152 lines
3.9 KiB
Python
152 lines
3.9 KiB
Python
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass, field
|
|
from math import ceil, floor
|
|
from typing import List, Literal, TypedDict
|
|
|
|
MessageRole = Literal["system", "user", "assistant"]
|
|
MessageType = Literal["ai_response", "action_result"]
|
|
|
|
|
|
class MessageDict(TypedDict):
|
|
role: MessageRole
|
|
content: str
|
|
|
|
|
|
@dataclass
|
|
class Message:
|
|
"""OpenAI Message object containing a role and the message content"""
|
|
|
|
role: MessageRole
|
|
content: str
|
|
type: MessageType | None = None
|
|
|
|
def raw(self) -> MessageDict:
|
|
return {"role": self.role, "content": self.content}
|
|
|
|
|
|
@dataclass
|
|
class ModelInfo:
|
|
"""Struct for model information.
|
|
|
|
Would be lovely to eventually get this directly from APIs, but needs to be scraped from
|
|
websites for now.
|
|
|
|
"""
|
|
|
|
name: str
|
|
prompt_token_cost: float
|
|
completion_token_cost: float
|
|
max_tokens: int
|
|
|
|
|
|
@dataclass
|
|
class ChatModelInfo(ModelInfo):
|
|
"""Struct for chat model information."""
|
|
|
|
|
|
@dataclass
|
|
class TextModelInfo(ModelInfo):
|
|
"""Struct for text completion model information."""
|
|
|
|
|
|
@dataclass
|
|
class EmbeddingModelInfo(ModelInfo):
|
|
"""Struct for embedding model information."""
|
|
|
|
embedding_dimensions: int
|
|
|
|
|
|
@dataclass
|
|
class ChatSequence:
|
|
"""Utility container for a chat sequence"""
|
|
|
|
model: ChatModelInfo
|
|
messages: list[Message] = field(default_factory=list)
|
|
|
|
def __getitem__(self, i: int):
|
|
return self.messages[i]
|
|
|
|
def __iter__(self):
|
|
return iter(self.messages)
|
|
|
|
def __len__(self):
|
|
return len(self.messages)
|
|
|
|
def append(self, message: Message):
|
|
return self.messages.append(message)
|
|
|
|
def extend(self, messages: list[Message] | ChatSequence):
|
|
return self.messages.extend(messages)
|
|
|
|
def insert(self, index: int, *messages: Message):
|
|
for message in reversed(messages):
|
|
self.messages.insert(index, message)
|
|
|
|
@classmethod
|
|
def for_model(cls, model_name: str, messages: list[Message] | ChatSequence = []):
|
|
from autogpt.llm.providers.openai import OPEN_AI_CHAT_MODELS
|
|
|
|
if not model_name in OPEN_AI_CHAT_MODELS:
|
|
raise ValueError(f"Unknown chat model '{model_name}'")
|
|
|
|
return ChatSequence(
|
|
model=OPEN_AI_CHAT_MODELS[model_name], messages=list(messages)
|
|
)
|
|
|
|
def add(self, message_role: MessageRole, content: str):
|
|
self.messages.append(Message(message_role, content))
|
|
|
|
@property
|
|
def token_length(self):
|
|
from autogpt.llm.utils import count_message_tokens
|
|
|
|
return count_message_tokens(self.messages, self.model.name)
|
|
|
|
def raw(self) -> list[MessageDict]:
|
|
return [m.raw() for m in self.messages]
|
|
|
|
def dump(self) -> str:
|
|
SEPARATOR_LENGