
"GPT结果已输出": "GPT結果已輸出",
|
||||
"读取文件": "讀取文件",
|
||||
"如果OpenAI不响应": "如果OpenAI不響應",
|
||||
"输入部分太自由": "輸入部分太自由",
|
||||
"用于给一小段代码上代理": "用於給一小段代碼上代理",
|
||||
"输入 stop 以终止对话": "輸入 stop 以終止對話",
|
||||
"这个paper有个input命令文件名大小写错误!": "這個paper有個input命令文件名大小寫錯誤!",
|
||||
"等待Claude回复的片段": "等待Claude回復的片段",
|
||||
"开始": "開始",
|
||||
"将根据报错信息修正tex源文件并重试": "將根據報錯信息修正tex源文件並重試",
|
||||
"建议更换代理协议": "建議更換代理協議",
|
||||
"递归地切割PDF文件": "遞歸地切割PDF文件",
|
||||
"读 docs\\use_azure.md": "讀 docs\\use_azure.md",
|
||||
"参数": "參數",
|
||||
"屏蔽空行和太短的句子": "屏蔽空行和太短的句子",
|
||||
"分析上述回答": "分析上述回答",
|
||||
"因为在同一个频道里存在多人使用时历史消息渗透问题": "因為在同一個頻道裡存在多人使用時歷史消息滲透問題",
|
||||
"使用latexdiff生成論文轉化前後對比": "使用latexdiff生成論文轉化前後對比",
|
||||
"檢查結果": "檢查結果",
|
||||
"請在此處追加更細緻的校錯指令": "請在此處追加更細緻的校錯指令",
|
||||
"報告如何遠程獲取": "報告如何遠程獲取",
|
||||
"發現已經存在翻譯好的PDF文檔": "發現已經存在翻譯好的PDF文檔",
|
||||
"插件鎖定中": "插件鎖定中",
|
||||
"正在精細切分latex文件": "正在精細切分latex文件",
|
||||
"數學GenerateAnimations": "數學GenerateAnimations",
|
||||
"上傳文件自動修正路徑": "上傳文件自動修正路徑",
|
||||
"請檢查ALIYUN_TOKEN和ALIYUN_APPKEY是否過期": "請檢查ALIYUN_TOKEN和ALIYUN_APPKEY是否過期",
|
||||
"上傳Latex項目": "上傳LaTeX項目",
|
||||
"Aliyun音頻服務異常": "Aliyun音頻服務異常",
|
||||
"為了防止大語言模型的意外謬誤產生擴散影響": "為了防止大語言模型的意外謬誤產生擴散影響",
|
||||
"調用Claude時": "調用Claude時",
|
||||
"解除插件鎖定": "解除插件鎖定",
|
||||
"暗色模式 / 亮色模式": "暗色模式 / 亮色模式",
|
||||
"只有第二步成功": "只有第二步成功",
|
||||
"分析结果": "分析結果",
|
||||
"用第二人称": "使用第二人稱",
|
||||
"详情见https": "詳情請見https",
|
||||
"记住当前的label": "記住當前的標籤",
|
||||
"当无法用标点、空行分割时": "當無法用標點符號、空行分割時",
|
||||
"如果分析错误": "如果分析錯誤",
|
||||
"如果有必要": "如果有必要",
|
||||
"不要修改!! 高危设置!通过修改此设置": "不要修改!! 高危設置!通過修改此設置",
|
||||
"ChatGLMFT消耗大量的内存": "ChatGLMFT消耗大量的內存",
|
||||
"摘要生成后的文档路径": "摘要生成後的文件路徑",
|
||||
"对全文进行概括": "對全文進行概述",
|
||||
"LLM_MODEL是默认选中的模型": "LLM_MODEL是默認選中的模型",
|
||||
"640个字节为一组": "640個字節為一組",
|
||||
"获取关键词": "獲取關鍵詞",
|
||||
"解析为简体中文": "解析為簡體中文",
|
||||
"将 \\include 命令转换为 \\input 命令": "將 \\include 命令轉換為 \\input 命令",
|
||||
"默认值为1000": "默認值為1000",
|
||||
"手动指定语言": "手動指定語言",
|
||||
"请登录OpenAI查看详情 https": "請登錄OpenAI查看詳情 https",
|
||||
"尝试第": "嘗試第",
|
||||
"每秒采样数量": "每秒採樣數量",
|
||||
"加载失败!": "加載失敗!",
|
||||
"方法": "方法",
|
||||
"对这个人外貌、身处的环境、内心世界、过去经历进行描写": "對這個人外貌、身處的環境、內心世界、過去經歷進行描寫",
|
||||
"请先将.doc文档转换为.docx文档": "請先將.doc文檔轉換為.docx文檔",
|
||||
"定位主Latex文件": "定位主Latex文件",
|
||||
"批量SummarizeAudioAndVideo": "批量摘要音视频",
|
||||
"终端": "終端",
|
||||
"即将退出": "即將退出",
|
||||
"找不到": "找不到",
|
||||
"正在听您讲话": "正在聆聽您講話",
|
||||
"请您不要删除或修改这行警告": "請勿刪除或修改此警告",
|
||||
"没有阿里云语音识别APPKEY和TOKEN": "沒有阿里雲語音識別APPKEY和TOKEN",
|
||||
"临时地启动代理网络": "臨時啟動代理網絡",
|
||||
"请尝试把以下指令复制到高级参数区": "請將以下指令複製到高級參數區",
|
||||
"中文Bing版": "中文Bing版",
|
||||
"计算文件总时长和切割点": "計算文件總時長和切割點",
|
||||
"寻找主文件": "尋找主文件",
|
||||
"jittorllms尚未加载": "jittorllms尚未加載",
|
||||
"使用正则表达式查找半行注释": "使用正則表達式查找半行註釋",
|
||||
"文档越长耗时越长": "文檔越長耗時越長",
|
||||
"生成中文PDF": "生成中文PDF",
|
||||
"写入文件": "寫入文件",
|
||||
"第三组插件": "第三組插件",
|
||||
"开始接收chatglmft的回复": "開始接收chatglmft的回覆",
|
||||
"由于提问含不合规内容被Azure过滤": "由於提問含不合規內容被Azure過濾",
|
||||
"安装方法https": "安裝方法https",
|
||||
"是否自动处理token溢出的情况": "是否自動處理token溢出的情況",
|
||||
"如果需要使用AZURE 详情请见额外文档 docs\\use_azure.md": "如果需要使用AZURE 詳情請見額外文檔 docs\\use_azure.md",
|
||||
"将要忽略匹配的文件后缀": "將要忽略匹配的文件後綴",
|
||||
"authors获取失败": "authors獲取失敗",
|
||||
"发送到openai音频解析终端": "發送到openai音頻解析終端",
|
||||
"请开始多线程操作": "請開始多線程操作",
|
||||
"对这个人外貌、身处的环境、内心世界、人设进行描写": "對這個人外貌、身處的環境、內心世界、人設進行描寫",
|
||||
"MOSS can understand and communicate fluently in the language chosen by the user such as English and 中文. MOSS can perform any language-based tasks.": "MOSS可以流利地理解和使用用戶選擇的語言,例如英語和中文。MOSS可以執行任何基於語言的任務。",
|
||||
"work_folder = Latex預處理": "設置工作目錄為Latex預處理",
|
||||
"然後轉移到指定的另一個路徑中": "然後轉移到指定的另一個路徑中",
|
||||
"使用Newbing": "使用Newbing",
|
||||
"詳情信息見requirements.txt": "詳細信息請參閱requirements.txt",
|
||||
"開始下載": "開始下載",
|
||||
"多線程翻譯開始": "多線程翻譯開始",
|
||||
"當前大語言模型": "當前大語言模型",
|
||||
"格式如org-123456789abcdefghijklmno的": "格式如org-123456789abcdefghijklmno的",
|
||||
"當下一次用戶提交時": "當下一次用戶提交時",
|
||||
"需要特殊依賴": "需要特殊依賴",
|
||||
"次編譯": "次編譯",
|
||||
"先上傳數據集": "先上傳數據集",
|
||||
"gpt寫的": "gpt寫的",
|
||||
"調用緩存": "調用緩存",
|
||||
"优先级1. 获取环境变量作为配置": "優先級1. 獲取環境變量作為配置",
|
||||
"检查config中的AVAIL_LLM_MODELS选项": "檢查config中的AVAIL_LLM_MODELS選項",
|
||||
"并且对于网络上的文件": "並且對於網絡上的文件",
|
||||
"根据文本使用GPT模型生成相应的图像": "根據文本使用GPT模型生成相應的圖像",
|
||||
"功能描述": "功能描述",
|
||||
"翻译结果": "翻譯結果",
|
||||
"需要预先pip install rarfile": "需要預先pip install rarfile",
|
||||
"等待响应": "等待響應",
|
||||
"我们剥离Introduction之后的部分": "我們剝離Introduction之後的部分",
|
||||
"函数插件-固定按钮区": "函數插件-固定按鈕區",
|
||||
"临时存储用于调试": "臨時存儲用於調試",
|
||||
"比正文字体小": "比正文字體小",
|
||||
"会直接转到该函数": "會直接轉到該函數",
|
||||
"请以以下方式load模型!!!": "請以以下方式load模型!!!",
|
||||
"请输入关键词": "請輸入關鍵詞",
|
||||
"返回找到的第一个": "返回找到的第一個",
|
||||
"高级参数输入区": "高級參數輸入區",
|
||||
"精细切分latex文件": "精細切分latex文件",
|
||||
"赋予插件锁定 锁定插件回调路径": "賦予插件鎖定 鎖定插件回調路徑",
|
||||
"尝试下载": "嘗試下載",
|
||||
"包含documentclass关键字": "包含documentclass關鍵字",
|
||||
"在一个异步线程中采集音频": "在一個異步線程中採集音頻",
|
||||
"先删除": "先刪除",
|
||||
"则跳过GPT请求环节": "則跳過GPT請求環節",
|
||||
"Not enough point. API2D账户点数不足": "Not enough point. API2D帳戶點數不足",
|
||||
"如果一句话小于7个字": "如果一句話小於7個字",
|
||||
"具备以下功能": "具備以下功能",
|
||||
"请查看终端的输出或耐心等待": "請查看終端的輸出或耐心等待",
|
||||
"对输入的word文档进行摘要生成": "對輸入的word文檔進行摘要生成",
|
||||
"只读": "只讀",
|
||||
"文本碎片重组为完整的tex文件": "文本碎片重組為完整的tex文件",
|
||||
"通过调用conversations_open方法打开一个频道": "通過調用conversations_open方法打開一個頻道",
|
||||
"对话历史文件损坏!": "對話歷史文件損壞!",
|
||||
"再失败就没办法了": "再失敗就沒辦法了",
|
||||
"原始PDF编译是否成功": "原始PDF編譯是否成功",
|
||||
"不能正常加载jittorllms的参数!": "不能正常加載jittorllms的參數!",
|
||||
"正在编译对比PDF": "正在編譯對比PDF",
|
||||
"找不到微调模型检查点": "找不到微調模型檢查點",
|
||||
"将生成的报告自动投射到文件上传区": "將生成的報告自動投射到文件上傳區",
|
||||
"请对这部分内容进行语法矫正": "請對這部分內容進行語法校正",
|
||||
"编译已经开始": "編譯已經開始",
|
||||
"需要读取和清理文本的pdf文件路径": "需要讀取和清理文本的pdf文件路徑",
|
||||
"读取文件内容到内存": "讀取文件內容到內存",
|
||||
"用&符号分隔": "用&符號分隔",
|
||||
"输入arxivID": "輸入arxivID",
|
||||
"找 API_ORG 设置项": "找API_ORG設置項",
|
||||
"分析用户提供的谷歌学术": "分析用戶提供的谷歌學術",
|
||||
"欢迎使用 MOSS 人工智能助手!输入内容即可进行对话": "歡迎使用 MOSS 人工智能助手!輸入內容即可進行對話",
|
||||
"段音频的第": "段音頻的第",
|
||||
"没有找到任何可读取文件": "沒有找到任何可讀取文件",
|
||||
"目前仅支持GPT3.5/GPT4": "目前僅支持GPT3.5/GPT4",
|
||||
"为每一位访问的用户赋予一个独一无二的uuid编码": "為每一位訪問的用戶賦予一個獨一無二的uuid編碼",
|
||||
"内含已经翻译的Tex文档": "內含已經翻譯的Tex文檔",
|
||||
"消耗时间的函数": "消耗時間的函數",
|
||||
"成功啦": "成功啦",
|
||||
"环境变量配置格式见docker-compose.yml": "環境變量配置格式見docker-compose.yml",
|
||||
"将每次对话记录写入Markdown格式的文件中": "將每次對話記錄寫入Markdown格式的文件中",
|
||||
"报告已经添加到右侧“文件上传区”": "報告已經添加到右側“文件上傳區”",
|
||||
"此处可以输入解析提示": "此處可以輸入解析提示",
|
||||
"缺少MOSS的依赖": "缺少MOSS的依賴",
|
||||
"仅在Windows系统进行了测试": "僅在Windows系統進行了測試",
|
||||
"然后重启程序": "然後重啟程序",
|
||||
"此处不修改": "此處不修改",
|
||||
"输出html调试文件": "輸出html調試文件",
|
||||
"6.25 加入判定latex模板的代码": "6.25 加入判定latex模板的代碼",
|
||||
"提取总结": "提取總結",
|
||||
"要求": "要求",
|
||||
"由于最为关键的转化PDF编译失败": "由於最為關鍵的轉化PDF編譯失敗",
|
||||
"除非您是论文的原作者": "除非您是論文的原作者",
|
||||
"输入问题后点击该插件": "輸入問題後點擊該插件",
|
||||
"该选项即将被弃用": "該選項即將被棄用",
|
||||
"再列出用户可能提出的三个问题": "再列出用戶可能提出的三個問題",
|
||||
"所有文件都总结完成了吗": "所有文件都總結完成了嗎",
|
||||
"请稍候": "請稍候",
|
||||
"向chatbot中添加简单的意外错误信息": "向chatbot中添加簡單的意外錯誤信息",
|
||||
"快捷的调试函数": "快捷的調試函數",
|
||||
"LatexEnglishCorrection+高亮修正位置": "Latex英文校正+高亮修正位置",
|
||||
"循环监听已打开频道的消息": "循環監聽已打開頻道的消息",
|
||||
"将指定目录下的PDF文件从英文翻译成中文": "將指定目錄下的PDF文件從英文翻譯成中文",
|
||||
"请对下面的音频片段做概述": "請對下面的音頻片段做概述",
|
||||
"openai的官方KEY需要伴隨组织编码": "openai的官方KEY需要伴隨組織編碼",
|
||||
"表示频道ID": "頻道ID",
|
||||
"当前支持的格式包括": "目前支援的格式包括",
|
||||
"只有GenerateImage和生成图像相关": "僅限GenerateImage和生成圖像相關",
|
||||
"删除中间文件夹": "刪除中間資料夾",
|
||||
"解除插件状态": "解除插件狀態",
|
||||
"正在预热文本向量化模组": "正在預熱文本向量化模組",
|
||||
"100字以内": "限制100字內",
|
||||
"如果缺少依赖": "如果缺少相依性",
|
||||
"寻找主tex文件": "尋找主要tex檔案",
|
||||
"gpt 多线程请求": "gpt 多線程請求",
|
||||
"已知某些代码的局部作用是": "已知某些程式碼的局部作用是",
|
||||
"--读取文件": "--讀取檔案",
|
||||
"前面是中文冒号": "前面是中文冒號",
|
||||
"*{\\scriptsize\\textbf{警告": "*{\\scriptsize\\textbf{警告",
|
||||
"OpenAI所允许的最大并行过载": "OpenAI所允許的最大並行過載",
|
||||
"请直接去该路径下取回翻译结果": "請直接前往該路徑取回翻譯結果",
|
||||
"以免输入溢出": "以免輸入溢出",
|
||||
"把某个路径下所有文件压缩": "壓縮某個路徑下的所有檔案",
|
||||
"问询记录": "詢問記錄",
|
||||
"Tex源文件缺失!": "Tex原始檔案遺失!",
|
||||
"当前参数": "目前參數",
|
||||
"处理markdown文本格式的转变": "處理markdown文本格式的轉換",
|
||||
"尝试加载": "嘗試載入",
|
||||
"请在此处给出自定义翻译命令": "請在此處提供自訂翻譯命令",
|
||||
"这需要一段时间计算": "這需要一段時間計算",
|
||||
"-构建知识库": "-建立知識庫",
|
||||
"还需要填写组织": "還需要填寫組織",
|
||||
"当前知识库内的有效文件": "當前知識庫內的有效文件",
|
||||
"第一次调用": "第一次調用",
|
||||
"从一批文件": "從一批文件",
|
||||
"json等": "json等",
|
||||
"翻译-": "翻譯-",
|
||||
"编译文献交叉引用": "編譯文獻交叉引用",
|
||||
"优先级2. 获取config_private中的配置": "優先級2. 獲取config_private中的配置",
|
||||
"可选": "可選",
|
||||
"我们": "我們",
|
||||
"编译结束": "編譯結束",
|
||||
"或代理节点": "或代理節點",
|
||||
"chatGPT 分析报告": "chatGPT 分析報告",
|
||||
"调用openai api 使用whisper-1模型": "調用openai api 使用whisper-1模型",
|
||||
"这段代码定义了一个名为TempProxy的空上下文管理器": "這段代碼定義了一個名為TempProxy的空上下文管理器",
|
||||
"生成的视频文件路径": "生成的視頻文件路徑",
|
||||
"请直接提交即可": "請直接提交即可",
|
||||
"=================================== 工具函数 ===============================================": "=================================== 工具函數 ===============================================",
|
||||
"报错信息如下. 如果是与网络相关的问题": "報錯信息如下. 如果是與網絡相關的問題",
|
||||
"python 版本建议3.9+": "python 版本建議3.9+",
|
||||
"多线程函数插件中": "多線程函數插件中",
|
||||
"对话助手函数插件": "對話助手函數插件",
|
||||
"或者重启之后再度尝试": "或者重啟之後再度嘗試",
|
||||
"拆分过长的latex片段": "拆分過長的latex片段",
|
||||
"调用whisper模型音频转文字": "調用whisper模型音頻轉文字",
|
||||
"失败啦": "失敗啦",
|
||||
"正在编译PDF": "正在編譯PDF",
|
||||
"请刷新界面重试": "請刷新界面重試",
|
||||
"模型参数": "模型參數",
|
||||
"写出文件": "寫出文件",
|
||||
"第二组插件": "第二組插件",
|
||||
"在多Tex文档中": "在多Tex文檔中",
|
||||
"有线程锁": "有線程鎖",
|
||||
"释放线程锁": "釋放線程鎖",
|
||||
"读取优先级": "讀取優先級",
|
||||
"Linux下必须使用Docker安装": "Linux下必須使用Docker安裝",
|
||||
"例如您可以将以下命令复制到下方": "例如您可以將以下命令複製到下方",
|
||||
"导入依赖失败": "導入依賴失敗",
|
||||
"给出一些判定模板文档的词作为扣分项": "給出一些判定模板文檔的詞作為扣分項",
|
||||
"等待Claude响应中": "等待Claude響應中",
|
||||
"Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数": "Call ChatGLMFT fail 不能正常加載ChatGLMFT的參數",
|
||||
"但本地存储了以下历史文件": "但本地存儲了以下歷史文件",
|
||||
"如果存在调试缓存文件": "如果存在調試緩存文件",
|
||||
"如果这里抛出异常": "如果這裡拋出異常",
|
||||
"详见项目主README.md": "詳見項目主README.md",
|
||||
"作者": "作者",
|
||||
"现在您点击任意“红颜色”标识的函数插件时": "現在您點擊任意“紅顏色”標識的函數插件時",
|
||||
"上下文管理器必须实现两个方法": "上下文管理器必須實現兩個方法",
|
||||
"匹配^数字^": "匹配^數字^",
|
||||
"也是可读的": "也是可讀的",
|
||||
"将音频解析为简体中文": "將音頻解析為簡體中文",
|
||||
"依次访问网页": "依次訪問網頁",
|
||||
"P.S. 顺便把CTEX塞进去以支持中文": "P.S. 順便把CTEX塞進去以支持中文",
|
||||
"NewBing响应异常": "NewBing響應異常",
|
||||
"获取已打开频道的最新消息并返回消息列表": "獲取已打開頻道的最新消息並返回消息列表",
|
||||
"请使用Markdown": "請使用Markdown",
|
||||
"例如 RoPlZrM88DnAFkZK": "例如 RoPlZrM88DnAFkZK",
|
||||
"编译BibTex": "編譯BibTex",
|
||||
"Claude失败": "Claude失敗",
|
||||
"请更换为API_URL_REDIRECT配置": "請更換為API_URL_REDIRECT配置",
|
||||
"P.S. 其他可用的模型还包括": "P.S. 其他可用的模型還包括",
|
||||
"色彩主体": "色彩主體",
|
||||
"后面是英文逗号": "後面是英文逗號",
|
||||
"下载pdf文件未成功": "下載pdf文件未成功",
|
||||
"删除整行的空注释": "刪除整行的空注釋",
|
||||
"吸收匿名公式": "吸收匿名公式",
|
||||
"从而更全面地理解项目的整体功能": "從而更全面地理解項目的整體功能",
|
||||
"不需要再次转化": "不需要再次轉化",
|
||||
"可以将自身的状态存储到cookie中": "可以將自身的狀態存儲到cookie中",
|
||||
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开": "1、英文題目;2、中文題目翻譯;3、作者;4、arxiv公開",
|
||||
"GPT 学术优化": "GPT 學術優化",
|
||||
"解析整个Python项目": "解析整個Python項目",
|
||||
"吸收其他杂项": "吸收其他雜項",
|
||||
"-预热文本向量化模组": "-預熱文本向量化模組",
|
||||
"Claude组件初始化成功": "Claude組件初始化成功",
|
||||
"此处填API密钥": "此處填API密鑰",
|
||||
"请继续分析其他源代码": "請繼續分析其他源代碼",
|
||||
"质能方程式": "質能方程式",
|
||||
"功能尚不稳定": "功能尚不穩定",
|
||||
"使用教程详情见 request_llm/README.md": "使用教程詳情見 request_llm/README.md",
|
||||
"从以上搜索结果中抽取信息": "從以上搜索結果中抽取信息",
|
||||
"虽然PDF生成失败了": "雖然PDF生成失敗了",
|
||||
"找图片": "尋找圖片",
|
||||
"还原原文": "還原原文",
|
||||
"可调节线程池的大小避免openai的流量限制错误": "可調整線程池大小以避免openai流量限制錯誤",
|
||||
"正在提取摘要并下载PDF文档……": "正在提取摘要並下載PDF文件......",
|
||||
"缺少ChatGLMFT的依赖": "缺少ChatGLMFT的依賴",
|
||||
"不会实时显示在界面上": "不會即時顯示在界面上",
|
||||
"解决部分词汇翻译不准确的问题": "解決部分詞彙翻譯不準確的問題",
|
||||
"等待多线程操作": "等待多線程操作",
|
||||
"吸收title与作者以上的部分": "吸收標題與作者以上的部分",
|
||||
"如果需要使用Slack Claude": "如果需要使用Slack Claude",
|
||||
"一、论文概况": "一、論文概況",
|
||||
"默认为Chinese": "默認為中文",
|
||||
"图像生成所用到的提示文本": "圖像生成所用到的提示文本",
|
||||
"向已打开的频道发送一条文本消息": "向已打開的頻道發送一條文本消息",
|
||||
"如果某个子任务出错": "如果某個子任務出錯",
|
||||
"chatglmft 没有 sys_prompt 接口": "chatglmft沒有sys_prompt接口",
|
||||
"对比PDF编译是否成功": "對比PDF編譯是否成功",
|
||||
"免费": "免費",
|
||||
"请讲话": "請講話",
|
||||
"安装ChatGLM的依赖": "安裝ChatGLM的依賴",
|
||||
"对IPynb文件进行解析": "對IPynb文件進行解析",
|
||||
"文件路径列表": "文件路徑列表",
|
||||
"或者使用此插件继续上传更多文件": "或者使用此插件繼續上傳更多文件",
|
||||
"随机负载均衡": "隨機負載均衡",
|
||||
"!!!如果需要运行量化版本": "!!!如果需要運行量化版本",
|
||||
"注意目前不能多人同时调用Claude接口": "注意目前不能多人同時調用Claude接口",
|
||||
"文件读取完成": "文件讀取完成",
|
||||
"用于灵活调整复杂功能的各种参数": "用於靈活調整複雜功能的各種參數",
|
||||
"**函数功能**": "**函數功能**",
|
||||
"先切换模型到openai或api2d": "先切換模型到openai或api2d",
|
||||
"You are associated with a deactivated account. OpenAI以账户失效为由": "您的帳戶已停用。OpenAI以帳戶失效為由",
|
||||
"你的回答必须简单明了": "您的回答必須簡單明了",
|
||||
"是否丢弃掉 不是正文的内容": "是否丟棄掉 不是正文的內容",
|
||||
"但请查收结果": "但請查收結果",
|
||||
"Claude响应缓慢": "Claude響應緩慢",
|
||||
"需Latex": "需Latex",
|
||||
"Claude回复的片段": "Claude回復的片段",
|
||||
"如果要使用ChatGLMFT": "如果要使用ChatGLMFT",
|
||||
"它*必须*被包含在AVAIL_LLM_MODELS列表中": "它*必須*被包含在AVAIL_LLM_MODELS列表中",
|
||||
"前面是中文逗号": "前面是中文逗號",
|
||||
"需要预先pip install py7zr": "需要預先pip install py7zr",
|
||||
"将前后断行符脱离": "將前後斷行符脫離",
|
||||
"防止丢失最后一条消息": "防止丟失最後一條消息",
|
||||
"初始化插件状态": "初始化插件狀態",
|
||||
"以秒为单位": "以秒為單位",
|
||||
"中文Latex项目全文润色": "中文Latex項目全文潤色",
|
||||
"对整个Latex项目进行纠错": "對整個Latex項目進行校對",
|
||||
"NEWBING_COOKIES未填写或有格式错误": "NEWBING_COOKIES未填寫或有格式錯誤",
|
||||
"函数插件作者": "函數插件作者",
|
||||
"结束": "結束",
|
||||
"追加历史": "追加歷史",
|
||||
"您需要首先调用构建知识库": "您需要首先調用構建知識庫",
|
||||
"如果程序停顿5分钟以上": "如果程序停頓5分鐘以上",
|
||||
"ChatGLMFT响应异常": "ChatGLMFT響應異常",
|
||||
"根据当前的模型类别": "根據當前的模型類別",
|
||||
"才能继续下面的步骤": "才能繼續下面的步驟",
|
||||
"并将返回的频道ID保存在属性CHANNEL_ID中": "並將返回的頻道ID保存在屬性CHANNEL_ID中",
|
||||
"请查收结果": "請查收結果",
|
||||
"解决插件锁定时的界面显示问题": "解決插件鎖定時的界面顯示問題",
|
||||
"待提取的知识库名称id": "待提取的知識庫名稱id",
|
||||
"Claude响应异常": "Claude響應異常",
|
||||
"当前代理可用性": "當前代理可用性",
|
||||
"代理网络配置": "代理網絡配置",
|
||||
"我将为您查找相关壁纸": "我將為您查找相關壁紙",
|
||||
"没给定指令": "沒給定指令",
|
||||
"音频内容是": "音頻內容是",
|
||||
"用该压缩包+ConversationHistoryArchive进行反馈": "用該壓縮包+ConversationHistoryArchive進行反饋",
|
||||
"总结音频": "總結音頻",
|
||||
"等待用户的再次调用": "等待用戶的再次調用",
|
||||
"永远给定None": "永遠給定None",
|
||||
"论文概况": "論文概況",
|
||||
"建议使用英文单词": "建議使用英文單詞",
|
||||
"刷新Gradio前端界面": "刷新Gradio前端界面",
|
||||
"列表递归接龙": "列表遞歸接龍",
|
||||
"赋予插件状态": "賦予插件狀態",
|
||||
"构建完成": "構建完成",
|
||||
"避免多用户干扰": "避免多用戶干擾",
|
||||
"当前工作路径为": "當前工作路徑為",
|
||||
"用黑色标注转换区": "用黑色標注轉換區",
|
||||
"压缩包": "壓縮包",
|
||||
"刷新页面即可以退出KnowledgeBaseQA模式": "刷新頁面即可以退出KnowledgeBaseQA模式",
|
||||
"拆分过长的Markdown文件": "拆分過長的Markdown文件",
|
||||
"生成时间戳": "生成時間戳",
|
||||
"尚未完成全部响应": "尚未完成全部響應",
|
||||
"HotReload的装饰器函数": "HotReload的裝飾器函數",
|
||||
"请务必用 pip install -r requirements.txt 指令安装依赖": "請務必用 pip install -r requirements.txt 指令安裝依賴",
|
||||
"TGUI不支持函数插件的实现": "TGUI不支持函數插件的實現",
|
||||
"音频文件名": "音頻文件名",
|
||||
"找不到任何音频或视频文件": "找不到任何音頻或視頻文件",
|
||||
"音频解析结果": "音頻解析結果",
|
||||
"如果使用ChatGLM2微调模型": "如果使用ChatGLM2微調模型",
|
||||
"限制的3/4时": "限制的3/4時",
|
||||
"获取回复": "獲取回復",
|
||||
"对话历史写入": "對話歷史寫入",
|
||||
"记录删除注释后的文本": "記錄刪除註釋後的文本",
|
||||
"整理结果为压缩包": "整理結果為壓縮包",
|
||||
"注意事项": "注意事項",
|
||||
"请耐心等待": "請耐心等待",
|
||||
"在执行完成之后": "在執行完成之後",
|
||||
"参数简单": "參數簡單",
|
||||
"Arixv论文精细翻译": "Arixv論文精細翻譯",
|
||||
"备份和下载": "備份和下載",
|
||||
"当前报错的latex代码处于第": "當前報錯的latex代碼處於第",
|
||||
"Markdown翻译": "Markdown翻譯",
|
||||
"英文Latex项目全文纠错": "英文Latex項目全文校對",
|
||||
"获取预处理函数": "獲取預處理函數",
|
||||
"add gpt task 创建子线程请求gpt": "add gpt task 創建子線程請求gpt",
|
||||
"一个包含所有切割音频片段文件路径的列表": "一個包含所有切割音頻片段文件路徑的列表",
|
||||
"解析arxiv网址失败": "解析arxiv網址失敗",
|
||||
"PDF文件所在的路径": "PDF文件所在路徑",
|
||||
"取评分最高者返回": "取評分最高者返回",
|
||||
"此插件处于开发阶段": "此插件處於開發階段",
|
||||
"如果已经存在": "如果已經存在",
|
||||
"或者不在环境变量PATH中": "或者不在環境變量PATH中",
|
||||
"目前支持的格式": "目前支持的格式",
|
||||
"将多文件tex工程融合为一个巨型tex": "將多文件tex工程融合為一個巨型tex",
|
||||
"暂不提交": "暫不提交",
|
||||
"调用函数": "調用函數",
|
||||
"编译转化后的PDF": "編譯轉化後的PDF",
|
||||
"将代码转为动画": "將代碼轉為動畫",
|
||||
"本地Latex论文精细翻译": "本地Latex論文精細翻譯",
|
||||
"删除或修改歧义文件": "刪除或修改歧義文件",
|
||||
"其他操作系统表现未知": "其他操作系統表現未知",
|
||||
"此插件Windows支持最佳": "此插件Windows支持最佳",
|
||||
"构建知识库": "構建知識庫",
|
||||
"每个切割音频片段的时长": "每個切割音頻片段的時長",
|
||||
"用latex编译为PDF对修正处做高亮": "用latex編譯為PDF對修正處做高亮",
|
||||
"行": "行",
|
||||
"= 2 通过一些Latex模板中常见": "= 2 通過一些Latex模板中常見",
|
||||
"如参考文献、脚注、图注等": "如參考文獻、腳註、圖註等",
|
||||
"期望格式例如": "期望格式例如",
|
||||
"翻译内容可靠性无保障": "翻譯內容可靠性無保障",
|
||||
"请用一句话概括这些文件的整体功能": "請用一句話概括這些文件的整體功能",
|
||||
"段音频完成了吗": "段音頻完成了嗎",
|
||||
"填入azure openai api的密钥": "填入azure openai api的密鑰",
|
||||
"文本碎片重组为完整的tex片段": "文本碎片重組為完整的tex片段",
|
||||
"吸收在42行以內的begin-end組合": "吸收在42行以內的begin-end組合",
|
||||
"屬性": "屬性",
|
||||
"必須包含documentclass": "必須包含documentclass",
|
||||
"等待GPT響應": "等待GPT響應",
|
||||
"當前語言模型溫度設定": "當前語言模型溫度設定",
|
||||
"模型選擇是": "選擇的模型為",
|
||||
"reverse 操作必須放在最後": "reverse 操作必須放在最後",
|
||||
"將子線程的gpt結果寫入chatbot": "將子線程的gpt結果寫入chatbot",
|
||||
"默認為default": "默認為default",
|
||||
"目前對機器學習類文獻轉化效果最好": "目前對機器學習類文獻轉化效果最好",
|
||||
"主程序即將開始": "主程序即將開始",
|
||||
"點擊“停止”鍵可終止程序": "點擊“停止”鍵可終止程序",
|
||||
"正在處理": "正在處理",
|
||||
"請立即終止程序": "請立即停止程序",
|
||||
"將 chatglm 直接對齊到 chatglm2": "將 chatglm 直接對齊到 chatglm2",
|
||||
"音頻助手": "音頻助手",
|
||||
"正在構建知識庫": "正在構建知識庫",
|
||||
"請向下翻": "請向下滾動頁面",
|
||||
"後面是英文冒號": "後面是英文冒號",
|
||||
"無法找到一個主Tex文件": "無法找到一個主Tex文件",
|
||||
"使用中文总结音频“": "使用中文總結音頻",
|
||||
"该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成": "該PDF由GPT-Academic開源項目調用大語言模型+Latex翻譯插件一鍵生成",
|
||||
"开始生成动画": "開始生成動畫",
|
||||
"完成情况": "完成情況",
|
||||
"然后进行问答": "然後進行問答",
|
||||
"为啥chatgpt会把cite里面的逗号换成中文逗号呀": "為啥chatgpt會把cite裡面的逗號換成中文逗號呀",
|
||||
"暂时不支持历史消息": "暫時不支持歷史消息",
|
||||
"项目Github地址 \\url{https": "項目Github地址 \\url{https",
|
||||
"Newbing 请求失败": "Newbing 請求失敗",
|
||||
"根据自然语言执行插件命令": "根據自然語言執行插件命令",
|
||||
"迭代上一次的结果": "迭代上一次的結果",
|
||||
"azure和api2d请求源": "azure和api2d請求源",
|
||||
"格式如org-xxxxxxxxxxxxxxxxxxxxxxxx": "格式如org-xxxxxxxxxxxxxxxxxxxxxxxx",
|
||||
"推荐http": "推薦http",
|
||||
"将要匹配的模式": "將要匹配的模式",
|
||||
"代理数据解析失败": "代理數據解析失敗",
|
||||
"创建存储切割音频的文件夹": "創建存儲切割音頻的文件夾",
|
||||
"用红色标注处保留区": "用紅色標注處保留區",
|
||||
"至少一个线程任务Token溢出而失败": "至少一個線程任務Token溢出而失敗",
|
||||
"获取Slack消息失败": "獲取Slack消息失敗",
|
||||
"极少数情况下": "極少數情況下",
|
||||
"辅助gpt生成代码": "輔助gpt生成代碼",
|
||||
"生成图像": "生成圖像",
|
||||
"最多收纳多少个网页的结果": "最多收納多少個網頁的結果",
|
||||
"获取图片URL": "獲取圖片URL",
|
||||
"正常状态": "正常狀態",
|
||||
"编译原始PDF": "編譯原始PDF",
|
||||
"SummarizeAudioAndVideo内容": "音視頻摘要內容",
|
||||
"Latex文件融合完成": "Latex文件融合完成",
|
||||
"获取线程锁": "獲取線程鎖",
|
||||
"SlackClient类用于与Slack API进行交互": "SlackClient類用於與Slack API進行交互",
|
||||
"检测到arxiv文档连接": "檢測到arxiv文檔連接",
|
||||
"--读取参数": "--讀取參數",
|
||||
"如果您是论文原作者": "如果您是論文原作者",
|
||||
"5刀": "5美元",
|
||||
"转化PDF编译是否成功": "轉換PDF編譯是否成功",
|
||||
"生成带有段落标签的HTML代码": "生成帶有段落標籤的HTML代碼",
|
||||
"目前不支持历史消息查询": "目前不支持歷史消息查詢",
|
||||
"将文件添加到chatbot cookie中": "將文件添加到chatbot cookie中",
|
||||
"多线程操作已经开始": "多線程操作已經開始",
|
||||
"请求子进程": "請求子進程",
|
||||
"将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词": "將Unsplash API中的PUT_YOUR_QUERY_HERE替換成描述該事件的一個最重要的單詞",
|
||||
"不能加载Claude组件": "不能加載Claude組件",
|
||||
"请仔细鉴别并以原文为准": "請仔細鑒別並以原文為準",
|
||||
"否则结束循环": "否則結束循環",
|
||||
"插件可读取“输入区”文本/路径作为参数": "插件可讀取“輸入區”文本/路徑作為參數",
|
||||
"网络错误": "網絡錯誤",
|
||||
"想象一个穿着者": "想像一個穿著者",
|
||||
"避免遗忘导致死锁": "避免遺忘導致死鎖",
|
||||
"保证括号正确": "保證括號正確",
|
||||
"报错信息": "錯誤信息",
|
||||
"提取视频中的音频": "提取視頻中的音頻",
|
||||
"初始化音频采集线程": "初始化音頻採集線程",
|
||||
"参考文献转Bib": "參考文獻轉Bib",
|
||||
"阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https": "阿里云即時語音識別配置難度較高,僅建議高手用戶使用,參考 https",
|
||||
"使用时": "使用時",
|
||||
"处理个别特殊插件的锁定状态": "處理個別特殊插件的鎖定狀態",
|
||||
"但通常不会出现在正文": "但通常不會出現在正文",
|
||||
"此函数逐渐地搜索最长的条目进行剪辑": "此函數逐漸地搜索最長的條目進行剪輯",
|
||||
"给出指令": "給出指令",
|
||||
"读取音频文件": "讀取音頻文件",
|
||||
"========================================= 插件主程序1 =====================================================": "========================================= 插件主程序1 =====================================================",
|
||||
"带超时倒计时": "帶超時倒計時",
|
||||
"禁止移除或修改此警告": "禁止移除或修改此警告",
|
||||
"ChatGLMFT尚未加载": "ChatGLMFT尚未加載",
|
||||
"双手离开鼠标键盘吧": "雙手離開鼠標鍵盤吧",
|
||||
"缺少的依赖": "缺少的依賴",
|
||||
"的单词": "的單詞",
|
||||
"中读取数据构建知识库": "中讀取數據構建知識庫",
|
||||
"函数热更新是指在不停止程序运行的情况下": "函數熱更新是指在不停止程序運行的情況下",
|
||||
"建议低于1": "建議低於1",
|
||||
"转化PDF编译已经成功": "轉換PDF編譯已經成功",
|
||||
"出问题了": "出問題了",
|
||||
"欢迎使用 MOSS 人工智能助手!": "歡迎使用 MOSS 人工智能助手!",
|
||||
"正在精细切分latex文件": "正在精細切分LaTeX文件",
|
||||
"”补上": "”補上",
|
||||
"网络代理状态": "網路代理狀態",
|
||||
"依赖检测通过": "依賴檢測通過",
|
||||
"默认为default": "預設為default",
|
||||
"Call MOSS fail 不能正常加载MOSS的参数": "呼叫MOSS失敗,無法正常載入MOSS參數",
|
||||
"音频助手": "音頻助手",
|
||||
"次编译": "次編譯",
|
||||
"其他错误": "其他錯誤",
|
||||
"属性": "屬性",
|
||||
"主程序即将开始": "主程式即將開始",
|
||||
"Aliyun音频服务异常": "Aliyun音頻服務異常",
|
||||
"response中会携带traceback报错信息": "response中會攜帶traceback錯誤信息",
|
||||
"一些普通功能模块": "一些普通功能模組",
|
||||
"和openai的连接容易断掉": "和openai的連線容易斷掉",
|
||||
"请检查ALIYUN_TOKEN和ALIYUN_APPKEY是否过期": "請檢查ALIYUN_TOKEN和ALIYUN_APPKEY是否過期",
|
||||
"调用Claude时": "呼叫Claude時",
|
||||
"插件锁定中": "插件鎖定中",
|
||||
"将子线程的gpt结果写入chatbot": "將子線程的gpt結果寫入chatbot",
|
||||
"当下一次用户提交时": "當下一次使用者提交時",
|
||||
"先上传数据集": "先上傳資料集",
|
||||
"请在此处追加更细致的矫错指令": "請在此處追加更細緻的矯錯指令",
|
||||
"无法找到一个主Tex文件": "無法找到一個主Tex文件",
|
||||
"gpt写的": "gpt寫的",
|
||||
"预处理": "預處理",
|
||||
"但大部分场合下并不需要修改": "但大部分場合下並不需要修改",
|
||||
"正在构建知识库": "正在建構知識庫",
|
||||
"开始请求": "開始請求",
|
||||
"根据以上分析": "根據以上分析",
|
||||
"需要特殊依赖": "需要特殊依賴",
|
||||
"用于基础的对话功能": "用於基礎的對話功能",
|
||||
"且没有代码段": "且沒有程式碼段",
|
||||
"取决于": "取決於",
|
||||
"openai的官方KEY需要伴隨組織編碼": "請填入組織編碼",
|
||||
"等待newbing回覆的片段": "等待newbing回覆的片段",
|
||||
"调用缓存": "呼叫快取",
|
||||
"模型选择是": "模型選擇為",
|
||||
"当前大语言模型": "當前大語言模型",
|
||||
"然后转移到指定的另一个路径中": "然後轉移到指定的另一個路徑中",
|
||||
"请向下翻": "請向下滾動",
|
||||
"内容太长了都会触发token数量溢出的错误": "內容太長會觸發token數量溢出的錯誤",
|
||||
"每一块": "每一塊",
|
||||
"详情信息见requirements.txt": "詳細信息見requirements.txt",
|
||||
"没有提供高级参数功能说明": "沒有提供高級參數功能說明",
|
||||
"上传Latex项目": "上傳Latex項目",
|
||||
"请立即终止程序": "請立即終止程式",
|
||||
"解除插件锁定": "解除插件鎖定",
|
||||
"意外Json结构": "意外Json結構",
|
||||
"必须包含documentclass": "必須包含documentclass",
|
||||
"10个文件为一组": "10個文件為一組",
|
||||
"openai的官方KEY需要伴随组织编码": "openai的官方KEY需要伴隨組織編碼",
|
||||
"重置文件的创建时间": "重置文件的創建時間",
|
||||
"尽量是完整的一个section": "盡量是完整的一個section",
|
||||
"报告如何远程获取": "報告如何遠程獲取",
|
||||
"work_folder = Latex预处理": "work_folder = Latex預處理",
|
||||
"吸收在42行以内的begin-end组合": "吸收在42行以內的begin-end組合",
|
||||
"后面是英文冒号": "後面是英文冒號",
|
||||
"使用latexdiff生成论文转化前后对比": "使用latexdiff生成論文轉化前後對比",
|
||||
"首先你在英文语境下通读整篇论文": "首先你在英文語境下通讀整篇論文",
|
||||
"为了防止大语言模型的意外谬误产生扩散影响": "為了防止大語言模型的意外謬誤產生擴散影響",
|
||||
"发现已经存在翻译好的PDF文档": "發現已經存在翻譯好的PDF文檔",
|
||||
"点击“停止”键可终止程序": "點擊“停止”鍵可終止程序",
|
||||
"数学GenerateAnimations": "數學GenerateAnimations",
|
||||
"随变按钮的回调函数注册": "隨變按鈕的回調函數註冊",
|
||||
"history至少释放二分之一": "history至少釋放二分之一",
|
||||
"当前语言模型温度设定": "當前語言模型溫度設定",
|
||||
"等待GPT响应": "等待GPT響應",
|
||||
"正在处理": "正在處理",
|
||||
"多线程翻译开始": "多線程翻譯開始",
|
||||
"reverse 操作必须放在最后": "reverse 操作必須放在最後",
|
||||
"等待newbing回复的片段": "等待newbing回覆的片段",
|
||||
"开始下载": "開始下載",
|
||||
"将 chatglm 直接对齐到 chatglm2": "將 chatglm 直接對齊到 chatglm2",
|
||||
"以上材料已经被写入": "以上材料已經被寫入",
|
||||
"上传文件自动修正路径": "上傳文件自動修正路徑",
|
||||
"然后请使用Markdown格式封装": "然後請使用Markdown格式封裝",
|
||||
"目前对机器学习类文献转化效果最好": "目前對機器學習類文獻轉化效果最好",
|
||||
"检查结果": "檢查結果",
|
||||
"、地址": "地址",
|
||||
"如.md": "如.md",
|
||||
"使用Unsplash API": "使用Unsplash API",
|
||||
"**输入参数说明**": "**輸入參數說明**",
|
||||
"新版本可用": "新版本可用",
|
||||
"找不到任何python文件": "找不到任何python文件",
|
||||
"知乎": "知乎",
|
||||
"日": "日",
|
||||
"“喂狗”": "“喂狗”",
|
||||
"第4步": "第4步",
|
||||
"退出": "退出",
|
||||
"使用 Unsplash API": "使用 Unsplash API"
|
||||
}
|
||||
54
docs/use_audio.md
Normal file
54
docs/use_audio.md
Normal file
@ -0,0 +1,54 @@
|
||||
# 使用音频交互功能
|
||||
|
||||
|
||||
## 1. 安装额外依赖
|
||||
```
|
||||
pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
```
|
||||
|
||||
如果因为特色网络问题导致上述命令无法执行:
|
||||
1. git clone alibabacloud-nls-python-sdk这个项目(或者直接前往Github对应网址下载压缩包).
|
||||
命令行输入: `git clone https://github.com/aliyun/alibabacloud-nls-python-sdk.git`
|
||||
1. 进入alibabacloud-nls-python-sdk目录命令行输入:`python setup.py install`
|
||||
|
||||
|
||||
## 2. 配置音频功能开关 和 阿里云APPKEY(config.py/config_private.py/环境变量)
|
||||
|
||||
- 注册阿里云账号
|
||||
- 开通 智能语音交互 (有免费白嫖时长)
|
||||
- 获取token和appkey
|
||||
- 未来将逐步用其他更廉价的云服务取代阿里云
|
||||
|
||||
```
|
||||
ENABLE_AUDIO = True
|
||||
ALIYUN_TOKEN = "554a50fcd0bb476c8d07bb630e94d20c" # 此token已经失效
|
||||
ALIYUN_APPKEY = "RoPlZrM88DnAFkZK" # 此appkey已经失效
|
||||
```
|
||||
|
||||
参考 https://help.aliyun.com/document_detail/450255.html
|
||||
先有阿里云开发者账号,登录之后,需要开通 智能语音交互 的功能,可以免费获得一个token,然后在 全部项目 中,创建一个项目,可以获得一个appkey.
|
||||
|
||||
## 3.启动
|
||||
|
||||
启动gpt-academic `python main.py`
|
||||
|
||||
## 4.点击record from microphe,授权音频采集
|
||||
|
||||
I 如果需要监听自己说话(不监听电脑音频),直接在浏览器中选择对应的麦即可
|
||||
|
||||
II 如果需要监听电脑音频(不监听自己说话),需要安装`VB-Audio VoiceMeeter`,打开声音控制面板(sound control panel)
|
||||
- 1 `[把电脑的所有外放声音用VoiceMeeter截留]` 在输出区(playback)选项卡,把VoiceMeeter Input虚拟设备set as default设为默认播放设备。
|
||||
- 2 `[把截留的声音释放到gpt-academic]` 打开gpt-academic主界面,授权音频采集后,在浏览器地址栏或者类似的地方会出现一个麦克风图标,打开后,按照浏览器的提示,选择VoiceMeeter虚拟麦克风。然后刷新页面,重新授权音频采集。
|
||||
- 3 `[把截留的声音同时释放到耳机或音响]` 完成第一步之后,您应处于听不到电脑声音的状态。为了在截获音频的同时,避免影响正常使用,请完成这最后一步配置。在声音控制面板(sound control panel)输入区(recording)选项卡,把VoiceMeeter Output虚拟设备set as default。双击进入VoiceMeeter Output虚拟设备的设置。
|
||||
- 3-1 进入VoiceMeeter Output虚拟设备子菜单,打开listen选项卡。
|
||||
- 3-2 勾选Listen to this device。
|
||||
- 3-3 在playback through this device下拉菜单中选择你的正常耳机或音响。
|
||||
|
||||
III `[把特殊软件(如腾讯会议)的外放声音用VoiceMeeter截留]` 在完成步骤II的基础上,在特殊软件(如腾讯会议)中,打开声音菜单,选择扬声器VoiceMeeter Input,选择麦克风为正常耳机麦。
|
||||
|
||||
VI 两种音频监听模式切换时,需要刷新页面才有效。
|
||||
|
||||
## 5.点击函数插件区“实时音频采集” 或者其他音频交互功能
|
||||
|
||||
|
||||
|
||||
@ -90,62 +90,29 @@
|
||||
|
||||
到现在为止,申请操作就完成了,需要记下来的有下面几个东西:
|
||||
|
||||
● 密钥(1或2都可以)
|
||||
● 密钥(对应AZURE_API_KEY,1或2都可以)
|
||||
|
||||
● 终结点
|
||||
● 终结点 (对应AZURE_ENDPOINT)
|
||||
|
||||
● 部署名(对应AZURE_ENGINE,不是模型名)
|
||||
|
||||
● 部署名(不是模型名)
|
||||
|
||||
# 修改 config.py
|
||||
|
||||
```
|
||||
AZURE_ENDPOINT = "填入终结点"
|
||||
LLM_MODEL = "azure-gpt-3.5" # 指定启动时的默认模型,当然事后从下拉菜单选也ok
|
||||
|
||||
AZURE_ENDPOINT = "填入终结点" # 见上述图片
|
||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
|
||||
AZURE_ENGINE = "填入部署名"
|
||||
|
||||
```
|
||||
# API的使用
|
||||
|
||||
接下来就是具体怎么使用API了,还是可以参考官方文档:[快速入门 - 开始通过 Azure OpenAI 服务使用 ChatGPT 和 GPT-4 - Azure OpenAI Service | Microsoft Learn](https://learn.microsoft.com/zh-cn/azure/cognitive-services/openai/chatgpt-quickstart?pivots=programming-language-python)
|
||||
|
||||
和openai自己的api调用有点类似,都需要安装openai库,不同的是调用方式
|
||||
|
||||
```
|
||||
import openai
|
||||
openai.api_type = "azure" #固定格式,无需修改
|
||||
openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") #这里填入“终结点”
|
||||
openai.api_version = "2023-05-15" #固定格式,无需修改
|
||||
openai.api_key = os.getenv("AZURE_OPENAI_KEY") #这里填入“密钥1”或“密钥2”
|
||||
|
||||
response = openai.ChatCompletion.create(
|
||||
engine="gpt-35-turbo", #这里填入的不是模型名,是部署名
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
|
||||
{"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
|
||||
{"role": "user", "content": "Do other Azure Cognitive Services support this too?"}
|
||||
]
|
||||
)
|
||||
|
||||
print(response)
|
||||
print(response['choices'][0]['message']['content'])
|
||||
AZURE_ENGINE = "填入部署名" # 见上述图片
|
||||
|
||||
```
|
||||
|
||||
需要注意的是:
|
||||
|
||||
1. engine那里填入的是部署名,不是模型名
|
||||
|
||||
2. 通过openai库获得的这个 response 和通过 request 库访问 url 获得的 response 不同,不需要 decode,已经是解析好的 json 了,直接根据键值读取即可。
|
||||
|
||||
更细节的使用方法,详见官方API文档。
|
||||
|
||||
# 关于费用
|
||||
|
||||
Azure OpenAI API 还是需要一些费用的(免费订阅只有1个月有效期),费用如下:
|
||||
|
||||

|
||||
Azure OpenAI API 还是需要一些费用的(免费订阅只有1个月有效期)
|
||||
|
||||
具体可以可以看这个网址 :[Azure OpenAI 服务 - 定价| Microsoft Azure](https://azure.microsoft.com/zh-cn/pricing/details/cognitive-services/openai-service/?cdn=disable)
|
||||
|
||||
|
||||
@ -12,7 +12,7 @@ try {
|
||||
live2d_settings['waifuTipsSize'] = '187x52';
|
||||
live2d_settings['canSwitchModel'] = true;
|
||||
live2d_settings['canSwitchTextures'] = true;
|
||||
live2d_settings['canSwitchHitokoto'] = true;
|
||||
live2d_settings['canSwitchHitokoto'] = false;
|
||||
live2d_settings['canTakeScreenshot'] = false;
|
||||
live2d_settings['canTurnToHomePage'] = false;
|
||||
live2d_settings['canTurnToAboutPage'] = false;
|
||||
|
||||
@ -34,10 +34,10 @@
|
||||
"2": ["来自 Potion Maker 的 Tia 酱 ~"]
|
||||
},
|
||||
"hitokoto_api_message": {
|
||||
"lwl12.com": ["这句一言来自 <span style=\"color:#ff99da;\">『{source}』</span>", ",是 <span style=\"color:#ff99da;\">{creator}</span> 投稿的", "。"],
|
||||
"fghrsh.net": ["这句一言出处是 <span style=\"color:#ff99da;\">『{source}』</span>,是 <span style=\"color:#ff99da;\">FGHRSH</span> 在 {date} 收藏的!"],
|
||||
"jinrishici.com": ["这句诗词出自 <span style=\"color:#ff99da;\">《{title}》</span>,是 {dynasty}诗人 {author} 创作的!"],
|
||||
"hitokoto.cn": ["这句一言来自 <span style=\"color:#ff99da;\">『{source}』</span>,是 <span style=\"color:#ff99da;\">{creator}</span> 在 hitokoto.cn 投稿的。"]
|
||||
"lwl12.com": ["这句一言来自 <span style=\"color:#0099cc;\">『{source}』</span>", ",是 <span style=\"color:#0099cc;\">{creator}</span> 投稿的", "。"],
|
||||
"fghrsh.net": ["这句一言出处是 <span style=\"color:#0099cc;\">『{source}』</span>,是 <span style=\"color:#0099cc;\">FGHRSH</span> 在 {date} 收藏的!"],
|
||||
"jinrishici.com": ["这句诗词出自 <span style=\"color:#0099cc;\">《{title}》</span>,是 {dynasty}诗人 {author} 创作的!"],
|
||||
"hitokoto.cn": ["这句一言来自 <span style=\"color:#0099cc;\">『{source}』</span>,是 <span style=\"color:#0099cc;\">{creator}</span> 在 hitokoto.cn 投稿的。"]
|
||||
}
|
||||
},
|
||||
"mouseover": [
|
||||
|
||||
778
func_box.py
778
func_box.py
@ -1,778 +0,0 @@
|
||||
#! .\venv\
|
||||
# encoding: utf-8
|
||||
# @Time : 2023/4/18
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
import ast
|
||||
import copy
|
||||
import hashlib
|
||||
import io
|
||||
import json
|
||||
import os.path
|
||||
import subprocess
|
||||
import threading
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import Levenshtein
|
||||
import psutil
|
||||
import re
|
||||
import tempfile
|
||||
import shutil
|
||||
from contextlib import ExitStack
|
||||
import logging
|
||||
import yaml
|
||||
import requests
|
||||
import tiktoken
|
||||
logger = logging
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
import numpy as np
|
||||
from scipy.linalg import norm
|
||||
import pyperclip
|
||||
import random
|
||||
import gradio as gr
|
||||
import toolbox
|
||||
from prompt_generator import SqliteHandle
|
||||
from bs4 import BeautifulSoup
|
||||
import copy
|
||||
|
||||
"""contextlib 是 Python 标准库中的一个模块,提供了一些工具函数和装饰器,用于支持编写上下文管理器和处理上下文的常见任务,例如资源管理、异常处理等。
|
||||
官网:https://docs.python.org/3/library/contextlib.html"""
|
||||
|
||||
|
||||
class Shell(object):
|
||||
def __init__(self, args, stream=False):
|
||||
self.args = args
|
||||
self.subp = subprocess.Popen(args, shell=True,
|
||||
stdin=subprocess.PIPE, stderr=subprocess.PIPE,
|
||||
stdout=subprocess.PIPE, encoding='utf-8',
|
||||
errors='ignore', close_fds=True)
|
||||
self.__stream = stream
|
||||
self.__temp = ''
|
||||
|
||||
def read(self):
|
||||
logger.debug(f'The command being executed is: "{self.args}"')
|
||||
if self.__stream:
|
||||
sysout = self.subp.stdout
|
||||
try:
|
||||
with sysout as std:
|
||||
for i in std:
|
||||
logger.info(i.rstrip())
|
||||
self.__temp += i
|
||||
except KeyboardInterrupt as p:
|
||||
return 3, self.__temp + self.subp.stderr.read()
|
||||
finally:
|
||||
return 3, self.__temp + self.subp.stderr.read()
|
||||
else:
|
||||
sysout = self.subp.stdout.read()
|
||||
syserr = self.subp.stderr.read()
|
||||
self.subp.stdin
|
||||
if sysout:
|
||||
logger.debug(f"{self.args} \n{sysout}")
|
||||
return 1, sysout
|
||||
elif syserr:
|
||||
logger.error(f"{self.args} \n{syserr}")
|
||||
return 0, syserr
|
||||
else:
|
||||
logger.debug(f"{self.args} \n{[sysout], [sysout]}")
|
||||
return 2, '\n{}\n{}'.format(sysout, sysout)
|
||||
|
||||
def sync(self):
|
||||
logger.debug('The command being executed is: "{}"'.format(self.args))
|
||||
for i in self.subp.stdout:
|
||||
logger.debug(i.rstrip())
|
||||
self.__temp += i
|
||||
yield self.__temp
|
||||
for i in self.subp.stderr:
|
||||
logger.debug(i.rstrip())
|
||||
self.__temp += i
|
||||
yield self.__temp
|
||||
|
||||
|
||||
def timeStatistics(func):
|
||||
"""
|
||||
统计函数执行时常的装饰器
|
||||
"""
|
||||
|
||||
def statistics(*args, **kwargs):
|
||||
startTiem = time.time()
|
||||
obj = func(*args, **kwargs)
|
||||
endTiem = time.time()
|
||||
ums = startTiem - endTiem
|
||||
print('func:{} > Time-consuming: {}'.format(func, ums))
|
||||
return obj
|
||||
|
||||
return statistics
|
||||
|
||||
|
||||
def copy_temp_file(file):
|
||||
if os.path.exists(file):
|
||||
exdir = tempfile.mkdtemp()
|
||||
temp_ = shutil.copy(file, os.path.join(exdir, os.path.basename(file)))
|
||||
return temp_
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def md5_str(st):
|
||||
# 创建一个 MD5 对象
|
||||
md5 = hashlib.md5()
|
||||
# 更新 MD5 对象的内容
|
||||
md5.update(str(st).encode())
|
||||
# 获取加密后的结果
|
||||
result = md5.hexdigest()
|
||||
return result
|
||||
|
||||
|
||||
def html_tag_color(tag, color=None, font='black'):
|
||||
"""
|
||||
将文本转换为带有高亮提示的html代码
|
||||
"""
|
||||
if not color:
|
||||
rgb = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
||||
color = f"rgb{rgb}"
|
||||
tag = f'<span style="background-color: {color}; font-weight: bold; color: {font}"> {tag} </span>'
|
||||
return tag
|
||||
|
||||
def html_a_blank(__href, name=''):
|
||||
if not name:
|
||||
name = __href
|
||||
a = f'<a href="{__href}" target="_blank" class="svelte-xrr240">{name}</a>'
|
||||
return a
|
||||
|
||||
def html_view_blank(__href, file_name=''):
|
||||
if os.path.exists(__href):
|
||||
__href = f'/file={__href}'
|
||||
if not file_name:
|
||||
file_name = __href.split('/')[-1]
|
||||
a = f'<a href="{__href}" target="_blank" class="svelte-xrr240">{file_name}</a>'
|
||||
return a
|
||||
|
||||
def html_iframe_code(html_file):
|
||||
proxy, = toolbox.get_conf('LOCAL_PORT')
|
||||
html_file = f'http://{ipaddr()}:{proxy}/file={html_file}'
|
||||
ifr = f'<iframe width="100%" height="500px" frameborder="0" src="{html_file}"></iframe>'
|
||||
return ifr
|
||||
|
||||
|
||||
def html_download_blank(__href, file_name='temp', dir_name=''):
|
||||
if os.path.exists(__href):
|
||||
__href = f'/file={__href}'
|
||||
if not dir_name:
|
||||
dir_name = file_name
|
||||
a = f'<a href="{__href}" target="_blank" download="{dir_name}" class="svelte-xrr240">{file_name}</a>'
|
||||
return a
|
||||
|
||||
def html_local_img(__file):
|
||||
a = f'<div align="center"><img src="file={__file}"></div>'
|
||||
return a
|
||||
|
||||
def ipaddr():
|
||||
# 获取本地ipx
|
||||
ip = psutil.net_if_addrs()
|
||||
for i in ip:
|
||||
if ip[i][0][3]:
|
||||
return ip[i][0][1]
|
||||
|
||||
|
||||
def encryption_str(txt: str):
|
||||
"""(关键字)(加密间隔)匹配机制(关键字间隔)"""
|
||||
txt = str(txt)
|
||||
pattern = re.compile(rf"(Authorization|WPS-Sid|Cookie)(:|\s+)\s*(\S+)[\s\S]*?(?=\n|$|\s)", re.IGNORECASE)
|
||||
result = pattern.sub(lambda x: x.group(1) + ": XXXXXXXX", txt)
|
||||
return result
|
||||
|
||||
|
||||
def tree_out(dir=os.path.dirname(__file__), line=2, more=''):
|
||||
"""
|
||||
获取本地文件的树形结构转化为Markdown代码文本
|
||||
"""
|
||||
out = Shell(f'tree {dir} -F -I "__*|.*|venv|*.png|*.xlsx" -L {line} {more}').read()[1]
|
||||
localfile = os.path.join(os.path.dirname(__file__), '.tree.md')
|
||||
with open(localfile, 'w') as f:
|
||||
f.write('```\n')
|
||||
ll = out.splitlines()
|
||||
for i in range(len(ll)):
|
||||
if i == 0:
|
||||
f.write(ll[i].split('/')[-2] + '\n')
|
||||
else:
|
||||
f.write(ll[i] + '\n')
|
||||
f.write('```\n')
|
||||
|
||||
|
||||
def chat_history(log: list, split=0):
|
||||
"""
|
||||
auto_gpt 使用的代码,后续会迁移
|
||||
"""
|
||||
if split:
|
||||
log = log[split:]
|
||||
chat = ''
|
||||
history = ''
|
||||
for i in log:
|
||||
chat += f'{i[0]}\n\n'
|
||||
history += f'{i[1]}\n\n'
|
||||
return chat, history
|
||||
|
||||
|
||||
def df_similarity(s1, s2):
|
||||
"""弃用,会警告,这个库不会用"""
|
||||
def add_space(s):
|
||||
return ' '.join(list(s))
|
||||
|
||||
# 将字中间加入空格
|
||||
s1, s2 = add_space(s1), add_space(s2)
|
||||
# 转化为TF矩阵
|
||||
cv = CountVectorizer(tokenizer=lambda s: s.split())
|
||||
corpus = [s1, s2]
|
||||
vectors = cv.fit_transform(corpus).toarray()
|
||||
# 计算TF系数
|
||||
return np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1]))
|
||||
|
||||
|
||||
def check_json_format(file):
|
||||
"""
|
||||
检查上传的Json文件是否符合规范
|
||||
"""
|
||||
new_dict = {}
|
||||
data = JsonHandle(file).load()
|
||||
if type(data) is list and len(data) > 0:
|
||||
if type(data[0]) is dict:
|
||||
for i in data:
|
||||
new_dict.update({i['act']: i['prompt']})
|
||||
return new_dict
|
||||
|
||||
|
||||
def json_convert_dict(file):
|
||||
"""
|
||||
批量将json转换为字典
|
||||
"""
|
||||
new_dict = {}
|
||||
for root, dirs, files in os.walk(file):
|
||||
for f in files:
|
||||
if f.startswith('prompt') and f.endswith('json'):
|
||||
new_dict.update(check_json_format(f))
|
||||
return new_dict
|
||||
|
||||
|
||||
def draw_results(txt, prompt: gr.Dataset, percent, switch, ipaddr: gr.Request):
|
||||
"""
|
||||
绘制搜索结果
|
||||
Args:
|
||||
txt (str): 过滤文本
|
||||
prompt : 原始的dataset对象
|
||||
percent (int): TF系数,用于计算文本相似度
|
||||
switch (list): 过滤个人或所有人的Prompt
|
||||
ipaddr : 请求人信息
|
||||
Returns:
|
||||
注册函数所需的元祖对象
|
||||
"""
|
||||
data = diff_list(txt, percent=percent, switch=switch, hosts=ipaddr.client.host)
|
||||
prompt.samples = data
|
||||
return prompt.update(samples=data, visible=True), prompt
|
||||
|
||||
|
||||
def diff_list(txt='', percent=0.70, switch: list = None, lst: dict = None, sp=15, hosts=''):
|
||||
"""
|
||||
按照搜索结果统计相似度的文本,两组文本相似度>70%的将统计在一起,取最长的作为key
|
||||
Args:
|
||||
txt (str): 过滤文本
|
||||
percent (int): TF系数,用于计算文本相似度
|
||||
switch (list): 过滤个人或所有人的Prompt
|
||||
lst:指定一个列表或字典
|
||||
sp: 截取展示的文本长度
|
||||
hosts : 请求人的ip
|
||||
Returns:
|
||||
返回一个列表
|
||||
"""
|
||||
count_dict = {}
|
||||
is_all = toolbox.get_conf('prompt_list')[0]['key'][1]
|
||||
if not lst:
|
||||
lst = {}
|
||||
tabs = SqliteHandle().get_tables()
|
||||
if is_all in switch:
|
||||
lst.update(SqliteHandle(f"ai_common_{hosts}").get_prompt_value(txt))
|
||||
else:
|
||||
for tab in tabs:
|
||||
if tab.startswith('ai_common'):
|
||||
lst.update(SqliteHandle(f"{tab}").get_prompt_value(txt))
|
||||
lst.update(SqliteHandle(f"ai_private_{hosts}").get_prompt_value(txt))
|
||||
# diff 数据,根据precent系数归类数据
|
||||
str_ = time.time()
|
||||
def tf_factor_calcul(i):
|
||||
found = False
|
||||
dict_copy = count_dict.copy()
|
||||
for key in dict_copy.keys():
|
||||
str_tf = Levenshtein.jaro_winkler(i, key)
|
||||
if str_tf >= percent:
|
||||
if len(i) > len(key):
|
||||
count_dict[i] = count_dict.copy()[key] + 1
|
||||
count_dict.pop(key)
|
||||
else:
|
||||
count_dict[key] += 1
|
||||
found = True
|
||||
break
|
||||
if not found: count_dict[i] = 1
|
||||
with ThreadPoolExecutor(100) as executor:
|
||||
executor.map(tf_factor_calcul, lst)
|
||||
print('计算耗时', time.time()-str_)
|
||||
sorted_dict = sorted(count_dict.items(), key=lambda x: x[1], reverse=True)
|
||||
if switch:
|
||||
sorted_dict += prompt_retrieval(is_all=switch, hosts=hosts, search=True)
|
||||
dateset_list = []
|
||||
for key in sorted_dict:
|
||||
# 开始匹配关键字
|
||||
index = str(key[0]).lower().find(txt.lower())
|
||||
index_ = str(key[1]).lower().find(txt.lower())
|
||||
if index != -1 or index_ != -1:
|
||||
if index == -1: index = index_ # 增加搜索prompt 名称
|
||||
# sp=split 用于判断在哪里启动、在哪里断开
|
||||
if index - sp > 0:
|
||||
start = index - sp
|
||||
else:
|
||||
start = 0
|
||||
if len(key[0]) > sp * 2:
|
||||
end = key[0][-sp:]
|
||||
else:
|
||||
end = ''
|
||||
# 判断有没有传需要匹配的字符串,有则筛选、无则全返
|
||||
if txt == '' and len(key[0]) >= sp:
|
||||
show = key[0][0:sp] + " . . . " + end
|
||||
show = show.replace('<', '')
|
||||
elif txt == '' and len(key[0]) < sp:
|
||||
show = key[0][0:sp]
|
||||
show = show.replace('<', '')
|
||||
else:
|
||||
show = str(key[0][start:index + sp]).replace('<', '').replace(txt, html_tag_color(txt))
|
||||
show += f" {html_tag_color(' X ' + str(key[1]))}"
|
||||
if lst.get(key[0]):
|
||||
be_value = lst[key[0]]
|
||||
else:
|
||||
be_value = None
|
||||
value = be_value
|
||||
dateset_list.append([show, key[0], value, key[1]])
|
||||
return dateset_list
|
||||
|
||||
|
||||
def prompt_upload_refresh(file, prompt, ipaddr: gr.Request):
|
||||
"""
|
||||
上传文件,将文件转换为字典,然后存储到数据库,并刷新Prompt区域
|
||||
Args:
|
||||
file: 上传的文件
|
||||
prompt: 原始prompt对象
|
||||
ipaddr:ipaddr用户请求信息
|
||||
Returns:
|
||||
注册函数所需的元祖对象
|
||||
"""
|
||||
hosts = ipaddr.client.host
|
||||
if file.name.endswith('json'):
|
||||
upload_data = check_json_format(file.name)
|
||||
elif file.name.endswith('yaml'):
|
||||
upload_data = YamlHandle(file.name).load()
|
||||
else:
|
||||
upload_data = {}
|
||||
if upload_data != {}:
|
||||
SqliteHandle(f'prompt_{hosts}').inset_prompt(upload_data)
|
||||
ret_data = prompt_retrieval(is_all=['个人'], hosts=hosts)
|
||||
return prompt.update(samples=ret_data, visible=True), prompt, ['个人']
|
||||
else:
|
||||
prompt.samples = [[f'{html_tag_color("数据解析失败,请检查文件是否符合规范", color="red")}', '']]
|
||||
return prompt.samples, prompt, []
|
||||
|
||||
|
||||
def prompt_retrieval(is_all, hosts='', search=False):
|
||||
"""
|
||||
上传文件,将文件转换为字典,然后存储到数据库,并刷新Prompt区域
|
||||
Args:
|
||||
is_all: prompt类型
|
||||
hosts: 查询的用户ip
|
||||
search:支持搜索,搜索时将key作为key
|
||||
Returns:
|
||||
返回一个列表
|
||||
"""
|
||||
count_dict = {}
|
||||
if '所有人' in is_all:
|
||||
for tab in SqliteHandle('ai_common').get_tables():
|
||||
if tab.startswith('prompt'):
|
||||
data = SqliteHandle(tab).get_prompt_value(None)
|
||||
if data: count_dict.update(data)
|
||||
elif '个人' in is_all:
|
||||
data = SqliteHandle(f'prompt_{hosts}').get_prompt_value(None)
|
||||
if data: count_dict.update(data)
|
||||
retrieval = []
|
||||
if count_dict != {}:
|
||||
for key in count_dict:
|
||||
if not search:
|
||||
retrieval.append([key, count_dict[key]])
|
||||
else:
|
||||
retrieval.append([count_dict[key], key])
|
||||
return retrieval
|
||||
else:
|
||||
return retrieval
|
||||
|
||||
|
||||
def prompt_reduce(is_all, prompt: gr.Dataset, ipaddr: gr.Request): # is_all, ipaddr: gr.Request
|
||||
"""
|
||||
上传文件,将文件转换为字典,然后存储到数据库,并刷新Prompt区域
|
||||
Args:
|
||||
is_all: prompt类型
|
||||
prompt: dataset原始对象
|
||||
ipaddr:请求用户信息
|
||||
Returns:
|
||||
返回注册函数所需的对象
|
||||
"""
|
||||
data = prompt_retrieval(is_all=is_all, hosts=ipaddr.client.host)
|
||||
prompt.samples = data
|
||||
return prompt.update(samples=data, visible=True), prompt, is_all
|
||||
|
||||
|
||||
def prompt_save(txt, name, prompt: gr.Dataset, ipaddr: gr.Request):
|
||||
"""
|
||||
编辑和保存Prompt
|
||||
Args:
|
||||
txt: Prompt正文
|
||||
name: Prompt的名字
|
||||
prompt: dataset原始对象
|
||||
ipaddr:请求用户信息
|
||||
Returns:
|
||||
返回注册函数所需的对象
|
||||
"""
|
||||
if txt and name:
|
||||
yaml_obj = SqliteHandle(f'prompt_{ipaddr.client.host}')
|
||||
yaml_obj.inset_prompt({name: txt})
|
||||
result = prompt_retrieval(is_all=['个人'], hosts=ipaddr.client.host)
|
||||
prompt.samples = result
|
||||
return "", "", ['个人'], prompt.update(samples=result, visible=True), prompt, gr.Tabs.update(selected='chatbot')
|
||||
elif not txt or not name:
|
||||
result = [[f'{html_tag_color("编辑框 or 名称不能为空!!!!!", color="red")}', '']]
|
||||
prompt.samples = [[f'{html_tag_color("编辑框 or 名称不能为空!!!!!", color="red")}', '']]
|
||||
return txt, name, [], prompt.update(samples=result, visible=True), prompt, gr.Tabs.update(selected='chatbot')
|
||||
|
||||
|
||||
def prompt_input(txt: str, prompt_str, name_str, index, data: gr.Dataset, tabs_index):
|
||||
"""
|
||||
点击dataset的值使用Prompt
|
||||
Args:
|
||||
txt: 输入框正文
|
||||
index: 点击的Dataset下标
|
||||
data: dataset原始对象
|
||||
Returns:
|
||||
返回注册函数所需的对象
|
||||
"""
|
||||
data_str = str(data.samples[index][1])
|
||||
data_name = str(data.samples[index][0])
|
||||
rp_str = '{{{v}}}'
|
||||
|
||||
def str_v_handle(__str):
|
||||
if data_str.find(rp_str) != -1 and __str:
|
||||
txt_temp = data_str.replace(rp_str, __str)
|
||||
elif __str:
|
||||
txt_temp = data_str + '\n' + __str
|
||||
else:
|
||||
txt_temp = data_str
|
||||
return txt_temp
|
||||
if tabs_index == 1:
|
||||
new_txt = str_v_handle(prompt_str)
|
||||
return txt, new_txt, data_name
|
||||
else:
|
||||
new_txt = str_v_handle(txt)
|
||||
return new_txt, prompt_str, name_str
|
||||
|
||||
|
||||
def copy_result(history):
|
||||
"""复制history"""
|
||||
if history != []:
|
||||
pyperclip.copy(history[-1])
|
||||
return '已将结果复制到剪切板'
|
||||
else:
|
||||
return "无对话记录,复制错误!!"
|
||||
|
||||
|
||||
def str_is_list(s):
|
||||
try:
|
||||
list_ast = ast.literal_eval(s)
|
||||
return isinstance(list_ast, list)
|
||||
except (SyntaxError, ValueError):
|
||||
return False
|
||||
|
||||
|
||||
def show_prompt_result(index, data: gr.Dataset, chatbot, pro_edit, pro_name):
|
||||
"""
|
||||
查看Prompt的对话记录结果
|
||||
Args:
|
||||
index: 点击的Dataset下标
|
||||
data: dataset原始对象
|
||||
chatbot:聊天机器人
|
||||
Returns:
|
||||
返回注册函数所需的对象
|
||||
"""
|
||||
click = data.samples[index]
|
||||
if str_is_list(click[2]):
|
||||
list_copy = eval(click[2])
|
||||
for i in range(0, len(list_copy), 2):
|
||||
if i + 1 >= len(list_copy): # 如果下标越界了,单独处理最后一个元素
|
||||
chatbot.append([list_copy[i]])
|
||||
else:
|
||||
chatbot.append([list_copy[i], list_copy[i + 1]])
|
||||
elif click[2] is None and pro_edit == '':
|
||||
pro_edit = click[1]
|
||||
pro_name = click[3]
|
||||
else:
|
||||
chatbot.append((click[1], click[2]))
|
||||
return chatbot, pro_edit, pro_name
|
||||
|
||||
|
||||
|
||||
def pattern_html(html):
|
||||
bs = BeautifulSoup(str(html), 'html.parser')
|
||||
md_message = bs.find('div', {'class': 'md-message'})
|
||||
if md_message:
|
||||
return md_message.get_text(separator='')
|
||||
else:
|
||||
return ""
|
||||
|
||||
|
||||
def thread_write_chat(chatbot, history):
|
||||
"""
|
||||
对话记录写入数据库
|
||||
"""
|
||||
chatbot, history = copy.copy(chatbot), copy.copy(history)
|
||||
private_key = toolbox.get_conf('private_key')[0]
|
||||
chat_title = chatbot[0][1].split()
|
||||
i_say = pattern_html(chatbot[-1][0])
|
||||
if history:
|
||||
gpt_result = history
|
||||
else: # 如果历史对话不存在,那么读取对话框
|
||||
gpt_result = [pattern_html(v) for i in chatbot for v in i]
|
||||
if private_key in chat_title:
|
||||
SqliteHandle(f'ai_private_{chat_title[-2]}').inset_prompt({i_say: gpt_result})
|
||||
else:
|
||||
SqliteHandle(f'ai_common_{chat_title[-2]}').inset_prompt({i_say: gpt_result})
|
||||
|
||||
|
||||
base_path = os.path.dirname(__file__)
|
||||
prompt_path = os.path.join(base_path, 'users_data')
|
||||
users_path = os.path.join(base_path, 'private_upload')
|
||||
logs_path = os.path.join(base_path, 'gpt_log')
|
||||
|
||||
def reuse_chat(result, chatbot, history, pro_numb, say):
|
||||
"""复用对话记录"""
|
||||
if result is None or result == []:
|
||||
return chatbot, history, gr.update(), gr.update(), '', gr.Column.update()
|
||||
else:
|
||||
if pro_numb:
|
||||
chatbot += result
|
||||
history += [pattern_html(_) for i in result for _ in i]
|
||||
else:
|
||||
chatbot.append(result[-1])
|
||||
history += [pattern_html(_) for i in result[-2:] for _ in i]
|
||||
print(chatbot[-1][0])
|
||||
return chatbot, history, say, gr.Tabs.update(selected='chatbot'), '', gr.Column.update(visible=False)
|
||||
|
||||
|
||||
def num_tokens_from_string(listing: list, encoding_name: str = 'cl100k_base') -> int:
|
||||
"""Returns the number of tokens in a text string."""
|
||||
count_tokens = 0
|
||||
for i in listing:
|
||||
encoding = tiktoken.get_encoding(encoding_name)
|
||||
count_tokens += len(encoding.encode(i))
|
||||
return count_tokens
|
||||
|
||||
|
||||
def spinner_chatbot_loading(chatbot):
|
||||
loading = [''.join(['.' * random.randint(1, 5)])]
|
||||
# 将元组转换为列表并修改元素
|
||||
loading_msg = copy.deepcopy(chatbot)
|
||||
temp_list = list(loading_msg[-1])
|
||||
|
||||
temp_list[1] = pattern_html(temp_list[1]) + f'{random.choice(loading)}'
|
||||
# 将列表转换回元组并替换原始元组
|
||||
loading_msg[-1] = tuple(temp_list)
|
||||
return loading_msg
|
||||
|
||||
|
||||
def refresh_load_data(chat, history, prompt, crazy_list, request: gr.Request):
|
||||
"""
|
||||
Args:
|
||||
chat: 聊天组件
|
||||
history: 对话记录
|
||||
prompt: prompt dataset组件
|
||||
|
||||
Returns:
|
||||
预期是每次刷新页面,加载最新
|
||||
"""
|
||||
is_all = toolbox.get_conf('prompt_list')[0]['key'][0]
|
||||
data = prompt_retrieval(is_all=[is_all])
|
||||
prompt.samples = data
|
||||
selected = random.sample(crazy_list, 4)
|
||||
user_agent = request.kwargs['headers']['user-agent'].lower()
|
||||
if user_agent.find('android') != -1 or user_agent.find('iphone') != -1:
|
||||
hied_elem = gr.update(visible=False)
|
||||
else:
|
||||
hied_elem = gr.update()
|
||||
outputs = [prompt.update(samples=data, visible=True), prompt,
|
||||
chat, history, gr.Dataset.update(samples=[[i] for i in selected]), selected,
|
||||
hied_elem, hied_elem]
|
||||
return outputs
|
||||
|
||||
|
||||
|
||||
def txt_converter_json(input_string):
|
||||
try:
|
||||
if input_string.startswith("{") and input_string.endswith("}"):
|
||||
# 尝试将字符串形式的字典转换为字典对象
|
||||
dict_object = ast.literal_eval(input_string)
|
||||
else:
|
||||
# 尝试将字符串解析为JSON对象
|
||||
dict_object = json.loads(input_string)
|
||||
formatted_json_string = json.dumps(dict_object, indent=4, ensure_ascii=False)
|
||||
return formatted_json_string
|
||||
except (ValueError, SyntaxError):
|
||||
return input_string
|
||||
|
||||
|
||||
def clean_br_string(s):
|
||||
s = re.sub('<\s*br\s*/?>', '\n', s) # 使用正则表达式同时匹配<br>、<br/>、<br />、< br>和< br/>
|
||||
return s
|
||||
|
||||
|
||||
def update_btn(self,
|
||||
value: str = None,
|
||||
variant: str = None,
|
||||
visible: bool = None,
|
||||
interactive: bool = None,
|
||||
elem_id: str = None,
|
||||
label: str = None
|
||||
):
|
||||
if not variant: variant = self.variant
|
||||
if not visible: visible = self.visible
|
||||
if not value: value = self.value
|
||||
if not interactive: interactive = self.interactive
|
||||
if not elem_id: elem_id = self.elem_id
|
||||
if not elem_id: label = self.label
|
||||
return {
|
||||
"variant": variant,
|
||||
"visible": visible,
|
||||
"value": value,
|
||||
"interactive": interactive,
|
||||
'elem_id': elem_id,
|
||||
'label': label,
|
||||
"__type__": "update",
|
||||
}
|
||||
|
||||
def update_txt(self,
|
||||
value: str = None,
|
||||
lines: int = None,
|
||||
max_lines: int = None,
|
||||
placeholder: str = None,
|
||||
label: str = None,
|
||||
show_label: bool = None,
|
||||
visible: bool = None,
|
||||
interactive: bool = None,
|
||||
type: str = None,
|
||||
elem_id: str = None
|
||||
):
|
||||
|
||||
return {
|
||||
"lines": self.lines,
|
||||
"max_lines": self.max_lines,
|
||||
"placeholder": self.placeholder,
|
||||
"label": self.label,
|
||||
"show_label": self.show_label,
|
||||
"visible": self.visible,
|
||||
"value": self.value,
|
||||
"type": self.type,
|
||||
"interactive": self.interactive,
|
||||
"elem_id": elem_id,
|
||||
"__type__": "update",
|
||||
|
||||
}
|
||||
|
||||
|
||||
def get_html(filename):
|
||||
path = os.path.join(base_path, "docs/assets", "html", filename)
|
||||
if os.path.exists(path):
|
||||
with open(path, encoding="utf8") as file:
|
||||
return file.read()
|
||||
return ""
|
||||
|
||||
|
||||
def git_log_list():
|
||||
ll = Shell("git log --pretty=format:'%s | %h' -n 10").read()[1].splitlines()
|
||||
|
||||
return [i.split('|') for i in ll if 'branch' not in i][:5]
|
||||
|
||||
import qrcode
|
||||
from PIL import Image, ImageDraw
|
||||
def qr_code_generation(data, icon_path=None, file_name='qc_icon.png'):
|
||||
# 创建qrcode对象
|
||||
qr = qrcode.QRCode(version=2, error_correction=qrcode.constants.ERROR_CORRECT_Q, box_size=10, border=2,)
|
||||
qr.add_data(data)
|
||||
# 创建二维码图片
|
||||
img = qr.make_image()
|
||||
# 图片转换为RGBA格式
|
||||
img = img.convert('RGBA')
|
||||
# 返回二维码图片的大小
|
||||
img_w, img_h = img.size
|
||||
# 打开logo
|
||||
if not icon_path:
|
||||
icon_path = os.path.join(base_path, 'docs/assets/PLAI.jpeg')
|
||||
logo = Image.open(icon_path)
|
||||
# logo大小为二维码的四分之一
|
||||
logo_w = img_w // 4
|
||||
logo_h = img_w // 4
|
||||
# 修改logo图片大小
|
||||
logo = logo.resize((logo_w, logo_h), Image.LANCZOS) # or Image.Resampling.LANCZOS
|
||||
# 把logo放置在二维码中间
|
||||
w = (img_w - logo_w) // 2
|
||||
h = (img_h - logo_h) // 2
|
||||
img.paste(logo, (w, h))
|
||||
qr_path = os.path.join(logs_path, 'file_name')
|
||||
img.save()
|
||||
return qr_path
|
||||
|
||||
|
||||
class YamlHandle:
|
||||
|
||||
def __init__(self, file=os.path.join(prompt_path, 'ai_common.yaml')):
|
||||
if not os.path.exists(file):
|
||||
Shell(f'touch {file}').read()
|
||||
self.file = file
|
||||
self._load = self.load()
|
||||
|
||||
def load(self) -> dict:
|
||||
with open(file=self.file, mode='r') as f:
|
||||
data = yaml.safe_load(f)
|
||||
return data
|
||||
|
||||
def update(self, key, value):
|
||||
date = self._load
|
||||
if not date:
|
||||
date = {}
|
||||
date[key] = value
|
||||
with open(file=self.file, mode='w') as f:
|
||||
yaml.dump(date, f, allow_unicode=True)
|
||||
return date
|
||||
|
||||
def dump_dict(self, new_dict):
|
||||
date = self._load
|
||||
if not date:
|
||||
date = {}
|
||||
date.update(new_dict)
|
||||
with open(file=self.file, mode='w') as f:
|
||||
yaml.dump(date, f, allow_unicode=True)
|
||||
return date
|
||||
|
||||
|
||||
class JsonHandle:
|
||||
|
||||
def __init__(self, file):
|
||||
self.file = file
|
||||
|
||||
def load(self) -> object:
|
||||
with open(self.file, 'r') as f:
|
||||
data = json.load(f)
|
||||
return data
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
80
main.py
80
main.py
@ -4,25 +4,28 @@ def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖,详情信息见requirements.txt"
|
||||
from request_llm.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
|
||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
|
||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT')
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
if not AUTHENTICATION: AUTHENTICATION = None
|
||||
|
||||
from check_proxy import get_current_version
|
||||
from themes.theme import adjust_theme, advanced_css, theme_declaration
|
||||
initial_prompt = "Serve me as a writing and programming assistant."
|
||||
title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>"
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
|
||||
|
||||
# 问询记录, python 版本建议3.9+(越新越好)
|
||||
import logging
|
||||
import logging, uuid
|
||||
os.makedirs("gpt_log", exist_ok=True)
|
||||
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
|
||||
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
|
||||
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||
# Disable logging output from the 'httpx' logger
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
|
||||
|
||||
# 一些普通功能模块
|
||||
@ -37,7 +40,6 @@ def main():
|
||||
gr.Chatbot.postprocess = format_io
|
||||
|
||||
# 做一些外观色彩上的调整
|
||||
from theme import adjust_theme, advanced_css
|
||||
set_theme = adjust_theme()
|
||||
|
||||
# 代理与自动更新
|
||||
@ -45,23 +47,23 @@ def main():
|
||||
proxy_info = check_proxy(proxies)
|
||||
|
||||
gr_L1 = lambda: gr.Row().style()
|
||||
gr_L2 = lambda scale: gr.Column(scale=scale)
|
||||
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id)
|
||||
if LAYOUT == "TOP-DOWN":
|
||||
gr_L1 = lambda: DummyWith()
|
||||
gr_L2 = lambda scale: gr.Row()
|
||||
gr_L2 = lambda scale, elem_id: gr.Row()
|
||||
CHATBOT_HEIGHT /= 2
|
||||
|
||||
cancel_handles = []
|
||||
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||
gr.HTML(title_html)
|
||||
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
|
||||
cookies = gr.State(load_chat_cookies())
|
||||
with gr_L1():
|
||||
with gr_L2(scale=2):
|
||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}")
|
||||
chatbot.style(height=CHATBOT_HEIGHT)
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
||||
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
||||
history = gr.State([])
|
||||
with gr_L2(scale=1):
|
||||
with gr.Accordion("输入区", open=True) as area_input_primary:
|
||||
with gr_L2(scale=1, elem_id="gpt-panel"):
|
||||
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
||||
with gr.Row():
|
||||
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
|
||||
with gr.Row():
|
||||
@ -70,17 +72,20 @@ def main():
|
||||
resetBtn = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
|
||||
stopBtn = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
|
||||
clearBtn = gr.Button("清除", variant="secondary", visible=False); clearBtn.style(size="sm")
|
||||
if ENABLE_AUDIO:
|
||||
with gr.Row():
|
||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}")
|
||||
with gr.Accordion("基础功能区", open=True) as area_basic_fn:
|
||||
audio_mic = gr.Audio(source="microphone", type="numpy", streaming=True, show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
|
||||
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
|
||||
with gr.Row():
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
|
||||
functional[k]["Button"] = gr.Button(k, variant=variant)
|
||||
with gr.Accordion("函数插件区", open=True) as area_crazy_fn:
|
||||
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
|
||||
with gr.Row():
|
||||
gr.Markdown("注意:以下“红颜色”标识的函数插件需从输入区读取路径作为参数.")
|
||||
gr.Markdown("插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)")
|
||||
with gr.Row():
|
||||
for k in crazy_fns:
|
||||
if not crazy_fns[k].get("AsButton", True): continue
|
||||
@ -91,16 +96,16 @@ def main():
|
||||
with gr.Accordion("更多函数插件", open=True):
|
||||
dropdown_fn_list = [k for k in crazy_fns.keys() if not crazy_fns[k].get("AsButton", True)]
|
||||
with gr.Row():
|
||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="").style(container=False)
|
||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="", show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
|
||||
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
||||
with gr.Row():
|
||||
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary")
|
||||
with gr.Row():
|
||||
with gr.Accordion("点击展开“文件上传区”。上传本地文件可供红色函数插件调用。", open=False) as area_file_up:
|
||||
with gr.Accordion("点击展开“文件上传区”。上传本地文件/压缩包供函数插件调用。", open=False) as area_file_up:
|
||||
file_upload = gr.Files(label="任何文件, 但推荐上传压缩文件(zip, tar)", file_count="multiple")
|
||||
with gr.Accordion("更换模型 & SysPrompt & 交互界面布局", open=(LAYOUT == "TOP-DOWN")):
|
||||
with gr.Accordion("更换模型 & SysPrompt & 交互界面布局", open=(LAYOUT == "TOP-DOWN"), elem_id="interact-panel"):
|
||||
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
||||
@ -109,7 +114,7 @@ def main():
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||
|
||||
gr.Markdown(description)
|
||||
with gr.Accordion("备选输入区", open=True, visible=False) as area_input_secondary:
|
||||
with gr.Accordion("备选输入区", open=True, visible=False, elem_id="input-panel2") as area_input_secondary:
|
||||
with gr.Row():
|
||||
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", label="输入区2").style(container=False)
|
||||
with gr.Row():
|
||||
@ -130,9 +135,9 @@ def main():
|
||||
ret.update({plugin_advanced_arg: gr.update(visible=("插件参数区" in a))})
|
||||
if "底部输入区" in a: ret.update({txt: gr.update(value="")})
|
||||
return ret
|
||||
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, clearBtn, clearBtn2, plugin_advanced_arg] )
|
||||
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2, clearBtn, clearBtn2, plugin_advanced_arg] )
|
||||
# 整理反复出现的控件句柄组合
|
||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg]
|
||||
output_combo = [cookies, chatbot, history, status]
|
||||
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo)
|
||||
# 提交按钮、重置按钮
|
||||
@ -155,7 +160,7 @@ def main():
|
||||
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
|
||||
cancel_handles.append(click_handle)
|
||||
# 文件上传区,接收文件后与chatbot的互动
|
||||
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt ], [chatbot, txt])
|
||||
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt, txt2, checkboxes], [chatbot, txt, txt2])
|
||||
# 函数插件-固定按钮区
|
||||
for k in crazy_fns:
|
||||
if not crazy_fns[k].get("AsButton", True): continue
|
||||
@ -176,15 +181,28 @@ def main():
|
||||
return {chatbot: gr.update(label="当前模型:"+k)}
|
||||
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
|
||||
# 随变按钮的回调函数注册
|
||||
def route(k, *args, **kwargs):
|
||||
def route(request: gr.Request, k, *args, **kwargs):
|
||||
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
||||
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
|
||||
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(request, *args, **kwargs)
|
||||
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
|
||||
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
|
||||
cancel_handles.append(click_handle)
|
||||
# 终止按钮的回调函数注册
|
||||
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.live_audio.audio_io import RealtimeAudioDistribution
|
||||
rad = RealtimeAudioDistribution()
|
||||
def deal_audio(audio, cookies):
|
||||
rad.feed(cookies['uuid'].hex, audio)
|
||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||
|
||||
def init_cookie(cookies, chatbot):
|
||||
# 为每一位访问的用户赋予一个独一无二的uuid编码
|
||||
cookies.update({'uuid': uuid.uuid4()})
|
||||
return cookies
|
||||
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
||||
demo.load(lambda: 0, inputs=None, outputs=None, _js='()=>{ChatBotHeight();}')
|
||||
|
||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||
def auto_opentab_delay():
|
||||
|
||||
@ -33,7 +33,7 @@ import pickle
|
||||
import time
|
||||
|
||||
CACHE_FOLDER = "gpt_log"
|
||||
blacklist = ['multi-language', 'gpt_log', '.git', 'private_upload', 'multi_language.py']
|
||||
blacklist = ['multi-language', 'gpt_log', '.git', 'private_upload', 'multi_language.py', 'build', '.github', '.vscode', '__pycache__', 'venv']
|
||||
|
||||
# LANG = "TraditionalChinese"
|
||||
# TransPrompt = f"Replace each json value `#` with translated results in Traditional Chinese, e.g., \"原始文本\":\"翻譯後文字\". Keep Json format. Do not answer #."
|
||||
@ -301,6 +301,7 @@ def step_1_core_key_translate():
|
||||
elif isinstance(node, ast.ImportFrom):
|
||||
for n in node.names:
|
||||
if contains_chinese(n.name): syntax.append(n.name)
|
||||
# if node.module is None: print(node.module)
|
||||
for k in node.module.split('.'):
|
||||
if contains_chinese(k): syntax.append(k)
|
||||
return syntax
|
||||
@ -310,6 +311,7 @@ def step_1_core_key_translate():
|
||||
for root, dirs, files in os.walk(directory_path):
|
||||
if any([b in root for b in blacklist]):
|
||||
continue
|
||||
print(files)
|
||||
for file in files:
|
||||
if file.endswith('.py'):
|
||||
file_path = os.path.join(root, file)
|
||||
@ -505,6 +507,6 @@ def step_2_core_key_translate():
|
||||
with open(file_path_new, 'w', encoding='utf-8') as f:
|
||||
f.write(content)
|
||||
os.remove(file_path)
|
||||
|
||||
step_1_core_key_translate()
|
||||
step_2_core_key_translate()
|
||||
print('Finished, checkout generated results at ./multi-language/')
|
||||
@ -1,102 +0,0 @@
|
||||
#! .\venv\
|
||||
# encoding: utf-8
|
||||
# @Time : 2023/4/19
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
import os.path
|
||||
import sqlite3
|
||||
import threading
|
||||
import functools
|
||||
import func_box
|
||||
# 连接到数据库
|
||||
base_path = os.path.dirname(__file__)
|
||||
prompt_path = os.path.join(base_path, 'users_data')
|
||||
|
||||
|
||||
def connect_db_close(cls_method):
|
||||
@functools.wraps(cls_method)
|
||||
def wrapper(cls=None, *args, **kwargs):
|
||||
cls._connect_db()
|
||||
result = cls_method(cls, *args, **kwargs)
|
||||
cls._close_db()
|
||||
return result
|
||||
return wrapper
|
||||
|
||||
|
||||
class SqliteHandle:
|
||||
def __init__(self, table='ai_common', database='ai_prompt.db'):
|
||||
self.__database = database
|
||||
self.__connect = sqlite3.connect(os.path.join(prompt_path, self.__database))
|
||||
self.__cursor = self.__connect.cursor()
|
||||
self.__table = table
|
||||
if self.__table not in self.get_tables():
|
||||
self.create_tab()
|
||||
|
||||
def new_connect_db(self):
|
||||
"""多线程操作时,每个线程新建独立的connect"""
|
||||
self.__connect = sqlite3.connect(os.path.join(prompt_path, self.__database))
|
||||
self.__cursor = self.__connect.cursor()
|
||||
|
||||
def new_close_db(self):
|
||||
self.__cursor.close()
|
||||
self.__connect.close()
|
||||
|
||||
def create_tab(self):
|
||||
self.__cursor.execute(f"CREATE TABLE `{self.__table}` ('prompt' TEXT UNIQUE, 'result' TEXT)")
|
||||
|
||||
def get_tables(self):
|
||||
all_tab = []
|
||||
result = self.__cursor.execute("SELECT name FROM sqlite_master WHERE type = 'table';")
|
||||
for tab in result:
|
||||
all_tab.append(tab[0])
|
||||
return all_tab
|
||||
|
||||
def get_prompt_value(self, find=None):
|
||||
temp_all = {}
|
||||
if find:
|
||||
result = self.__cursor.execute(f"SELECT prompt, result FROM `{self.__table}` WHERE prompt LIKE '%{find}%'").fetchall()
|
||||
else:
|
||||
result = self.__cursor.execute(f"SELECT prompt, result FROM `{self.__table}`").fetchall()
|
||||
for row in result:
|
||||
temp_all[row[0]] = row[1]
|
||||
return temp_all
|
||||
|
||||
def inset_prompt(self, prompt: dict):
|
||||
for key in prompt:
|
||||
self.__cursor.execute(f"REPLACE INTO `{self.__table}` (prompt, result) VALUES (?, ?);", (str(key), str(prompt[key])))
|
||||
self.__connect.commit()
|
||||
|
||||
def delete_prompt(self, name):
|
||||
self.__cursor.execute(f"DELETE from `{self.__table}` where prompt LIKE '{name}'")
|
||||
self.__connect.commit()
|
||||
|
||||
def delete_tabls(self, tab):
|
||||
self.__cursor.execute(f"DROP TABLE `{tab}`;")
|
||||
self.__connect.commit()
|
||||
|
||||
def find_prompt_result(self, name):
|
||||
query = self.__cursor.execute(f"SELECT result FROM `{self.__table}` WHERE prompt LIKE '{name}'").fetchall()
|
||||
if query == []:
|
||||
query = self.__cursor.execute(f"SELECT result FROM `prompt_127.0.0.1` WHERE prompt LIKE '{name}'").fetchall()
|
||||
return query[0][0]
|
||||
else:
|
||||
return query[0][0]
|
||||
|
||||
def cp_db_data(incloud_tab='prompt'):
|
||||
sql_ll = sqlite_handle(database='ai_prompt_cp.db')
|
||||
tabs = sql_ll.get_tables()
|
||||
for i in tabs:
|
||||
if str(i).startswith(incloud_tab):
|
||||
old_data = sqlite_handle(table=i, database='ai_prompt_cp.db').get_prompt_value()
|
||||
sqlite_handle(table=i).inset_prompt(old_data)
|
||||
|
||||
def inset_127_prompt():
|
||||
sql_handle = sqlite_handle(table='prompt_127.0.0.1')
|
||||
prompt_json = os.path.join(prompt_path, 'prompts-PlexPt.json')
|
||||
data_list = func_box.JsonHandle(prompt_json).load()
|
||||
for i in data_list:
|
||||
sql_handle.inset_prompt(prompt={i['act']: i['prompt']})
|
||||
|
||||
sqlite_handle = SqliteHandle
|
||||
if __name__ == '__main__':
|
||||
cp_db_data()
|
||||
@ -13,21 +13,12 @@ from functools import lru_cache
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from toolbox import get_conf, trimmed_format_exc
|
||||
|
||||
from request_llm.bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from request_llm.bridge_chatgpt import predict as chatgpt_ui
|
||||
|
||||
from .bridge_azure_test import predict_no_ui_long_connection as azure_noui
|
||||
from .bridge_azure_test import predict as azure_ui
|
||||
|
||||
from .bridge_azure_test import predict_no_ui_long_connection as azure_noui
|
||||
from .bridge_azure_test import predict as azure_ui
|
||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from .bridge_chatgpt import predict as chatgpt_ui
|
||||
|
||||
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
|
||||
from .bridge_chatglm import predict as chatglm_ui
|
||||
|
||||
from .bridge_newbing import predict_no_ui_long_connection as newbing_noui
|
||||
from .bridge_newbing import predict as newbing_ui
|
||||
|
||||
# from .bridge_tgui import predict_no_ui_long_connection as tgui_noui
|
||||
# from .bridge_tgui import predict as tgui_ui
|
||||
|
||||
@ -54,11 +45,11 @@ class LazyloadTiktoken(object):
|
||||
return encoder.decode(*args, **kwargs)
|
||||
|
||||
# Endpoint 重定向
|
||||
API_URL_REDIRECT, PROXY_API_URL = get_conf("API_URL_REDIRECT", 'PROXY_API_URL')
|
||||
API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "AZURE_ENDPOINT", "AZURE_ENGINE")
|
||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||
proxy_endpoint = PROXY_API_URL
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
# 兼容旧版的配置
|
||||
try:
|
||||
API_URL, = get_conf("API_URL")
|
||||
@ -73,7 +64,6 @@ if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_e
|
||||
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]
|
||||
|
||||
|
||||
|
||||
# 获取tokenizer
|
||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||
tokenizer_gpt4 = LazyloadTiktoken("gpt-4")
|
||||
@ -127,21 +117,12 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
# azure openai
|
||||
"azure-gpt35":{
|
||||
"fn_with_ui": azure_ui,
|
||||
"fn_without_ui": azure_noui,
|
||||
"endpoint": get_conf("AZURE_ENDPOINT"),
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# azure openai
|
||||
"azure-gpt35":{
|
||||
"fn_with_ui": azure_ui,
|
||||
"fn_without_ui": azure_noui,
|
||||
"endpoint": get_conf("AZURE_ENDPOINT"),
|
||||
"azure-gpt-3.5":{
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": azure_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
@ -161,9 +142,9 @@ model_info = {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": api2d_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
"max_token": 8192,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
# 将 chatglm 直接对齐到 chatglm2
|
||||
@ -184,20 +165,34 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# newbing
|
||||
"newbing": {
|
||||
"fn_with_ui": newbing_ui,
|
||||
"fn_without_ui": newbing_noui,
|
||||
"endpoint": newbing_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
}
|
||||
|
||||
|
||||
AVAIL_LLM_MODELS, = get_conf("AVAIL_LLM_MODELS")
|
||||
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
|
||||
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
|
||||
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
|
||||
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
||||
from .bridge_claude import predict as claude_ui
|
||||
model_info.update({
|
||||
"claude-1-100k": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8196,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
model_info.update({
|
||||
"claude-2": {
|
||||
"fn_with_ui": claude_ui,
|
||||
"fn_without_ui": claude_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8196,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
})
|
||||
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
|
||||
from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
|
||||
from .bridge_jittorllms_rwkv import predict as rwkv_ui
|
||||
@ -253,7 +248,6 @@ if "moss" in AVAIL_LLM_MODELS:
|
||||
if "stack-claude" in AVAIL_LLM_MODELS:
|
||||
from .bridge_stackclaude import predict_no_ui_long_connection as claude_noui
|
||||
from .bridge_stackclaude import predict as claude_ui
|
||||
# claude
|
||||
model_info.update({
|
||||
"stack-claude": {
|
||||
"fn_with_ui": claude_ui,
|
||||
@ -268,7 +262,6 @@ if "newbing-free" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||
from .bridge_newbingfree import predict as newbingfree_ui
|
||||
# claude
|
||||
model_info.update({
|
||||
"newbing-free": {
|
||||
"fn_with_ui": newbingfree_ui,
|
||||
@ -281,6 +274,54 @@ if "newbing-free" in AVAIL_LLM_MODELS:
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
try:
|
||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||
from .bridge_newbingfree import predict as newbingfree_ui
|
||||
model_info.update({
|
||||
"newbing": {
|
||||
"fn_with_ui": newbingfree_ui,
|
||||
"fn_without_ui": newbingfree_noui,
|
||||
"endpoint": newbing_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
try:
|
||||
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
|
||||
from .bridge_chatglmft import predict as chatglmft_ui
|
||||
model_info.update({
|
||||
"chatglmft": {
|
||||
"fn_with_ui": chatglmft_ui,
|
||||
"fn_without_ui": chatglmft_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "internlm" in AVAIL_LLM_MODELS:
|
||||
try:
|
||||
from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
|
||||
from .bridge_internlm import predict as internlm_ui
|
||||
model_info.update({
|
||||
"internlm": {
|
||||
"fn_with_ui": internlm_ui,
|
||||
"fn_without_ui": internlm_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
|
||||
def LLM_CATCH_EXCEPTION(f):
|
||||
"""
|
||||
@ -384,6 +425,6 @@ def predict(inputs, llm_kwargs, *args, **kwargs):
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
||||
|
||||
|
||||
@ -1,241 +0,0 @@
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
||||
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||
"""
|
||||
|
||||
import logging
|
||||
import traceback
|
||||
import importlib
|
||||
import openai
|
||||
import time
|
||||
|
||||
|
||||
# 读取config.py文件中关于AZURE OPENAI API的信息
|
||||
from toolbox import get_conf, update_ui, clip_history, trimmed_format_exc
|
||||
TIMEOUT_SECONDS, MAX_RETRY, AZURE_ENGINE, AZURE_ENDPOINT, AZURE_API_VERSION, AZURE_API_KEY = \
|
||||
get_conf('TIMEOUT_SECONDS', 'MAX_RETRY',"AZURE_ENGINE","AZURE_ENDPOINT", "AZURE_API_VERSION", "AZURE_API_KEY")
|
||||
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Openai返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
发送至azure openai api,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
print(llm_kwargs["llm_model"])
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
|
||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
|
||||
openai.api_type = "azure"
|
||||
openai.api_version = AZURE_API_VERSION
|
||||
openai.api_base = AZURE_ENDPOINT
|
||||
openai.api_key = AZURE_API_KEY
|
||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||||
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], "获取response失败,重试中。。。"))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
|
||||
stream_response = response
|
||||
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
|
||||
except StopIteration:
|
||||
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk)}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk) # 刷新界面
|
||||
return
|
||||
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if chunk:
|
||||
#print(chunk)
|
||||
try:
|
||||
if "delta" in chunk["choices"][0]:
|
||||
if chunk["choices"][0]["finish_reason"] == "stop":
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
status_text = f"finish_reason: {chunk['choices'][0]['finish_reason']}"
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunk["choices"][0]["delta"]["content"]
|
||||
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
|
||||
error_msg = chunk
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
发送至AZURE OPENAI API,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
chatGPT的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
while True:
|
||||
|
||||
try:
|
||||
openai.api_type = "azure"
|
||||
openai.api_version = AZURE_API_VERSION
|
||||
openai.api_base = AZURE_ENDPOINT
|
||||
openai.api_key = AZURE_API_KEY
|
||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||||
|
||||
except:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
|
||||
stream_response = response
|
||||
result = ''
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
|
||||
if len(chunk)==0: continue
|
||||
if not chunk.startswith('data:'):
|
||||
error_msg = get_full_error(chunk, stream_response)
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("AZURE OPENAI API拒绝了请求:" + error_msg)
|
||||
else:
|
||||
raise RuntimeError("AZURE OPENAI API拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk): break
|
||||
|
||||
delta = chunk["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if "content" in delta:
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
if chunk['finish_reason'] == 'length':
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
return result
|
||||
|
||||
|
||||
def generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成 azure openai api请求,为发送请求做准备
|
||||
"""
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
payload = {
|
||||
"model": llm_kwargs['llm_model'],
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
"engine": AZURE_ENGINE
|
||||
}
|
||||
try:
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
except:
|
||||
print('输入中可能存在乱码。')
|
||||
return payload
|
||||
|
||||
|
||||
@ -37,15 +37,23 @@ class GetGLMHandle(Process):
|
||||
# 子进程执行
|
||||
# 第一次运行,加载参数
|
||||
retry = 0
|
||||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
||||
|
||||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
_model_name_ = "THUDM/chatglm2-6b-int4"
|
||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
_model_name_ = "THUDM/chatglm2-6b-int8"
|
||||
else:
|
||||
_model_name_ = "THUDM/chatglm2-6b" # FP16
|
||||
|
||||
while True:
|
||||
try:
|
||||
if self.chatglm_model is None:
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||||
if device=='cpu':
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).float()
|
||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
||||
else:
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = self.chatglm_model.eval()
|
||||
break
|
||||
else:
|
||||
|
||||
210
request_llm/bridge_chatglmft.py
Normal file
210
request_llm/bridge_chatglmft.py
Normal file
@ -0,0 +1,210 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import os
|
||||
import json
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
def string_to_options(arguments):
|
||||
import argparse
|
||||
import shlex
|
||||
# Create an argparse.ArgumentParser instance
|
||||
parser = argparse.ArgumentParser()
|
||||
# Add command-line arguments
|
||||
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||||
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||||
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||||
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||||
# Parse the arguments
|
||||
args = parser.parse_args(shlex.split(arguments))
|
||||
return args
|
||||
|
||||
|
||||
#################################################################################
|
||||
class GetGLMFTHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
self.parent, self.child = Pipe()
|
||||
self.chatglmft_model = None
|
||||
self.chatglmft_tokenizer = None
|
||||
self.info = ""
|
||||
self.success = True
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
import sentencepiece
|
||||
self.info = "依赖检测通过"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
return self.chatglmft_model is not None
|
||||
|
||||
def run(self):
|
||||
# 子进程执行
|
||||
# 第一次运行,加载参数
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
if self.chatglmft_model is None:
|
||||
from transformers import AutoConfig
|
||||
import torch
|
||||
# conf = 'request_llm/current_ptune_model.json'
|
||||
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
|
||||
# with open(conf, 'r', encoding='utf8') as f:
|
||||
# model_args = json.loads(f.read())
|
||||
ChatGLM_PTUNING_CHECKPOINT, = get_conf('ChatGLM_PTUNING_CHECKPOINT')
|
||||
assert os.path.exists(ChatGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
|
||||
conf = os.path.join(ChatGLM_PTUNING_CHECKPOINT, "config.json")
|
||||
with open(conf, 'r', encoding='utf8') as f:
|
||||
model_args = json.loads(f.read())
|
||||
if 'model_name_or_path' not in model_args:
|
||||
model_args['model_name_or_path'] = model_args['_name_or_path']
|
||||
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args['model_name_or_path'], trust_remote_code=True)
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args['model_name_or_path'], trust_remote_code=True)
|
||||
|
||||
config.pre_seq_len = model_args['pre_seq_len']
|
||||
config.prefix_projection = model_args['prefix_projection']
|
||||
|
||||
print(f"Loading prefix_encoder weight from {ChatGLM_PTUNING_CHECKPOINT}")
|
||||
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
|
||||
prefix_state_dict = torch.load(os.path.join(ChatGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
|
||||
new_prefix_state_dict = {}
|
||||
for k, v in prefix_state_dict.items():
|
||||
if k.startswith("transformer.prefix_encoder."):
|
||||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||
|
||||
if model_args['quantization_bit'] is not None:
|
||||
print(f"Quantized to {model_args['quantization_bit']} bit")
|
||||
model = model.quantize(model_args['quantization_bit'])
|
||||
model = model.cuda()
|
||||
if model_args['pre_seq_len'] is not None:
|
||||
# P-tuning v2
|
||||
model.transformer.prefix_encoder.float()
|
||||
self.chatglmft_model = model.eval()
|
||||
|
||||
break
|
||||
else:
|
||||
break
|
||||
except Exception as e:
|
||||
retry += 1
|
||||
if retry > 3:
|
||||
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
|
||||
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
|
||||
|
||||
while True:
|
||||
# 进入任务等待状态
|
||||
kwargs = self.child.recv()
|
||||
# 收到消息,开始请求
|
||||
try:
|
||||
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
|
||||
self.child.send(response)
|
||||
# # 中途接收可能的终止指令(如果有的话)
|
||||
# if self.child.poll():
|
||||
# command = self.child.recv()
|
||||
# if command == '[Terminate]': break
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
# 请求处理结束,开始下一个循环
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
# 主进程执行
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs)
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
if res != '[Finish]':
|
||||
yield res
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
global glmft_handle
|
||||
glmft_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
global glmft_handle
|
||||
if glmft_handle is None:
|
||||
glmft_handle = GetGLMFTHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
|
||||
if not glmft_handle.success:
|
||||
error = glmft_handle.info
|
||||
glmft_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# chatglmft 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", sys_prompt])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
global glmft_handle
|
||||
if glmft_handle is None:
|
||||
glmft_handle = GetGLMFTHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not glmft_handle.success:
|
||||
glmft_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
# 处理历史信息
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", system_prompt] )
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收chatglmft的回复
|
||||
response = "[Local Message]: 等待ChatGLMFT响应中 ..."
|
||||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
|
||||
response = "[Local Message]: ChatGLMFT响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@ -12,20 +12,18 @@
|
||||
"""
|
||||
|
||||
import json
|
||||
import random
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
import func_box
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
|
||||
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
|
||||
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
@ -62,7 +60,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from request_llm.bridge_all import model_info
|
||||
from .bridge_all import model_info
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||
@ -103,6 +101,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
if json_data['finish_reason'] == 'content_filter':
|
||||
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
||||
if json_data['finish_reason'] == 'length':
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
return result
|
||||
@ -136,22 +136,24 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input]_{llm_kwargs["ipaddr"]} {raw_input}')
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
loading_msg = func_box.spinner_chatbot_loading(chatbot)
|
||||
yield from update_ui(chatbot=loading_msg, history=history, msg="等待响应") # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
try:
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
from request_llm.bridge_all import model_info
|
||||
from .bridge_all import model_info
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
@ -163,6 +165,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
@ -171,9 +174,10 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
# 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
|
||||
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode())}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk.decode()) # 刷新界面
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="非Openai官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||
return
|
||||
|
||||
# print(chunk.decode()[6:])
|
||||
@ -184,28 +188,32 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
if chunk:
|
||||
try:
|
||||
chunk_decoded = chunk.decode()
|
||||
# 前者API2D的
|
||||
# 前者是API2D的结束条件,后者是OPENAI的结束条件
|
||||
if ('data: [DONE]' in chunk_decoded) or (len(json.loads(chunk_decoded[6:])['choices'][0]["delta"]) == 0):
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response]_{llm_kwargs["ipaddr"]} {gpt_replying_buffer}')
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
# 处理数据流的主体
|
||||
chunkjson = json.loads(chunk_decoded[6:])
|
||||
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk_decoded[6:])['choices'][0]["delta"]["content"]
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
count_time = round(time.time() - llm_kwargs['start_time'], 3)
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}\t" \
|
||||
f"本次对话耗时: {func_box.html_tag_color(tag=f'{count_time}s')}"
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
print(error_msg)
|
||||
return
|
||||
|
||||
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||
from .bridge_all import model_info
|
||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||
if "reduce the length" in error_msg:
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
@ -215,9 +223,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
elif "does not exist" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||
elif "Incorrect API key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务.")
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
|
||||
elif "exceeded your current quota" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务.")
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
|
||||
elif "account is not active" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||
elif "associated with a deactivated account" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||
elif "bad forward key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||
elif "Not enough point" in error_msg:
|
||||
@ -226,11 +238,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
return
|
||||
count_tokens = func_box.num_tokens_from_string(listing=history)
|
||||
status_text += f'\t 本次对话使用tokens: {func_box.html_tag_color(count_tokens)}'
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
return chatbot, history
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
@ -238,18 +246,15 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
if not is_any_api_key(llm_kwargs['api_key']):
|
||||
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||
if llm_kwargs['llm_model'].startswith('proxy-'):
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"api-key": f"{api_key}"
|
||||
}
|
||||
else:
|
||||
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||
if llm_kwargs['llm_model'].startswith('azure-'): headers.update({"api-key": api_key})
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
@ -286,20 +291,9 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
try:
|
||||
print("\033[1;35m", f"{llm_kwargs['llm_model']}_{llm_kwargs['ipaddr']} :", "\033[0m", f"{conversation_cnt} : {inputs[:100]} ..........")
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
except:
|
||||
print('输入中可能存在乱码。')
|
||||
return headers,payload
|
||||
|
||||
if __name__ == '__main__':
|
||||
llm_kwargs = {
|
||||
'api_key': 'sk-',
|
||||
'llm_model': 'gpt-3.5-turbo',
|
||||
'top_p': 1,
|
||||
'max_length': 512,
|
||||
'temperature': 1,
|
||||
# 'ipaddr': ipaddr.client.host
|
||||
}
|
||||
chat = []
|
||||
predict('你好', llm_kwargs=llm_kwargs, chatbot=chat, plugin_kwargs={})
|
||||
print(chat)
|
||||
|
||||
|
||||
231
request_llm/bridge_claude.py
Normal file
231
request_llm/bridge_claude.py
Normal file
@ -0,0 +1,231 @@
|
||||
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||
|
||||
"""
|
||||
该文件中主要包含2个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
import time
|
||||
import gradio as gr
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Openai返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
chatGPT的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
from anthropic import Anthropic
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
if len(ANTHROPIC_API_KEY) == 0:
|
||||
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
||||
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
# with ProxyNetworkActivate()
|
||||
stream = anthropic.completions.create(
|
||||
prompt=prompt,
|
||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||
model=llm_kwargs['llm_model'],
|
||||
stream=True,
|
||||
temperature = llm_kwargs['temperature']
|
||||
)
|
||||
break
|
||||
except Exception as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
result = ''
|
||||
try:
|
||||
for completion in stream:
|
||||
result += completion.completion
|
||||
if not console_slience: print(completion.completion, end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += completion.completion
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
from anthropic import Anthropic
|
||||
if len(ANTHROPIC_API_KEY) == 0:
|
||||
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
try:
|
||||
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
from .bridge_all import model_info
|
||||
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
# with ProxyNetworkActivate()
|
||||
stream = anthropic.completions.create(
|
||||
prompt=prompt,
|
||||
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||
model=llm_kwargs['llm_model'],
|
||||
stream=True,
|
||||
temperature = llm_kwargs['temperature']
|
||||
)
|
||||
|
||||
break
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
for completion in stream:
|
||||
try:
|
||||
gpt_replying_buffer = gpt_replying_buffer + completion.completion
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||
|
||||
except Exception as e:
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
|
||||
|
||||
# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
|
||||
def convert_messages_to_prompt(messages):
|
||||
prompt = ""
|
||||
role_map = {
|
||||
"system": "Human",
|
||||
"user": "Human",
|
||||
"assistant": "Assistant",
|
||||
}
|
||||
for message in messages:
|
||||
role = message["role"]
|
||||
content = message["content"]
|
||||
transformed_role = role_map[role]
|
||||
prompt += f"\n\n{transformed_role.capitalize()}: {content}"
|
||||
prompt += "\n\nAssistant: "
|
||||
return prompt
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
prompt = convert_messages_to_prompt(messages)
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
315
request_llm/bridge_internlm.py
Normal file
315
request_llm/bridge_internlm.py
Normal file
@ -0,0 +1,315 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf, Singleton
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
model_name = "InternLM"
|
||||
cmd_to_install = "`pip install ???`"
|
||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
def try_to_import_special_deps():
|
||||
import sentencepiece
|
||||
|
||||
user_prompt = "<|User|>:{user}<eoh>\n"
|
||||
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
|
||||
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:"
|
||||
|
||||
|
||||
def combine_history(prompt, hist):
|
||||
messages = hist
|
||||
total_prompt = ""
|
||||
for message in messages:
|
||||
cur_content = message
|
||||
cur_prompt = user_prompt.replace("{user}", cur_content[0])
|
||||
total_prompt += cur_prompt
|
||||
cur_prompt = robot_prompt.replace("{robot}", cur_content[1])
|
||||
total_prompt += cur_prompt
|
||||
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt)
|
||||
return total_prompt
|
||||
|
||||
|
||||
@Singleton
|
||||
class GetInternlmHandle(Process):
|
||||
def __init__(self):
|
||||
# ⭐主进程执行
|
||||
super().__init__(daemon=True)
|
||||
self.parent, self.child = Pipe()
|
||||
self._model = None
|
||||
self._tokenizer = None
|
||||
self.info = ""
|
||||
self.success = True
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
def ready(self):
|
||||
# ⭐主进程执行
|
||||
return self._model is not None
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
if self._model is None:
|
||||
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
|
||||
if device=='cpu':
|
||||
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda()
|
||||
|
||||
model = model.eval()
|
||||
return model, tokenizer
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
import torch
|
||||
import logging
|
||||
import copy
|
||||
import warnings
|
||||
import torch.nn as nn
|
||||
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
||||
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
def adaptor():
|
||||
model = self._model
|
||||
tokenizer = self._tokenizer
|
||||
prompt = kwargs['query']
|
||||
max_length = kwargs['max_length']
|
||||
top_p = kwargs['top_p']
|
||||
temperature = kwargs['temperature']
|
||||
history = kwargs['history']
|
||||
real_prompt = combine_history(prompt, history)
|
||||
return model, tokenizer, real_prompt, max_length, top_p, temperature
|
||||
|
||||
model, tokenizer, prompt, max_length, top_p, temperature = adaptor()
|
||||
prefix_allowed_tokens_fn = None
|
||||
logits_processor = None
|
||||
stopping_criteria = None
|
||||
additional_eos_token_id = 103028
|
||||
generation_config = None
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
# 🏃♂️🏃♂️🏃♂️ https://github.com/InternLM/InternLM/blob/efbf5335709a8c8faeac6eaf07193973ff1d56a1/web_demo.py#L25
|
||||
|
||||
inputs = tokenizer([prompt], padding=True, return_tensors="pt")
|
||||
input_length = len(inputs["input_ids"][0])
|
||||
for k, v in inputs.items():
|
||||
inputs[k] = v.cuda()
|
||||
input_ids = inputs["input_ids"]
|
||||
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
||||
if generation_config is None:
|
||||
generation_config = model.generation_config
|
||||
generation_config = copy.deepcopy(generation_config)
|
||||
model_kwargs = generation_config.update(**kwargs)
|
||||
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
||||
if isinstance(eos_token_id, int):
|
||||
eos_token_id = [eos_token_id]
|
||||
if additional_eos_token_id is not None:
|
||||
eos_token_id.append(additional_eos_token_id)
|
||||
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
||||
if has_default_max_length and generation_config.max_new_tokens is None:
|
||||
warnings.warn(
|
||||
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
||||
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
||||
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
||||
UserWarning,
|
||||
)
|
||||
elif generation_config.max_new_tokens is not None:
|
||||
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
||||
if not has_default_max_length:
|
||||
logging.warn(
|
||||
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
||||
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
||||
"Please refer to the documentation for more information. "
|
||||
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
||||
UserWarning,
|
||||
)
|
||||
|
||||
if input_ids_seq_length >= generation_config.max_length:
|
||||
input_ids_string = "input_ids"
|
||||
logging.warning(
|
||||
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
||||
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
||||
" increasing `max_new_tokens`."
|
||||
)
|
||||
|
||||
# 2. Set generation parameters if not already defined
|
||||
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
||||
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
||||
|
||||
logits_processor = model._get_logits_processor(
|
||||
generation_config=generation_config,
|
||||
input_ids_seq_length=input_ids_seq_length,
|
||||
encoder_input_ids=input_ids,
|
||||
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
||||
logits_processor=logits_processor,
|
||||
)
|
||||
|
||||
stopping_criteria = model._get_stopping_criteria(
|
||||
generation_config=generation_config, stopping_criteria=stopping_criteria
|
||||
)
|
||||
logits_warper = model._get_logits_warper(generation_config)
|
||||
|
||||
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
||||
scores = None
|
||||
while True:
|
||||
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
||||
# forward pass to get next token
|
||||
outputs = model(
|
||||
**model_inputs,
|
||||
return_dict=True,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
)
|
||||
|
||||
next_token_logits = outputs.logits[:, -1, :]
|
||||
|
||||
# pre-process distribution
|
||||
next_token_scores = logits_processor(input_ids, next_token_logits)
|
||||
next_token_scores = logits_warper(input_ids, next_token_scores)
|
||||
|
||||
# sample
|
||||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||
if generation_config.do_sample:
|
||||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
else:
|
||||
next_tokens = torch.argmax(probs, dim=-1)
|
||||
|
||||
# update generated ids, model inputs, and length for next step
|
||||
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||||
model_kwargs = model._update_model_kwargs_for_generation(
|
||||
outputs, model_kwargs, is_encoder_decoder=False
|
||||
)
|
||||
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
|
||||
|
||||
output_token_ids = input_ids[0].cpu().tolist()
|
||||
output_token_ids = output_token_ids[input_length:]
|
||||
for each_eos_token_id in eos_token_id:
|
||||
if output_token_ids[-1] == each_eos_token_id:
|
||||
output_token_ids = output_token_ids[:-1]
|
||||
response = tokenizer.decode(output_token_ids)
|
||||
|
||||
yield response
|
||||
# stop when each sentence is finished, or if we exceed the maximum length
|
||||
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
||||
return
|
||||
|
||||
|
||||
|
||||
def check_dependency(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
try:
|
||||
try_to_import_special_deps()
|
||||
self.info = "依赖检测通过"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = f"缺少{model_name}的依赖,如果要使用{model_name},除了基础的pip依赖以外,您还需要运行{cmd_to_install}安装{model_name}的依赖。"
|
||||
self.success = False
|
||||
|
||||
def run(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
# 第一次运行,加载参数
|
||||
try:
|
||||
self._model, self._tokenizer = self.load_model_and_tokenizer()
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send(f'[Local Message] 不能正常加载{model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
raise RuntimeError(f"不能正常加载{model_name}的参数!")
|
||||
|
||||
while True:
|
||||
# 进入任务等待状态
|
||||
kwargs = self.child.recv()
|
||||
# 收到消息,开始请求
|
||||
try:
|
||||
for response_full in self.llm_stream_generator(**kwargs):
|
||||
self.child.send(response_full)
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send(f'[Local Message] 调用{model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
# 请求处理结束,开始下一个循环
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
# ⭐主进程执行
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs)
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
if res != '[Finish]':
|
||||
yield res
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
_llm_handle = GetInternlmHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + _llm_handle.info
|
||||
if not _llm_handle.success:
|
||||
error = _llm_handle.info
|
||||
_llm_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", sys_prompt])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
_llm_handle = GetInternlmHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not _llm_handle.success:
|
||||
_llm_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
# 处理历史信息
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", system_prompt] )
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收chatglm的回复
|
||||
response = f"[Local Message]: 等待{model_name}响应中 ..."
|
||||
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message]: 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message]: {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@ -1,254 +0,0 @@
|
||||
"""
|
||||
========================================================================
|
||||
第一部分:来自EdgeGPT.py
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
========================================================================
|
||||
"""
|
||||
from .edge_gpt import NewbingChatbot
|
||||
load_message = "等待NewBing响应。"
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
第二部分:子进程Worker(调用主体)
|
||||
========================================================================
|
||||
"""
|
||||
import time
|
||||
import json
|
||||
import re
|
||||
import logging
|
||||
import asyncio
|
||||
import importlib
|
||||
import threading
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
def preprocess_newbing_out(s):
|
||||
pattern = r'\^(\d+)\^' # 匹配^数字^
|
||||
sub = lambda m: '('+m.group(1)+')' # 将匹配到的数字作为替换值
|
||||
result = re.sub(pattern, sub, s) # 替换操作
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
return result
|
||||
|
||||
def preprocess_newbing_out_simple(result):
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
return result
|
||||
|
||||
class NewBingHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
self.parent, self.child = Pipe()
|
||||
self.newbing_model = None
|
||||
self.info = ""
|
||||
self.success = True
|
||||
self.local_history = []
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
self.success = False
|
||||
import certifi, httpx, rich
|
||||
self.info = "依赖检测通过,等待NewBing响应。注意目前不能多人同时调用NewBing接口(有线程锁),否则将导致每个人的NewBing问询历史互相渗透。调用NewBing时,会自动使用已配置的代理。"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少的依赖,如果要使用Newbing,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_newbing.txt`安装Newbing的依赖。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
return self.newbing_model is not None
|
||||
|
||||
async def async_run(self):
|
||||
# 读取配置
|
||||
NEWBING_STYLE, = get_conf('NEWBING_STYLE')
|
||||
from request_llm.bridge_all import model_info
|
||||
endpoint = model_info['newbing']['endpoint']
|
||||
while True:
|
||||
# 等待
|
||||
kwargs = self.child.recv()
|
||||
question=kwargs['query']
|
||||
history=kwargs['history']
|
||||
system_prompt=kwargs['system_prompt']
|
||||
|
||||
# 是否重置
|
||||
if len(self.local_history) > 0 and len(history)==0:
|
||||
await self.newbing_model.reset()
|
||||
self.local_history = []
|
||||
|
||||
# 开始问问题
|
||||
prompt = ""
|
||||
if system_prompt not in self.local_history:
|
||||
self.local_history.append(system_prompt)
|
||||
prompt += system_prompt + '\n'
|
||||
|
||||
# 追加历史
|
||||
for ab in history:
|
||||
a, b = ab
|
||||
if a not in self.local_history:
|
||||
self.local_history.append(a)
|
||||
prompt += a + '\n'
|
||||
# if b not in self.local_history:
|
||||
# self.local_history.append(b)
|
||||
# prompt += b + '\n'
|
||||
|
||||
# 问题
|
||||
prompt += question
|
||||
self.local_history.append(question)
|
||||
print('question:', prompt)
|
||||
# 提交
|
||||
async for final, response in self.newbing_model.ask_stream(
|
||||
prompt=question,
|
||||
conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"]
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
):
|
||||
if not final:
|
||||
print(response)
|
||||
self.child.send(str(response))
|
||||
else:
|
||||
print('-------- receive final ---------')
|
||||
self.child.send('[Finish]')
|
||||
# self.local_history.append(response)
|
||||
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
这个函数运行在子进程
|
||||
"""
|
||||
# 第一次运行,加载参数
|
||||
self.success = False
|
||||
self.local_history = []
|
||||
if (self.newbing_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies, = get_conf('proxies')
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
# cookie
|
||||
NEWBING_COOKIES, = get_conf('NEWBING_COOKIES')
|
||||
try:
|
||||
cookies = json.loads(NEWBING_COOKIES)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] 不能加载Newbing组件。NEWBING_COOKIES未填写或有格式错误。')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
raise RuntimeError(f"不能加载Newbing组件。NEWBING_COOKIES未填写或有格式错误。")
|
||||
|
||||
try:
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https, cookies=cookies)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] 不能加载Newbing组件。{tb_str}')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
raise RuntimeError(f"不能加载Newbing组件。")
|
||||
|
||||
self.success = True
|
||||
try:
|
||||
# 进入任务等待状态
|
||||
asyncio.run(self.async_run())
|
||||
except Exception:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] Newbing失败 {tb_str}.')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
"""
|
||||
这个函数运行在主进程
|
||||
"""
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs) # 发送请求到子进程
|
||||
while True:
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == '[Finish]':
|
||||
break # 结束
|
||||
elif res == '[Fail]':
|
||||
self.success = False
|
||||
break
|
||||
else:
|
||||
yield res # newbing回复的片段
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
第三部分:主进程统一调用函数接口
|
||||
========================================================================
|
||||
"""
|
||||
global newbing_handle
|
||||
newbing_handle = None
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
global newbing_handle
|
||||
if (newbing_handle is None) or (not newbing_handle.success):
|
||||
newbing_handle = NewBingHandle()
|
||||
observe_window[0] = load_message + "\n\n" + newbing_handle.info
|
||||
if not newbing_handle.success:
|
||||
error = newbing_handle.info
|
||||
newbing_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
observe_window[0] = "[Local Message]: 等待NewBing响应中 ..."
|
||||
for response in newbing_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return preprocess_newbing_out_simple(response)
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, "[Local Message]: 等待NewBing响应中 ..."))
|
||||
|
||||
global newbing_handle
|
||||
if (newbing_handle is None) or (not newbing_handle.success):
|
||||
newbing_handle = NewBingHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + newbing_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not newbing_handle.success:
|
||||
newbing_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
chatbot[-1] = (inputs, "[Local Message]: 等待NewBing响应中 ...")
|
||||
response = "[Local Message]: 等待NewBing响应中 ..."
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
for response in newbing_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, preprocess_newbing_out(response))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
if response == "[Local Message]: 等待NewBing响应中 ...": response = "[Local Message]: NewBing响应异常,请刷新界面重试 ..."
|
||||
history.extend([inputs, response])
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {response}')
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="完成全部响应,请提交新问题。")
|
||||
|
||||
@ -89,9 +89,6 @@ class NewBingHandle(Process):
|
||||
if a not in self.local_history:
|
||||
self.local_history.append(a)
|
||||
prompt += a + '\n'
|
||||
# if b not in self.local_history:
|
||||
# self.local_history.append(b)
|
||||
# prompt += b + '\n'
|
||||
|
||||
# 问题
|
||||
prompt += question
|
||||
@ -121,14 +118,26 @@ class NewBingHandle(Process):
|
||||
self.local_history = []
|
||||
if (self.newbing_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies, = get_conf('proxies')
|
||||
proxies, NEWBING_COOKIES = get_conf('proxies', 'NEWBING_COOKIES')
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
|
||||
if (NEWBING_COOKIES is not None) and len(NEWBING_COOKIES) > 100:
|
||||
try:
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https)
|
||||
cookies = json.loads(NEWBING_COOKIES)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] NEWBING_COOKIES未填写或有格式错误。')
|
||||
self.child.send('[Fail]'); self.child.send('[Finish]')
|
||||
raise RuntimeError(f"NEWBING_COOKIES未填写或有格式错误。")
|
||||
else:
|
||||
cookies = None
|
||||
|
||||
try:
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https, cookies=cookies)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
@ -143,7 +152,7 @@ class NewBingHandle(Process):
|
||||
asyncio.run(self.async_run())
|
||||
except Exception:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] Newbing失败 {tb_str}.')
|
||||
self.child.send(f'[Local Message] Newbing 请求失败,报错信息如下. 如果是与网络相关的问题,建议更换代理协议(推荐http)或代理节点 {tb_str}.')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
@ -151,18 +160,14 @@ class NewBingHandle(Process):
|
||||
"""
|
||||
这个函数运行在主进程
|
||||
"""
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs) # 发送请求到子进程
|
||||
self.threadLock.acquire() # 获取线程锁
|
||||
self.parent.send(kwargs) # 请求子进程
|
||||
while True:
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == '[Finish]':
|
||||
break # 结束
|
||||
elif res == '[Fail]':
|
||||
self.success = False
|
||||
break
|
||||
else:
|
||||
yield res # newbing回复的片段
|
||||
self.threadLock.release()
|
||||
if res == '[Finish]': break # 结束
|
||||
elif res == '[Fail]': self.success = False; break # 失败
|
||||
else: yield res # newbing回复的片段
|
||||
self.threadLock.release() # 释放线程锁
|
||||
|
||||
|
||||
"""
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
from .bridge_newbing import preprocess_newbing_out, preprocess_newbing_out_simple
|
||||
from .bridge_newbingfree import preprocess_newbing_out, preprocess_newbing_out_simple
|
||||
from multiprocessing import Process, Pipe
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||
import threading
|
||||
|
||||
@ -1,409 +0,0 @@
|
||||
"""
|
||||
========================================================================
|
||||
第一部分:来自EdgeGPT.py
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
========================================================================
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import ssl
|
||||
import sys
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Generator
|
||||
from typing import Literal
|
||||
from typing import Optional
|
||||
from typing import Union
|
||||
import websockets.client as websockets
|
||||
|
||||
DELIMITER = "\x1e"
|
||||
|
||||
|
||||
# Generate random IP between range 13.104.0.0/14
|
||||
FORWARDED_IP = (
|
||||
f"13.{random.randint(104, 107)}.{random.randint(0, 255)}.{random.randint(0, 255)}"
|
||||
)
|
||||
|
||||
HEADERS = {
|
||||
"accept": "application/json",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"content-type": "application/json",
|
||||
"sec-ch-ua": '"Not_A Brand";v="99", "Microsoft Edge";v="110", "Chromium";v="110"',
|
||||
"sec-ch-ua-arch": '"x86"',
|
||||
"sec-ch-ua-bitness": '"64"',
|
||||
"sec-ch-ua-full-version": '"109.0.1518.78"',
|
||||
"sec-ch-ua-full-version-list": '"Chromium";v="110.0.5481.192", "Not A(Brand";v="24.0.0.0", "Microsoft Edge";v="110.0.1587.69"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-model": "",
|
||||
"sec-ch-ua-platform": '"Windows"',
|
||||
"sec-ch-ua-platform-version": '"15.0.0"',
|
||||
"sec-fetch-dest": "empty",
|
||||
"sec-fetch-mode": "cors",
|
||||
"sec-fetch-site": "same-origin",
|
||||
"x-ms-client-request-id": str(uuid.uuid4()),
|
||||
"x-ms-useragent": "azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32",
|
||||
"Referer": "https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx",
|
||||
"Referrer-Policy": "origin-when-cross-origin",
|
||||
"x-forwarded-for": FORWARDED_IP,
|
||||
}
|
||||
|
||||
HEADERS_INIT_CONVER = {
|
||||
"authority": "edgeservices.bing.com",
|
||||
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "max-age=0",
|
||||
"sec-ch-ua": '"Chromium";v="110", "Not A(Brand";v="24", "Microsoft Edge";v="110"',
|
||||
"sec-ch-ua-arch": '"x86"',
|
||||
"sec-ch-ua-bitness": '"64"',
|
||||
"sec-ch-ua-full-version": '"110.0.1587.69"',
|
||||
"sec-ch-ua-full-version-list": '"Chromium";v="110.0.5481.192", "Not A(Brand";v="24.0.0.0", "Microsoft Edge";v="110.0.1587.69"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-model": '""',
|
||||
"sec-ch-ua-platform": '"Windows"',
|
||||
"sec-ch-ua-platform-version": '"15.0.0"',
|
||||
"sec-fetch-dest": "document",
|
||||
"sec-fetch-mode": "navigate",
|
||||
"sec-fetch-site": "none",
|
||||
"sec-fetch-user": "?1",
|
||||
"upgrade-insecure-requests": "1",
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36 Edg/110.0.1587.69",
|
||||
"x-edge-shopping-flag": "1",
|
||||
"x-forwarded-for": FORWARDED_IP,
|
||||
}
|
||||
|
||||
def get_ssl_context():
|
||||
import certifi
|
||||
ssl_context = ssl.create_default_context()
|
||||
ssl_context.load_verify_locations(certifi.where())
|
||||
return ssl_context
|
||||
|
||||
|
||||
|
||||
class NotAllowedToAccess(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class ConversationStyle(Enum):
|
||||
creative = "h3imaginative,clgalileo,gencontentv3"
|
||||
balanced = "galileo"
|
||||
precise = "h3precise,clgalileo"
|
||||
|
||||
|
||||
CONVERSATION_STYLE_TYPE = Optional[
|
||||
Union[ConversationStyle, Literal["creative", "balanced", "precise"]]
|
||||
]
|
||||
|
||||
|
||||
def _append_identifier(msg: dict) -> str:
|
||||
"""
|
||||
Appends special character to end of message to identify end of message
|
||||
"""
|
||||
# Convert dict to json string
|
||||
return json.dumps(msg) + DELIMITER
|
||||
|
||||
|
||||
def _get_ran_hex(length: int = 32) -> str:
|
||||
"""
|
||||
Returns random hex string
|
||||
"""
|
||||
return "".join(random.choice("0123456789abcdef") for _ in range(length))
|
||||
|
||||
|
||||
class _ChatHubRequest:
|
||||
"""
|
||||
Request object for ChatHub
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
conversation_signature: str,
|
||||
client_id: str,
|
||||
conversation_id: str,
|
||||
invocation_id: int = 0,
|
||||
) -> None:
|
||||
self.struct: dict = {}
|
||||
|
||||
self.client_id: str = client_id
|
||||
self.conversation_id: str = conversation_id
|
||||
self.conversation_signature: str = conversation_signature
|
||||
self.invocation_id: int = invocation_id
|
||||
|
||||
def update(
|
||||
self,
|
||||
prompt,
|
||||
conversation_style,
|
||||
options,
|
||||
) -> None:
|
||||
"""
|
||||
Updates request object
|
||||
"""
|
||||
if options is None:
|
||||
options = [
|
||||
"deepleo",
|
||||
"enable_debug_commands",
|
||||
"disable_emoji_spoken_text",
|
||||
"enablemm",
|
||||
]
|
||||
if conversation_style:
|
||||
if not isinstance(conversation_style, ConversationStyle):
|
||||
conversation_style = getattr(ConversationStyle, conversation_style)
|
||||
options = [
|
||||
"nlu_direct_response_filter",
|
||||
"deepleo",
|
||||
"disable_emoji_spoken_text",
|
||||
"responsible_ai_policy_235",
|
||||
"enablemm",
|
||||
conversation_style.value,
|
||||
"dtappid",
|
||||
"cricinfo",
|
||||
"cricinfov2",
|
||||
"dv3sugg",
|
||||
]
|
||||
self.struct = {
|
||||
"arguments": [
|
||||
{
|
||||
"source": "cib",
|
||||
"optionsSets": options,
|
||||
"sliceIds": [
|
||||
"222dtappid",
|
||||
"225cricinfo",
|
||||
"224locals0",
|
||||
],
|
||||
"traceId": _get_ran_hex(32),
|
||||
"isStartOfSession": self.invocation_id == 0,
|
||||
"message": {
|
||||
"author": "user",
|
||||
"inputMethod": "Keyboard",
|
||||
"text": prompt,
|
||||
"messageType": "Chat",
|
||||
},
|
||||
"conversationSignature": self.conversation_signature,
|
||||
"participant": {
|
||||
"id": self.client_id,
|
||||
},
|
||||
"conversationId": self.conversation_id,
|
||||
},
|
||||
],
|
||||
"invocationId": str(self.invocation_id),
|
||||
"target": "chat",
|
||||
"type": 4,
|
||||
}
|
||||
self.invocation_id += 1
|
||||
|
||||
|
||||
class _Conversation:
|
||||
"""
|
||||
Conversation API
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cookies,
|
||||
proxy,
|
||||
) -> None:
|
||||
self.struct: dict = {
|
||||
"conversationId": None,
|
||||
"clientId": None,
|
||||
"conversationSignature": None,
|
||||
"result": {"value": "Success", "message": None},
|
||||
}
|
||||
import httpx
|
||||
self.proxy = proxy
|
||||
proxy = (
|
||||
proxy
|
||||
or os.environ.get("all_proxy")
|
||||
or os.environ.get("ALL_PROXY")
|
||||
or os.environ.get("https_proxy")
|
||||
or os.environ.get("HTTPS_PROXY")
|
||||
or None
|
||||
)
|
||||
if proxy is not None and proxy.startswith("socks5h://"):
|
||||
proxy = "socks5://" + proxy[len("socks5h://") :]
|
||||
self.session = httpx.Client(
|
||||
proxies=proxy,
|
||||
timeout=30,
|
||||
headers=HEADERS_INIT_CONVER,
|
||||
)
|
||||
for cookie in cookies:
|
||||
self.session.cookies.set(cookie["name"], cookie["value"])
|
||||
|
||||
# Send GET request
|
||||
response = self.session.get(
|
||||
url=os.environ.get("BING_PROXY_URL")
|
||||
or "https://edgeservices.bing.com/edgesvc/turing/conversation/create",
|
||||
)
|
||||
if response.status_code != 200:
|
||||
response = self.session.get(
|
||||
"https://edge.churchless.tech/edgesvc/turing/conversation/create",
|
||||
)
|
||||
if response.status_code != 200:
|
||||
print(f"Status code: {response.status_code}")
|
||||
print(response.text)
|
||||
print(response.url)
|
||||
raise Exception("Authentication failed")
|
||||
try:
|
||||
self.struct = response.json()
|
||||
except (json.decoder.JSONDecodeError, NotAllowedToAccess) as exc:
|
||||
raise Exception(
|
||||
"Authentication failed. You have not been accepted into the beta.",
|
||||
) from exc
|
||||
if self.struct["result"]["value"] == "UnauthorizedRequest":
|
||||
raise NotAllowedToAccess(self.struct["result"]["message"])
|
||||
|
||||
|
||||
class _ChatHub:
|
||||
"""
|
||||
Chat API
|
||||
"""
|
||||
|
||||
def __init__(self, conversation) -> None:
|
||||
self.wss = None
|
||||
self.request: _ChatHubRequest
|
||||
self.loop: bool
|
||||
self.task: asyncio.Task
|
||||
print(conversation.struct)
|
||||
self.request = _ChatHubRequest(
|
||||
conversation_signature=conversation.struct["conversationSignature"],
|
||||
client_id=conversation.struct["clientId"],
|
||||
conversation_id=conversation.struct["conversationId"],
|
||||
)
|
||||
|
||||
async def ask_stream(
|
||||
self,
|
||||
prompt: str,
|
||||
wss_link: str,
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
raw: bool = False,
|
||||
options: dict = None,
|
||||
) -> Generator[str, None, None]:
|
||||
"""
|
||||
Ask a question to the bot
|
||||
"""
|
||||
if self.wss and not self.wss.closed:
|
||||
await self.wss.close()
|
||||
# Check if websocket is closed
|
||||
self.wss = await websockets.connect(
|
||||
wss_link,
|
||||
extra_headers=HEADERS,
|
||||
max_size=None,
|
||||
ssl=get_ssl_context()
|
||||
)
|
||||
await self._initial_handshake()
|
||||
# Construct a ChatHub request
|
||||
self.request.update(
|
||||
prompt=prompt,
|
||||
conversation_style=conversation_style,
|
||||
options=options,
|
||||
)
|
||||
# Send request
|
||||
await self.wss.send(_append_identifier(self.request.struct))
|
||||
final = False
|
||||
while not final:
|
||||
objects = str(await self.wss.recv()).split(DELIMITER)
|
||||
for obj in objects:
|
||||
if obj is None or not obj:
|
||||
continue
|
||||
response = json.loads(obj)
|
||||
if response.get("type") != 2 and raw:
|
||||
yield False, response
|
||||
elif response.get("type") == 1 and response["arguments"][0].get(
|
||||
"messages",
|
||||
):
|
||||
resp_txt = response["arguments"][0]["messages"][0]["adaptiveCards"][
|
||||
0
|
||||
]["body"][0].get("text")
|
||||
yield False, resp_txt
|
||||
elif response.get("type") == 2:
|
||||
final = True
|
||||
yield True, response
|
||||
|
||||
async def _initial_handshake(self) -> None:
|
||||
await self.wss.send(_append_identifier({"protocol": "json", "version": 1}))
|
||||
await self.wss.recv()
|
||||
|
||||
async def close(self) -> None:
|
||||
"""
|
||||
Close the connection
|
||||
"""
|
||||
if self.wss and not self.wss.closed:
|
||||
await self.wss.close()
|
||||
|
||||
|
||||
class NewbingChatbot:
|
||||
"""
|
||||
Combines everything to make it seamless
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cookies,
|
||||
proxy
|
||||
) -> None:
|
||||
if cookies is None:
|
||||
cookies = {}
|
||||
self.cookies = cookies
|
||||
self.proxy = proxy
|
||||
self.chat_hub: _ChatHub = _ChatHub(
|
||||
_Conversation(self.cookies, self.proxy),
|
||||
)
|
||||
|
||||
async def ask(
|
||||
self,
|
||||
prompt: str,
|
||||
wss_link: str,
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
options: dict = None,
|
||||
) -> dict:
|
||||
"""
|
||||
Ask a question to the bot
|
||||
"""
|
||||
async for final, response in self.chat_hub.ask_stream(
|
||||
prompt=prompt,
|
||||
conversation_style=conversation_style,
|
||||
wss_link=wss_link,
|
||||
options=options,
|
||||
):
|
||||
if final:
|
||||
return response
|
||||
await self.chat_hub.wss.close()
|
||||
return None
|
||||
|
||||
async def ask_stream(
|
||||
self,
|
||||
prompt: str,
|
||||
wss_link: str,
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
raw: bool = False,
|
||||
options: dict = None,
|
||||
) -> Generator[str, None, None]:
|
||||
"""
|
||||
Ask a question to the bot
|
||||
"""
|
||||
async for response in self.chat_hub.ask_stream(
|
||||
prompt=prompt,
|
||||
conversation_style=conversation_style,
|
||||
wss_link=wss_link,
|
||||
raw=raw,
|
||||
options=options,
|
||||
):
|
||||
yield response
|
||||
|
||||
async def close(self) -> None:
|
||||
"""
|
||||
Close the connection
|
||||
"""
|
||||
await self.chat_hub.close()
|
||||
|
||||
async def reset(self) -> None:
|
||||
"""
|
||||
Reset the conversation
|
||||
"""
|
||||
await self.close()
|
||||
self.chat_hub = _ChatHub(_Conversation(self.cookies, self.proxy))
|
||||
|
||||
|
||||
@ -447,6 +447,15 @@ class _ChatHub:
|
||||
"""
|
||||
Ask a question to the bot
|
||||
"""
|
||||
req_header = HEADERS
|
||||
if self.cookies is not None:
|
||||
ws_cookies = []
|
||||
for cookie in self.cookies:
|
||||
ws_cookies.append(f"{cookie['name']}={cookie['value']}")
|
||||
req_header.update({
|
||||
'Cookie': ';'.join(ws_cookies),
|
||||
})
|
||||
|
||||
timeout = aiohttp.ClientTimeout(total=30)
|
||||
self.session = aiohttp.ClientSession(timeout=timeout)
|
||||
|
||||
@ -455,7 +464,7 @@ class _ChatHub:
|
||||
# Check if websocket is closed
|
||||
self.wss = await self.session.ws_connect(
|
||||
wss_link,
|
||||
headers=HEADERS,
|
||||
headers=req_header,
|
||||
ssl=ssl_context,
|
||||
proxy=self.proxy,
|
||||
autoping=False,
|
||||
@ -510,7 +519,11 @@ class _ChatHub:
|
||||
resp_txt_no_link = ""
|
||||
while not final:
|
||||
msg = await self.wss.receive()
|
||||
try:
|
||||
objects = msg.data.split(DELIMITER)
|
||||
except :
|
||||
continue
|
||||
|
||||
for obj in objects:
|
||||
if obj is None or not obj:
|
||||
continue
|
||||
|
||||
@ -10,10 +10,12 @@ def validate_path():
|
||||
|
||||
validate_path() # validate path so you can run from base directory
|
||||
if __name__ == "__main__":
|
||||
from request_llm.bridge_newbingfree import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_newbingfree import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_moss import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_claude import predict_no_ui_long_connection
|
||||
from request_llm.bridge_internlm import predict_no_ui_long_connection
|
||||
|
||||
llm_kwargs = {
|
||||
'max_length': 512,
|
||||
@ -21,58 +23,8 @@ if __name__ == "__main__":
|
||||
'temperature': 1,
|
||||
}
|
||||
|
||||
result = predict_no_ui_long_connection(inputs="你好",
|
||||
result = predict_no_ui_long_connection( inputs="请问什么是质子?",
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=[],
|
||||
history=["你好", "我好!"],
|
||||
sys_prompt="")
|
||||
print('final result:', result)
|
||||
|
||||
|
||||
result = predict_no_ui_long_connection(inputs="what is a hero?",
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=["hello world"],
|
||||
sys_prompt="")
|
||||
print('final result:', result)
|
||||
|
||||
result = predict_no_ui_long_connection(inputs="如何理解传奇?",
|
||||
llm_kwargs=llm_kwargs,
|
||||
history=[],
|
||||
sys_prompt="")
|
||||
print('final result:', result)
|
||||
|
||||
# # print(result)
|
||||
# from multiprocessing import Process, Pipe
|
||||
# class GetGLMHandle(Process):
|
||||
# def __init__(self):
|
||||
# super().__init__(daemon=True)
|
||||
# pass
|
||||
# def run(self):
|
||||
# # 子进程执行
|
||||
# # 第一次运行,加载参数
|
||||
# def validate_path():
|
||||
# import os, sys
|
||||
# dir_name = os.path.dirname(__file__)
|
||||
# root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
||||
# os.chdir(root_dir_assume + '/request_llm/jittorllms')
|
||||
# sys.path.append(root_dir_assume + '/request_llm/jittorllms')
|
||||
# validate_path() # validate path so you can run from base directory
|
||||
|
||||
# jittorllms_model = None
|
||||
# import types
|
||||
# try:
|
||||
# if jittorllms_model is None:
|
||||
# from models import get_model
|
||||
# # availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
# args_dict = {'model': 'chatrwkv'}
|
||||
# print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||||
# jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||||
# print('done get model')
|
||||
# except:
|
||||
# # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
|
||||
# raise RuntimeError("不能正常加载jittorllms的参数!")
|
||||
|
||||
# x = GetGLMHandle()
|
||||
# x.start()
|
||||
|
||||
|
||||
# input()
|
||||
@ -1,4 +1,5 @@
|
||||
./docs/gradio-3.32.2-py3-none-any.whl
|
||||
pydantic==1.10.11
|
||||
tiktoken>=0.3.3
|
||||
requests[socks]
|
||||
transformers
|
||||
@ -8,6 +9,7 @@ prompt_toolkit
|
||||
latex2mathml
|
||||
python-docx
|
||||
mdtex2html
|
||||
anthropic
|
||||
colorama
|
||||
Markdown
|
||||
pygments
|
||||
@ -15,11 +17,5 @@ pymupdf
|
||||
openai
|
||||
numpy
|
||||
arxiv
|
||||
pymupdf
|
||||
pyperclip
|
||||
scikit-learn
|
||||
psutil
|
||||
distro
|
||||
python-dotenv
|
||||
rich
|
||||
Levenshtein
|
||||
pypdf2==2.12.1
|
||||
|
||||
47
themes/common.js
Normal file
47
themes/common.js
Normal file
@ -0,0 +1,47 @@
|
||||
function ChatBotHeight() {
|
||||
function update_height(){
|
||||
var { panel_height_target, chatbot_height, chatbot } = get_elements();
|
||||
if (panel_height_target!=chatbot_height)
|
||||
{
|
||||
var pixelString = panel_height_target.toString() + 'px';
|
||||
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
||||
}
|
||||
}
|
||||
|
||||
function update_height_slow(){
|
||||
var { panel_height_target, chatbot_height, chatbot } = get_elements();
|
||||
if (panel_height_target!=chatbot_height)
|
||||
{
|
||||
new_panel_height = (panel_height_target - chatbot_height)*0.5 + chatbot_height;
|
||||
if (Math.abs(new_panel_height - panel_height_target) < 10){
|
||||
new_panel_height = panel_height_target;
|
||||
}
|
||||
// console.log(chatbot_height, panel_height_target, new_panel_height);
|
||||
var pixelString = new_panel_height.toString() + 'px';
|
||||
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
||||
}
|
||||
}
|
||||
|
||||
update_height();
|
||||
setInterval(function() {
|
||||
update_height_slow()
|
||||
}, 50); // 每100毫秒执行一次
|
||||
}
|
||||
|
||||
function get_elements() {
|
||||
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
||||
if (!chatbot) {
|
||||
chatbot = document.querySelector('#gpt-chatbot');
|
||||
}
|
||||
const panel1 = document.querySelector('#input-panel');
|
||||
const panel2 = document.querySelector('#basic-panel');
|
||||
const panel3 = document.querySelector('#plugin-panel');
|
||||
const panel4 = document.querySelector('#interact-panel');
|
||||
const panel5 = document.querySelector('#input-panel2');
|
||||
const panel_active = document.querySelector('#state-panel');
|
||||
var panel_height_target = (20-panel_active.offsetHeight) + panel1.offsetHeight + panel2.offsetHeight + panel3.offsetHeight + panel4.offsetHeight + panel5.offsetHeight + 21;
|
||||
var panel_height_target = parseInt(panel_height_target);
|
||||
var chatbot_height = chatbot.style.height;
|
||||
var chatbot_height = parseInt(chatbot_height);
|
||||
return { panel_height_target, chatbot_height, chatbot };
|
||||
}
|
||||
@ -1,213 +1,28 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
CODE_HIGHLIGHT, ADD_WAIFU, ADD_CHUANHU = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'ADD_CHUANHU')
|
||||
# gradio可用颜色列表
|
||||
# gr.themes.utils.colors.slate (石板色)
|
||||
# gr.themes.utils.colors.gray (灰色)
|
||||
# gr.themes.utils.colors.zinc (锌色)
|
||||
# gr.themes.utils.colors.neutral (中性色)
|
||||
# gr.themes.utils.colors.stone (石头色)
|
||||
# gr.themes.utils.colors.red (红色)
|
||||
# gr.themes.utils.colors.orange (橙色)
|
||||
# gr.themes.utils.colors.amber (琥珀色)
|
||||
# gr.themes.utils.colors.yellow (黄色)
|
||||
# gr.themes.utils.colors.lime (酸橙色)
|
||||
# gr.themes.utils.colors.green (绿色)
|
||||
# gr.themes.utils.colors.emerald (祖母绿)
|
||||
# gr.themes.utils.colors.teal (青蓝色)
|
||||
# gr.themes.utils.colors.cyan (青色)
|
||||
# gr.themes.utils.colors.sky (天蓝色)
|
||||
# gr.themes.utils.colors.blue (蓝色)
|
||||
# gr.themes.utils.colors.indigo (靛蓝色)
|
||||
# gr.themes.utils.colors.violet (紫罗兰色)
|
||||
# gr.themes.utils.colors.purple (紫色)
|
||||
# gr.themes.utils.colors.fuchsia (洋红色)
|
||||
# gr.themes.utils.colors.pink (粉红色)
|
||||
# gr.themes.utils.colors.rose (玫瑰色)
|
||||
|
||||
|
||||
def adjust_theme():
|
||||
|
||||
try:
|
||||
set_theme = gr.themes.Soft(
|
||||
primary_hue=gr.themes.Color(
|
||||
c50="#EBFAF2",
|
||||
c100="#CFF3E1",
|
||||
c200="#A8EAC8",
|
||||
c300="#77DEA9",
|
||||
c400="#3FD086",
|
||||
c500="#02C160",
|
||||
c600="#06AE56",
|
||||
c700="#05974E",
|
||||
c800="#057F45",
|
||||
c900="#04673D",
|
||||
c950="#2E5541",
|
||||
name="small_and_beautiful",
|
||||
),
|
||||
secondary_hue=gr.themes.Color(
|
||||
c50="#576b95",
|
||||
c100="#576b95",
|
||||
c200="#576b95",
|
||||
c300="#576b95",
|
||||
c400="#576b95",
|
||||
c500="#576b95",
|
||||
c600="#576b95",
|
||||
c700="#576b95",
|
||||
c800="#576b95",
|
||||
c900="#576b95",
|
||||
c950="#576b95",
|
||||
),
|
||||
neutral_hue=gr.themes.Color(
|
||||
name="gray",
|
||||
c50="#f6f7f8",
|
||||
# c100="#f3f4f6",
|
||||
c100="#F2F2F2",
|
||||
c200="#e5e7eb",
|
||||
c300="#d1d5db",
|
||||
c400="#B2B2B2",
|
||||
c500="#808080",
|
||||
c600="#636363",
|
||||
c700="#515151",
|
||||
c800="#393939",
|
||||
# c900="#272727",
|
||||
c900="#2B2B2B",
|
||||
c950="#171717",
|
||||
),
|
||||
|
||||
radius_size=gr.themes.sizes.radius_sm,
|
||||
).set(
|
||||
button_primary_background_fill="*primary_500",
|
||||
button_primary_background_fill_dark="*primary_600",
|
||||
button_primary_background_fill_hover="*primary_400",
|
||||
button_primary_border_color="*primary_500",
|
||||
button_primary_border_color_dark="*primary_600",
|
||||
button_primary_text_color="wihte",
|
||||
button_primary_text_color_dark="white",
|
||||
button_secondary_background_fill="*neutral_100",
|
||||
button_secondary_background_fill_hover="*neutral_50",
|
||||
button_secondary_background_fill_dark="*neutral_900",
|
||||
button_secondary_text_color="*neutral_800",
|
||||
button_secondary_text_color_dark="white",
|
||||
background_fill_primary="#F7F7F7",
|
||||
background_fill_primary_dark="#1F1F1F",
|
||||
block_title_text_color="*primary_500",
|
||||
block_title_background_fill_dark="*primary_900",
|
||||
block_label_background_fill_dark="*primary_900",
|
||||
input_background_fill="#F6F6F6",
|
||||
chatbot_code_background_color="*neutral_950",
|
||||
chatbot_code_background_color_dark="*neutral_950",
|
||||
)
|
||||
js = ''
|
||||
if ADD_CHUANHU:
|
||||
with open("./docs/assets/custom.js", "r", encoding="utf-8") as f, \
|
||||
open("./docs/assets/external-scripts.js", "r", encoding="utf-8") as f1:
|
||||
customJS = f.read()
|
||||
externalScripts = f1.read()
|
||||
js += f'<script>{customJS}</script><script async>{externalScripts}</script>'
|
||||
# 添加一个萌萌的看板娘
|
||||
if ADD_WAIFU:
|
||||
js += """
|
||||
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/autoload.js"></script>
|
||||
"""
|
||||
gradio_original_template_fn = gr.routes.templates.TemplateResponse
|
||||
def gradio_new_template_fn(*args, **kwargs):
|
||||
res = gradio_original_template_fn(*args, **kwargs)
|
||||
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
||||
res.init_headers()
|
||||
return res
|
||||
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
|
||||
except:
|
||||
set_theme = None
|
||||
print('gradio版本较旧, 不能自定义字体和颜色')
|
||||
return set_theme
|
||||
|
||||
|
||||
with open("docs/assets/custom.css", "r", encoding="utf-8") as f:
|
||||
customCSS = f.read()
|
||||
custom_css = customCSS
|
||||
advanced_css = """
|
||||
#debug_mes {
|
||||
position: absolute;
|
||||
bottom: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
z-index: 1; /* 设置更高的 z-index 值 */
|
||||
margin-bottom: 10px !important;
|
||||
}
|
||||
#chat_txt {
|
||||
display: flex;
|
||||
flex-direction: column-reverse;
|
||||
overflow-y: auto !important;
|
||||
z-index: 3;
|
||||
flex-grow: 1; /* 自动填充剩余空间 */
|
||||
position: absolute;
|
||||
bottom: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
margin-bottom: 35px !important;
|
||||
}
|
||||
#sm_btn {
|
||||
display: flex;
|
||||
flex-wrap: unset !important;
|
||||
gap: 5px !important;
|
||||
width: var(--size-full);
|
||||
}
|
||||
textarea {
|
||||
resize: none;
|
||||
height: 100%; /* 填充父元素的高度 */
|
||||
}
|
||||
#main_chatbot {
|
||||
height: 75vh !important;
|
||||
max-height: 75vh !important;
|
||||
/* overflow: auto !important; */
|
||||
z-index: 2;
|
||||
}
|
||||
#prompt_result{
|
||||
height: 60vh !important;
|
||||
max-height: 60vh !important;
|
||||
}
|
||||
.wrap.svelte-18telvq.svelte-18telvq {
|
||||
padding: var(--block-padding) !important;
|
||||
height: 100% !important;
|
||||
max-height: 95% !important;
|
||||
overflow-y: auto !important;
|
||||
}
|
||||
.app.svelte-1mya07g.svelte-1mya07g {
|
||||
max-width: 100%;
|
||||
position: relative;
|
||||
/* margin: auto; */
|
||||
padding: var(--size-4);
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
.md-message table {
|
||||
.markdown-body table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
empty-cells: show;
|
||||
}
|
||||
|
||||
.md-message th, .md-message td {
|
||||
.markdown-body th, .markdown-body td {
|
||||
border: 1.2px solid var(--border-color-primary);
|
||||
padding: 5px;
|
||||
}
|
||||
|
||||
.md-message thead {
|
||||
.markdown-body thead {
|
||||
background-color: rgba(175,184,193,0.2);
|
||||
}
|
||||
|
||||
.md-message thead th {
|
||||
.markdown-body thead th {
|
||||
padding: .5em .2em;
|
||||
}
|
||||
|
||||
.md-message ol, .md-message ul {
|
||||
.markdown-body ol, .markdown-body ul {
|
||||
padding-inline-start: 2em !important;
|
||||
}
|
||||
|
||||
/* chat box. */
|
||||
[class *= "message"] {
|
||||
gap: 7px !important;
|
||||
border-radius: var(--radius-xl) !important;
|
||||
/* padding: var(--spacing-xl) !important; */
|
||||
/* font-size: var(--text-md) !important; */
|
||||
@ -217,40 +32,27 @@ textarea {
|
||||
}
|
||||
[data-testid = "bot"] {
|
||||
max-width: 95%;
|
||||
letter-spacing: 0.5px;
|
||||
font-weight: normal;
|
||||
/* width: auto !important; */
|
||||
border-bottom-left-radius: 0 !important;
|
||||
}
|
||||
|
||||
.dark [data-testid = "bot"] {
|
||||
max-width: 95%;
|
||||
color: #ccd2db !important;
|
||||
letter-spacing: 0.5px;
|
||||
font-weight: normal;
|
||||
/* width: auto !important; */
|
||||
border-bottom-left-radius: 0 !important;
|
||||
}
|
||||
|
||||
[data-testid = "user"] {
|
||||
max-width: 100%;
|
||||
letter-spacing: 0.5px;
|
||||
/* width: auto !important; */
|
||||
border-bottom-right-radius: 0 !important;
|
||||
}
|
||||
|
||||
/* linein code block. */
|
||||
.md-message code {
|
||||
.markdown-body code {
|
||||
display: inline;
|
||||
white-space: break-spaces;
|
||||
border-radius: 6px;
|
||||
margin: 0 2px 0 2px;
|
||||
padding: .2em .4em .1em .4em;
|
||||
background-color: rgba(13, 17, 23, 0.95);
|
||||
color: #eff0f2;
|
||||
color: #c9d1d9;
|
||||
}
|
||||
|
||||
.dark .md-message code {
|
||||
.dark .markdown-body code {
|
||||
display: inline;
|
||||
white-space: break-spaces;
|
||||
border-radius: 6px;
|
||||
@ -260,7 +62,7 @@ textarea {
|
||||
}
|
||||
|
||||
/* code block css */
|
||||
.md-message pre code {
|
||||
.markdown-body pre code {
|
||||
display: block;
|
||||
overflow: auto;
|
||||
white-space: pre;
|
||||
@ -270,7 +72,7 @@ textarea {
|
||||
margin: 1em 2em 1em 0.5em;
|
||||
}
|
||||
|
||||
.dark .md-message pre code {
|
||||
.dark .markdown-body pre code {
|
||||
display: block;
|
||||
overflow: auto;
|
||||
white-space: pre;
|
||||
@ -280,10 +82,15 @@ textarea {
|
||||
margin: 1em 2em 1em 0.5em;
|
||||
}
|
||||
|
||||
"""
|
||||
/* .mic-wrap.svelte-1thnwz {
|
||||
|
||||
if CODE_HIGHLIGHT:
|
||||
advanced_css += """
|
||||
} */
|
||||
.block.svelte-mppz8v > .mic-wrap.svelte-1thnwz{
|
||||
justify-content: center;
|
||||
display: flex;
|
||||
padding: 0;
|
||||
|
||||
}
|
||||
|
||||
.codehilite .hll { background-color: #6e7681 }
|
||||
.codehilite .c { color: #8b949e; font-style: italic } /* Comment */
|
||||
@ -443,4 +250,3 @@ if CODE_HIGHLIGHT:
|
||||
.dark .codehilite .vm { color: #82AAFF } /* Name.Variable.Magic */
|
||||
.dark .codehilite .il { color: #F78C6C } /* Literal.Number.Integer.Long */
|
||||
|
||||
"""
|
||||
86
themes/default.py
Normal file
86
themes/default.py
Normal file
@ -0,0 +1,86 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
|
||||
|
||||
def adjust_theme():
|
||||
|
||||
try:
|
||||
color_er = gr.themes.utils.colors.fuchsia
|
||||
set_theme = gr.themes.Default(
|
||||
primary_hue=gr.themes.utils.colors.orange,
|
||||
neutral_hue=gr.themes.utils.colors.gray,
|
||||
font=["sans-serif", "Microsoft YaHei", "ui-sans-serif", "system-ui"],
|
||||
font_mono=["ui-monospace", "Consolas", "monospace"])
|
||||
set_theme.set(
|
||||
# Colors
|
||||
input_background_fill_dark="*neutral_800",
|
||||
# Transition
|
||||
button_transition="none",
|
||||
# Shadows
|
||||
button_shadow="*shadow_drop",
|
||||
button_shadow_hover="*shadow_drop_lg",
|
||||
button_shadow_active="*shadow_inset",
|
||||
input_shadow="0 0 0 *shadow_spread transparent, *shadow_inset",
|
||||
input_shadow_focus="0 0 0 *shadow_spread *secondary_50, *shadow_inset",
|
||||
input_shadow_focus_dark="0 0 0 *shadow_spread *neutral_700, *shadow_inset",
|
||||
checkbox_label_shadow="*shadow_drop",
|
||||
block_shadow="*shadow_drop",
|
||||
form_gap_width="1px",
|
||||
# Button borders
|
||||
input_border_width="1px",
|
||||
input_background_fill="white",
|
||||
# Gradients
|
||||
stat_background_fill="linear-gradient(to right, *primary_400, *primary_200)",
|
||||
stat_background_fill_dark="linear-gradient(to right, *primary_400, *primary_600)",
|
||||
error_background_fill=f"linear-gradient(to right, {color_er.c100}, *background_fill_secondary)",
|
||||
error_background_fill_dark="*background_fill_primary",
|
||||
checkbox_label_background_fill="linear-gradient(to top, *neutral_50, white)",
|
||||
checkbox_label_background_fill_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
|
||||
checkbox_label_background_fill_hover="linear-gradient(to top, *neutral_100, white)",
|
||||
checkbox_label_background_fill_hover_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
|
||||
button_primary_background_fill="linear-gradient(to bottom right, *primary_100, *primary_300)",
|
||||
button_primary_background_fill_dark="linear-gradient(to bottom right, *primary_500, *primary_600)",
|
||||
button_primary_background_fill_hover="linear-gradient(to bottom right, *primary_100, *primary_200)",
|
||||
button_primary_background_fill_hover_dark="linear-gradient(to bottom right, *primary_500, *primary_500)",
|
||||
button_primary_border_color_dark="*primary_500",
|
||||
button_secondary_background_fill="linear-gradient(to bottom right, *neutral_100, *neutral_200)",
|
||||
button_secondary_background_fill_dark="linear-gradient(to bottom right, *neutral_600, *neutral_700)",
|
||||
button_secondary_background_fill_hover="linear-gradient(to bottom right, *neutral_100, *neutral_100)",
|
||||
button_secondary_background_fill_hover_dark="linear-gradient(to bottom right, *neutral_600, *neutral_600)",
|
||||
button_cancel_background_fill=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c200})",
|
||||
button_cancel_background_fill_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c700})",
|
||||
button_cancel_background_fill_hover=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c100})",
|
||||
button_cancel_background_fill_hover_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c600})",
|
||||
button_cancel_border_color=color_er.c200,
|
||||
button_cancel_border_color_dark=color_er.c600,
|
||||
button_cancel_text_color=color_er.c600,
|
||||
button_cancel_text_color_dark="white",
|
||||
)
|
||||
|
||||
if LAYOUT=="TOP-DOWN":
|
||||
js = ""
|
||||
else:
|
||||
with open('themes/common.js', 'r', encoding='utf8') as f:
|
||||
js = f"<script>{f.read()}</script>"
|
||||
|
||||
# 添加一个萌萌的看板娘
|
||||
if ADD_WAIFU:
|
||||
js += """
|
||||
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/autoload.js"></script>
|
||||
"""
|
||||
gradio_original_template_fn = gr.routes.templates.TemplateResponse
|
||||
def gradio_new_template_fn(*args, **kwargs):
|
||||
res = gradio_original_template_fn(*args, **kwargs)
|
||||
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
||||
res.init_headers()
|
||||
return res
|
||||
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
|
||||
except:
|
||||
set_theme = None
|
||||
print('gradio版本较旧, 不能自定义字体和颜色')
|
||||
return set_theme
|
||||
|
||||
with open("themes/default.css", "r", encoding="utf-8") as f:
|
||||
advanced_css = f.read()
|
||||
@ -167,6 +167,7 @@ footer {
|
||||
font-size: 85%;
|
||||
opacity: 0.60;
|
||||
}
|
||||
/* user_info */
|
||||
|
||||
#float_display {
|
||||
position: absolute;
|
||||
@ -241,16 +242,15 @@ textarea.svelte-1pie7s6 {
|
||||
transition: height 0.3s ease;
|
||||
}
|
||||
|
||||
.wrap.svelte-18telvq.svelte-18telvq {
|
||||
/* .wrap.svelte-18telvq.svelte-18telvq {
|
||||
padding: var(--block-padding) !important;
|
||||
height: 100% !important;
|
||||
max-height: 95% !important;
|
||||
overflow-y: auto !important;
|
||||
}
|
||||
}*/
|
||||
.app.svelte-1mya07g.svelte-1mya07g {
|
||||
max-width: 100%;
|
||||
position: relative;
|
||||
/* margin: auto; */
|
||||
padding: var(--size-4);
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
104
themes/green.py
Normal file
104
themes/green.py
Normal file
@ -0,0 +1,104 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
|
||||
|
||||
def adjust_theme():
|
||||
try:
|
||||
set_theme = gr.themes.Soft(
|
||||
primary_hue=gr.themes.Color(
|
||||
c50="#EBFAF2",
|
||||
c100="#CFF3E1",
|
||||
c200="#A8EAC8",
|
||||
c300="#77DEA9",
|
||||
c400="#3FD086",
|
||||
c500="#02C160",
|
||||
c600="#06AE56",
|
||||
c700="#05974E",
|
||||
c800="#057F45",
|
||||
c900="#04673D",
|
||||
c950="#2E5541",
|
||||
name="small_and_beautiful",
|
||||
),
|
||||
secondary_hue=gr.themes.Color(
|
||||
c50="#576b95",
|
||||
c100="#576b95",
|
||||
c200="#576b95",
|
||||
c300="#576b95",
|
||||
c400="#576b95",
|
||||
c500="#576b95",
|
||||
c600="#576b95",
|
||||
c700="#576b95",
|
||||
c800="#576b95",
|
||||
c900="#576b95",
|
||||
c950="#576b95",
|
||||
),
|
||||
neutral_hue=gr.themes.Color(
|
||||
name="gray",
|
||||
c50="#f6f7f8",
|
||||
# c100="#f3f4f6",
|
||||
c100="#F2F2F2",
|
||||
c200="#e5e7eb",
|
||||
c300="#d1d5db",
|
||||
c400="#B2B2B2",
|
||||
c500="#808080",
|
||||
c600="#636363",
|
||||
c700="#515151",
|
||||
c800="#393939",
|
||||
# c900="#272727",
|
||||
c900="#2B2B2B",
|
||||
c950="#171717",
|
||||
),
|
||||
|
||||
radius_size=gr.themes.sizes.radius_sm,
|
||||
).set(
|
||||
button_primary_background_fill="*primary_500",
|
||||
button_primary_background_fill_dark="*primary_600",
|
||||
button_primary_background_fill_hover="*primary_400",
|
||||
button_primary_border_color="*primary_500",
|
||||
button_primary_border_color_dark="*primary_600",
|
||||
button_primary_text_color="wihte",
|
||||
button_primary_text_color_dark="white",
|
||||
button_secondary_background_fill="*neutral_100",
|
||||
button_secondary_background_fill_hover="*neutral_50",
|
||||
button_secondary_background_fill_dark="*neutral_900",
|
||||
button_secondary_text_color="*neutral_800",
|
||||
button_secondary_text_color_dark="white",
|
||||
background_fill_primary="#F7F7F7",
|
||||
background_fill_primary_dark="#1F1F1F",
|
||||
block_title_text_color="*primary_500",
|
||||
block_title_background_fill_dark="*primary_900",
|
||||
block_label_background_fill_dark="*primary_900",
|
||||
input_background_fill="#F6F6F6",
|
||||
chatbot_code_background_color="*neutral_950",
|
||||
chatbot_code_background_color_dark="*neutral_950",
|
||||
)
|
||||
|
||||
js = ''
|
||||
if LAYOUT=="TOP-DOWN":
|
||||
js = ""
|
||||
else:
|
||||
with open('themes/common.js', 'r', encoding='utf8') as f:
|
||||
js = f"<script>{f.read()}</script>"
|
||||
|
||||
# 添加一个萌萌的看板娘
|
||||
if ADD_WAIFU:
|
||||
js += """
|
||||
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/autoload.js"></script>
|
||||
"""
|
||||
gradio_original_template_fn = gr.routes.templates.TemplateResponse
|
||||
def gradio_new_template_fn(*args, **kwargs):
|
||||
res = gradio_original_template_fn(*args, **kwargs)
|
||||
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
||||
res.init_headers()
|
||||
return res
|
||||
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
|
||||
except:
|
||||
set_theme = None
|
||||
print('gradio版本较旧, 不能自定义字体和颜色')
|
||||
return set_theme
|
||||
|
||||
|
||||
with open("themes/green.css", "r", encoding="utf-8") as f:
|
||||
advanced_css = f.read()
|
||||
12
themes/theme.py
Normal file
12
themes/theme.py
Normal file
@ -0,0 +1,12 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
THEME, = get_conf('THEME')
|
||||
|
||||
if THEME == 'Chuanhu-Small-and-Beautiful':
|
||||
from .green import adjust_theme, advanced_css
|
||||
theme_declaration = "<h2 align=\"center\" class=\"small\">[Chuanhu-Small-and-Beautiful主题]</h2>"
|
||||
else:
|
||||
from .default import adjust_theme, advanced_css
|
||||
theme_declaration = ""
|
||||
|
||||
|
||||
308
toolbox.py
308
toolbox.py
@ -1,18 +1,12 @@
|
||||
import html
|
||||
import markdown
|
||||
import importlib
|
||||
import time
|
||||
import inspect
|
||||
import gradio as gr
|
||||
import func_box
|
||||
import re
|
||||
import os
|
||||
import gradio
|
||||
from latex2mathml.converter import convert as tex2mathml
|
||||
from functools import wraps, lru_cache
|
||||
import shutil
|
||||
import os
|
||||
import time
|
||||
import glob
|
||||
import sys
|
||||
import threading
|
||||
############################### 插件输入输出接驳区 #######################################
|
||||
pj = os.path.join
|
||||
|
||||
"""
|
||||
@ -47,62 +41,57 @@ def ArgsGeneralWrapper(f):
|
||||
"""
|
||||
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。
|
||||
"""
|
||||
def decorated(cookies, max_length, llm_model, txt, top_p, temperature,
|
||||
chatbot, history, system_prompt, models, plugin_advanced_arg, ipaddr: gr.Request, *args):
|
||||
""""""
|
||||
def decorated(request: gradio.Request, cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args):
|
||||
txt_passon = txt
|
||||
if txt == "" and txt2 != "": txt_passon = txt2
|
||||
# 引入一个有cookie的chatbot
|
||||
start_time = time.time()
|
||||
encrypt, private = get_conf('switch_model')[0]['key']
|
||||
private_key, = get_conf('private_key')
|
||||
cookies.update({
|
||||
'top_p':top_p,
|
||||
'temperature':temperature,
|
||||
})
|
||||
|
||||
llm_kwargs = {
|
||||
'api_key': cookies['api_key'],
|
||||
'llm_model': llm_model,
|
||||
'top_p':top_p,
|
||||
'max_length': max_length,
|
||||
'temperature':temperature,
|
||||
'ipaddr': ipaddr.client.host,
|
||||
'start_time': start_time
|
||||
'client_ip': request.client.host,
|
||||
}
|
||||
plugin_kwargs = {
|
||||
"advanced_arg": plugin_advanced_arg,
|
||||
"parameters_def": ''
|
||||
}
|
||||
if len(args) > 1:
|
||||
plugin_kwargs.update({'parameters_def': args[1]})
|
||||
transparent_address_private = f'<p style="display:none;">\n{private_key}\n{ipaddr.client.host}\n</p>'
|
||||
transparent_address = f'<p style="display:none;">\n{ipaddr.client.host}\n</p>'
|
||||
if private in models:
|
||||
if chatbot == []:
|
||||
chatbot.append([None, f'隐私模式, 你的对话记录无法被他人检索 {transparent_address_private}'])
|
||||
else:
|
||||
chatbot[0] = [None, f'隐私模式, 你的对话记录无法被他人检索 {transparent_address_private}']
|
||||
else:
|
||||
if chatbot == []:
|
||||
chatbot.append([None, f'正常对话模式, 你接来下的对话将会被记录并且可以被所有人检索,你可以到Settings中选择隐私模式 {transparent_address}'])
|
||||
else:
|
||||
chatbot[0] = [None, f'正常对话模式, 你接来下的对话将会被记录并且可以被所有人检索,你可以到Settings中选择隐私模式 {transparent_address}']
|
||||
chatbot_with_cookie = ChatBotWithCookies(cookies)
|
||||
chatbot_with_cookie.write_list(chatbot)
|
||||
txt_passon = txt
|
||||
if encrypt in models: txt_passon = func_box.encryption_str(txt)
|
||||
if cookies.get('lock_plugin', None) is None:
|
||||
# 正常状态
|
||||
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
|
||||
else:
|
||||
# 处理个别特殊插件的锁定状态
|
||||
module, fn_name = cookies['lock_plugin'].split('->')
|
||||
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
|
||||
yield from f_hot_reload(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
|
||||
return decorated
|
||||
|
||||
|
||||
|
||||
def update_ui(chatbot, history, msg='正常', *args): # 刷新界面
|
||||
def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时,可用clear将其清空,然后用for+append循环重新赋值。"
|
||||
yield chatbot.get_cookies(), chatbot, history, msg
|
||||
threading.Thread(target=func_box.thread_write_chat, args=(chatbot, history)).start()
|
||||
# func_box.thread_write_chat(chatbot, history)
|
||||
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时, 可用clear将其清空, 然后用for+append循环重新赋值。"
|
||||
cookies = chatbot.get_cookies()
|
||||
|
||||
# 解决插件锁定时的界面显示问题
|
||||
if cookies.get('lock_plugin', None):
|
||||
label = cookies.get('llm_model', "") + " | " + "正在锁定插件" + cookies.get('lock_plugin', None)
|
||||
chatbot_gr = gradio.update(value=chatbot, label=label)
|
||||
if cookies.get('label', "") != label: cookies['label'] = label # 记住当前的label
|
||||
elif cookies.get('label', None):
|
||||
chatbot_gr = gradio.update(value=chatbot, label=cookies.get('llm_model', ""))
|
||||
cookies['label'] = None # 清空label
|
||||
else:
|
||||
chatbot_gr = chatbot
|
||||
|
||||
yield cookies, chatbot_gr, history, msg
|
||||
|
||||
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
|
||||
"""
|
||||
@ -159,14 +148,9 @@ def HotReload(f):
|
||||
def decorated(*args, **kwargs):
|
||||
fn_name = f.__name__
|
||||
f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name)
|
||||
try:
|
||||
yield from f_hot_reload(*args, **kwargs)
|
||||
except TypeError:
|
||||
args = tuple(args[element] for element in range(len(args)) if element != 6)
|
||||
yield from f_hot_reload(*args, **kwargs)
|
||||
return decorated
|
||||
|
||||
####################################### 其他小工具 #####################################
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
@ -230,7 +214,8 @@ def write_results_to_file(history, file_name=None):
|
||||
# remove everything that cannot be handled by utf8
|
||||
f.write(content.encode('utf-8', 'ignore').decode())
|
||||
f.write('\n\n')
|
||||
res = '以上材料已经被写入' + f'./gpt_log/{file_name}'
|
||||
res = '以上材料已经被写入:\t' + os.path.abspath(f'./gpt_log/{file_name}')
|
||||
print(res)
|
||||
return res
|
||||
|
||||
|
||||
@ -255,51 +240,37 @@ def report_execption(chatbot, history, a, b):
|
||||
history.append(b)
|
||||
|
||||
|
||||
import re
|
||||
def text_divide_paragraph(input_str):
|
||||
if input_str:
|
||||
code_blocks = re.findall(r'```[\s\S]*?```', input_str)
|
||||
def text_divide_paragraph(text):
|
||||
"""
|
||||
将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。
|
||||
"""
|
||||
pre = '<div class="markdown-body">'
|
||||
suf = '</div>'
|
||||
if text.startswith(pre) and text.endswith(suf):
|
||||
return text
|
||||
|
||||
for i, block in enumerate(code_blocks):
|
||||
input_str = input_str.replace(block, f'{{{{CODE_BLOCK_{i}}}}}')
|
||||
|
||||
if code_blocks:
|
||||
sections = re.split(r'({{{{\w+}}}})', input_str)
|
||||
for idx, section in enumerate(sections):
|
||||
if 'CODE_BLOCK' in section or section.startswith(' '):
|
||||
continue
|
||||
sections[idx] = re.sub(r'(?!```)(?<!\n)\n(?!(\n|^)( {0,3}[\*\+\-]|[0-9]+\.))', '\n\n', section)
|
||||
input_str = ''.join(sections)
|
||||
|
||||
for i, block in enumerate(code_blocks):
|
||||
input_str = input_str.replace(f'{{{{CODE_BLOCK_{i}}}}}', block.replace('\n', '\n'))
|
||||
if '```' in text:
|
||||
# careful input
|
||||
return pre + text + suf
|
||||
else:
|
||||
lines = input_str.split('\n')
|
||||
for idx, line in enumerate(lines[:-1]):
|
||||
if not line.strip():
|
||||
continue
|
||||
if not (lines[idx + 1].startswith(' ') or lines[idx + 1].startswith('\t')):
|
||||
lines[idx] += '\n' # 将一个换行符替换为两个换行符
|
||||
input_str = '\n'.join(lines)
|
||||
|
||||
return input_str
|
||||
|
||||
# wtf input
|
||||
lines = text.split("\n")
|
||||
for i, line in enumerate(lines):
|
||||
lines[i] = lines[i].replace(" ", " ")
|
||||
text = "</br>".join(lines)
|
||||
return pre + text + suf
|
||||
|
||||
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
|
||||
def markdown_convertion(txt):
|
||||
"""
|
||||
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。
|
||||
"""
|
||||
pre = '<div class="md-message">'
|
||||
pre = '<div class="markdown-body">'
|
||||
suf = '</div>'
|
||||
raw_pre = '<div class="raw-message hideM">'
|
||||
raw_suf = '</div>'
|
||||
if txt.startswith(pre) and txt.endswith(suf):
|
||||
# print('警告,输入了已经经过转化的字符串,二次转化可能出问题')
|
||||
return txt # 已经被转化过,不需要再次转化
|
||||
if txt.startswith(raw_pre) and txt.endswith(raw_suf):
|
||||
return txt # 已经被转化过,不需要再次转化
|
||||
raw_hide = raw_pre + txt + raw_suf
|
||||
|
||||
markdown_extension_configs = {
|
||||
'mdx_math': {
|
||||
'enable_dollar_delimiter': True,
|
||||
@ -308,6 +279,13 @@ def markdown_convertion(txt):
|
||||
}
|
||||
find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>'
|
||||
|
||||
def tex2mathml_catch_exception(content, *args, **kwargs):
|
||||
try:
|
||||
content = tex2mathml(content, *args, **kwargs)
|
||||
except:
|
||||
content = content
|
||||
return content
|
||||
|
||||
def replace_math_no_render(match):
|
||||
content = match.group(1)
|
||||
if 'mode=display' in match.group(0):
|
||||
@ -323,17 +301,16 @@ def markdown_convertion(txt):
|
||||
content = content.replace('\\begin{aligned}', '\\begin{array}')
|
||||
content = content.replace('\\end{aligned}', '\\end{array}')
|
||||
content = content.replace('&', ' ')
|
||||
content = tex2mathml(content, display="block")
|
||||
content = tex2mathml_catch_exception(content, display="block")
|
||||
return content
|
||||
else:
|
||||
return tex2mathml(content)
|
||||
return tex2mathml_catch_exception(content)
|
||||
|
||||
def markdown_bug_hunt(content):
|
||||
"""
|
||||
解决一个mdx_math的bug(单$包裹begin命令时多余<script>)
|
||||
"""
|
||||
content = content.replace('<script type="math/tex">\n<script type="math/tex; mode=display">',
|
||||
'<script type="math/tex; mode=display">')
|
||||
content = content.replace('<script type="math/tex">\n<script type="math/tex; mode=display">', '<script type="math/tex; mode=display">')
|
||||
content = content.replace('</script>\n</script>', '</script>')
|
||||
return content
|
||||
|
||||
@ -341,29 +318,23 @@ def markdown_convertion(txt):
|
||||
if '```' not in txt:
|
||||
return True
|
||||
else:
|
||||
if '```reference' in txt:
|
||||
return True # newbing
|
||||
else:
|
||||
return False
|
||||
if '```reference' in txt: return True # newbing
|
||||
else: return False
|
||||
|
||||
if ('$$' in txt) and no_code(txt): # 有$标识的公式符号,且没有代码段```的标识
|
||||
if ('$' in txt) and no_code(txt): # 有$标识的公式符号,且没有代码段```的标识
|
||||
# convert everything to html format
|
||||
split = markdown.markdown(text='---')
|
||||
txt = re.sub(r'\$\$((?:.|\n)*?)\$\$', lambda match: '$$' + re.sub(r'\n+', '</br>', match.group(1)) + '$$', txt)
|
||||
convert_stage_1 = markdown.markdown(text=txt, extensions=['mdx_math', 'fenced_code', 'tables', 'sane_lists'], extension_configs=markdown_extension_configs)
|
||||
convert_stage_1 = markdown_bug_hunt(convert_stage_1)
|
||||
# re.DOTALL: Make the '.' special character match any character at all, including a newline; without this flag, '.' will match anything except a newline. Corresponds to the inline flag (?s).
|
||||
# 1. convert to easy-to-copy tex (do not render math)
|
||||
convert_stage_2_1, n = re.subn(find_equation_pattern, replace_math_no_render, convert_stage_1, flags=re.DOTALL)
|
||||
# 2. convert to rendered equation
|
||||
convert_stage_1_resp = convert_stage_1.replace('</br>', '')
|
||||
convert_stage_2_2, n = re.subn(find_equation_pattern, replace_math_render, convert_stage_1_resp, flags=re.DOTALL)
|
||||
convert_stage_2_2, n = re.subn(find_equation_pattern, replace_math_render, convert_stage_1, flags=re.DOTALL)
|
||||
# cat them together
|
||||
context = pre + convert_stage_2_1 + f'{split}' + convert_stage_2_2 + suf
|
||||
return raw_hide + context # 破坏html 结构,并显示源码
|
||||
return pre + convert_stage_2_1 + f'{split}' + convert_stage_2_2 + suf
|
||||
else:
|
||||
context = pre + markdown.markdown(txt, extensions=['fenced_code', 'codehilite', 'tables', 'sane_lists']) + suf
|
||||
return raw_hide + context # 破坏html 结构,并显示源码
|
||||
return pre + markdown.markdown(txt, extensions=['fenced_code', 'codehilite', 'tables', 'sane_lists']) + suf
|
||||
|
||||
|
||||
def close_up_code_segment_during_stream(gpt_reply):
|
||||
@ -377,9 +348,9 @@ def close_up_code_segment_during_stream(gpt_reply):
|
||||
str: 返回一个新的字符串,将输出代码片段的“后面的```”补上。
|
||||
|
||||
"""
|
||||
if '```' not in str(gpt_reply):
|
||||
if '```' not in gpt_reply:
|
||||
return gpt_reply
|
||||
if str(gpt_reply).endswith('```'):
|
||||
if gpt_reply.endswith('```'):
|
||||
return gpt_reply
|
||||
|
||||
# 排除了以上两个情况,我们
|
||||
@ -405,8 +376,7 @@ def format_io(self, y):
|
||||
if gpt_reply is not None: gpt_reply = close_up_code_segment_during_stream(gpt_reply)
|
||||
# process
|
||||
y[-1] = (
|
||||
# None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code', 'tables']),
|
||||
None if i_ask is None else markdown_convertion(i_ask),
|
||||
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code', 'tables']),
|
||||
None if gpt_reply is None else markdown_convertion(gpt_reply)
|
||||
)
|
||||
return y
|
||||
@ -497,58 +467,52 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
||||
import shutil
|
||||
if rename_file is None: rename_file = f'{gen_time_str()}-{os.path.basename(file)}'
|
||||
new_path = os.path.join(f'./gpt_log/', rename_file)
|
||||
# 如果已经存在,先删除
|
||||
if os.path.exists(new_path) and not os.path.samefile(new_path, file): os.remove(new_path)
|
||||
# 把文件复制过去
|
||||
if not os.path.exists(new_path): shutil.copyfile(file, new_path)
|
||||
# 将文件添加到chatbot cookie中,避免多用户干扰
|
||||
if chatbot:
|
||||
if 'file_to_promote' in chatbot._cookies: current = chatbot._cookies['file_to_promote']
|
||||
else: current = []
|
||||
chatbot._cookies.update({'file_to_promote': [new_path] + current})
|
||||
|
||||
|
||||
def get_user_upload(chatbot, ipaddr: gr.Request):
|
||||
"""
|
||||
获取用户上传过的文件
|
||||
"""
|
||||
private_upload = './private_upload'
|
||||
user_history = os.path.join(private_upload, ipaddr.client.host)
|
||||
history = """| 编号 | 目录 | 目录内文件 |\n| --- | --- | --- |\n"""
|
||||
count_num = 1
|
||||
for root, d, file in os.walk(user_history):
|
||||
file_link = "<br>".join([f'{func_box.html_view_blank(f"{root}/{i}")}' for i in file])
|
||||
history += f'| {count_num} | {root} | {file_link} |\n'
|
||||
count_num += 1
|
||||
chatbot.append(['Load Submission History....',
|
||||
f'[Local Message] 请自行复制以下目录 or 目录+文件, 填入输入框以供函数区高亮按钮使用\n\n'
|
||||
f'{func_box.html_tag_color("提交前记得请检查头尾空格哦~")}\n\n'
|
||||
f'{history}'
|
||||
])
|
||||
return chatbot
|
||||
|
||||
|
||||
def on_file_uploaded(files, chatbot, txt, ipaddr: gr.Request):
|
||||
def on_file_uploaded(files, chatbot, txt, txt2, checkboxes):
|
||||
"""
|
||||
当文件被上传时的回调函数
|
||||
"""
|
||||
if len(files) == 0:
|
||||
return chatbot, txt
|
||||
private_upload = './private_upload'
|
||||
# shutil.rmtree('./private_upload/') 不需要删除文件
|
||||
time_tag_path = os.path.join(private_upload, ipaddr.client.host, time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()))
|
||||
os.makedirs(f'{time_tag_path}', exist_ok=True)
|
||||
import shutil
|
||||
import os
|
||||
import time
|
||||
import glob
|
||||
from toolbox import extract_archive
|
||||
try:
|
||||
shutil.rmtree('./private_upload/')
|
||||
except:
|
||||
pass
|
||||
time_tag = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
||||
os.makedirs(f'private_upload/{time_tag}', exist_ok=True)
|
||||
err_msg = ''
|
||||
for file in files:
|
||||
file_origin_name = os.path.basename(file.orig_name)
|
||||
shutil.copy(file.name, f'{time_tag_path}/{file_origin_name}')
|
||||
err_msg += extract_archive(f'{time_tag_path}/{file_origin_name}',
|
||||
dest_dir=f'{time_tag_path}/{file_origin_name}.extract')
|
||||
moved_files = [fp for fp in glob.glob(f'{time_tag_path}/**/*', recursive=True)]
|
||||
txt = f'{time_tag_path}'
|
||||
shutil.copy(file.name, f'private_upload/{time_tag}/{file_origin_name}')
|
||||
err_msg += extract_archive(f'private_upload/{time_tag}/{file_origin_name}',
|
||||
dest_dir=f'private_upload/{time_tag}/{file_origin_name}.extract')
|
||||
moved_files = [fp for fp in glob.glob('private_upload/**/*', recursive=True)]
|
||||
if "底部输入区" in checkboxes:
|
||||
txt = ""
|
||||
txt2 = f'private_upload/{time_tag}'
|
||||
else:
|
||||
txt = f'private_upload/{time_tag}'
|
||||
txt2 = ""
|
||||
moved_files_str = '\t\n\n'.join(moved_files)
|
||||
chatbot.append([None,
|
||||
chatbot.append(['我上传了文件,请查收',
|
||||
f'[Local Message] 收到以下文件: \n\n{moved_files_str}' +
|
||||
f'\n\n调用路径参数已自动修正到: \n\n{txt}' +
|
||||
f'\n\n现在您点击任意“高亮”标识的函数插件时,以上文件将被作为输入参数'+err_msg])
|
||||
return chatbot, txt
|
||||
f'\n\n现在您点击任意“红颜色”标识的函数插件时,以上文件将被作为输入参数'+err_msg])
|
||||
return chatbot, txt, txt2
|
||||
|
||||
|
||||
def on_report_generated(cookies, files, chatbot):
|
||||
@ -566,23 +530,28 @@ def on_report_generated(cookies, files, chatbot):
|
||||
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
|
||||
return cookies, report_files, chatbot
|
||||
|
||||
def load_chat_cookies():
|
||||
API_KEY, LLM_MODEL, AZURE_API_KEY = get_conf('API_KEY', 'LLM_MODEL', 'AZURE_API_KEY')
|
||||
if is_any_api_key(AZURE_API_KEY):
|
||||
if is_any_api_key(API_KEY): API_KEY = API_KEY + ',' + AZURE_API_KEY
|
||||
else: API_KEY = AZURE_API_KEY
|
||||
return {'api_key': API_KEY, 'llm_model': LLM_MODEL}
|
||||
|
||||
def is_openai_api_key(key):
|
||||
CUSTOM_API_KEY_PATTERN, = get_conf('CUSTOM_API_KEY_PATTERN')
|
||||
if len(CUSTOM_API_KEY_PATTERN) != 0:
|
||||
API_MATCH_ORIGINAL = re.match(CUSTOM_API_KEY_PATTERN, key)
|
||||
else:
|
||||
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
|
||||
return bool(API_MATCH_ORIGINAL)
|
||||
|
||||
def is_azure_api_key(key):
|
||||
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
|
||||
return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE)
|
||||
return bool(API_MATCH_AZURE)
|
||||
|
||||
def is_api2d_key(key):
|
||||
if key.startswith('fk') and len(key) == 41:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def is_proxy_key(key):
|
||||
if key.startswith('proxy-') and len(key) == 38:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
|
||||
return bool(API_MATCH_API2D)
|
||||
|
||||
def is_any_api_key(key):
|
||||
if ',' in key:
|
||||
@ -591,10 +560,10 @@ def is_any_api_key(key):
|
||||
if is_any_api_key(k): return True
|
||||
return False
|
||||
else:
|
||||
return is_openai_api_key(key) or is_api2d_key(key) or is_proxy_key(key)
|
||||
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
|
||||
|
||||
def what_keys(keys):
|
||||
avail_key_list = {'OpenAI Key':0, "API2D Key":0}
|
||||
avail_key_list = {'OpenAI Key':0, "Azure Key":0, "API2D Key":0}
|
||||
key_list = keys.split(',')
|
||||
|
||||
for k in key_list:
|
||||
@ -606,13 +575,10 @@ def what_keys(keys):
|
||||
avail_key_list['API2D Key'] += 1
|
||||
|
||||
for k in key_list:
|
||||
if is_proxy_key(k):
|
||||
avail_key_list['Proxy Key'] += 1
|
||||
if is_azure_api_key(k):
|
||||
avail_key_list['Azure Key'] += 1
|
||||
|
||||
return f"检测到: \n" \
|
||||
f"OpenAI Key {avail_key_list['OpenAI Key']} 个\n" \
|
||||
f"API2D Key {avail_key_list['API2D Key']} 个\n" \
|
||||
f"Proxy Key {avail_key_list['API2D Key']} 个\n"
|
||||
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个, Azure Key {avail_key_list['Azure Key']} 个, API2D Key {avail_key_list['API2D Key']} 个"
|
||||
|
||||
def select_api_key(keys, llm_model):
|
||||
import random
|
||||
@ -627,12 +593,12 @@ def select_api_key(keys, llm_model):
|
||||
for k in key_list:
|
||||
if is_api2d_key(k): avail_key_list.append(k)
|
||||
|
||||
if llm_model.startswith('proxy-'):
|
||||
if llm_model.startswith('azure-'):
|
||||
for k in key_list:
|
||||
if is_proxy_key(k): avail_key_list.append(k.replace('proxy-', ''))
|
||||
if is_azure_api_key(k): avail_key_list.append(k)
|
||||
|
||||
if len(avail_key_list) == 0:
|
||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源。")
|
||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure,claude,api2d等请求源)。")
|
||||
|
||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||
return api_key
|
||||
@ -701,12 +667,6 @@ def read_single_conf_with_lru_cache(arg):
|
||||
except:
|
||||
try:
|
||||
# 优先级2. 获取config_private中的配置
|
||||
# 获取当前文件所在目录的路径
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
# 获取上一层目录的路径
|
||||
parent_dir = os.path.dirname(current_dir)
|
||||
# 将上一层目录添加到Python的搜索路径中
|
||||
sys.path.append(parent_dir)
|
||||
r = getattr(importlib.import_module('config_private'), arg)
|
||||
except:
|
||||
# 优先级3. 获取config中的配置
|
||||
@ -714,13 +674,14 @@ def read_single_conf_with_lru_cache(arg):
|
||||
|
||||
# 在读取API_KEY时,检查一下是不是忘了改config
|
||||
if arg == 'API_KEY':
|
||||
print亮蓝(f"[API_KEY] 本项目现已支持OpenAI和API2D的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,api2d-key3\"")
|
||||
print亮蓝(f"[API_KEY] 本项目现已支持OpenAI和Azure的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,azure-key3\"")
|
||||
print亮蓝(f"[API_KEY] 您既可以在config.py中修改api-key(s),也可以在问题输入区输入临时的api-key(s),然后回车键提交后即可生效。")
|
||||
if is_any_api_key(r):
|
||||
print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功")
|
||||
else:
|
||||
print亮红( "[API_KEY] 正确的 API_KEY 是'sk'开头的51位密钥(OpenAI),或者 'fk'开头的41位密钥,请在config文件中修改API密钥之后再运行。")
|
||||
print亮红( "[API_KEY] 您的 API_KEY 不满足任何一种已知的密钥格式,请在config文件中修改API密钥之后再运行。")
|
||||
if arg == 'proxies':
|
||||
if not read_single_conf_with_lru_cache('USE_PROXY'): r = None # 检查USE_PROXY,防止proxies单独起作用
|
||||
if r is None:
|
||||
print亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。')
|
||||
else:
|
||||
@ -729,6 +690,7 @@ def read_single_conf_with_lru_cache(arg):
|
||||
return r
|
||||
|
||||
|
||||
@lru_cache(maxsize=128)
|
||||
def get_conf(*args):
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||
res = []
|
||||
@ -761,7 +723,6 @@ class DummyWith():
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
return
|
||||
|
||||
|
||||
def run_gradio_in_subpath(demo, auth, port, custom_path):
|
||||
"""
|
||||
把gradio的运行地址更改到指定的二次路径上
|
||||
@ -928,3 +889,16 @@ def objload(file='objdump.tmp'):
|
||||
return
|
||||
with open(file, 'rb') as f:
|
||||
return pickle.load(f)
|
||||
|
||||
def Singleton(cls):
|
||||
"""
|
||||
一个单实例装饰器
|
||||
"""
|
||||
_instance = {}
|
||||
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
|
||||
return _singleton
|
||||
|
||||
4
version
4
version
@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 3.42,
|
||||
"version": 3.47,
|
||||
"show_feature": true,
|
||||
"new_feature": "完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持"
|
||||
"new_feature": "优化一键升级 <-> 提高arxiv翻译速度和成功率 <-> 支持自定义APIKEY格式 <-> 临时修复theme的文件丢失问题 <-> 新增实时语音对话插件(自动断句,脱手对话) <-> 支持加载自定义的ChatGLM2微调模型 <-> 动态ChatBot窗口高度 <-> 修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持"
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user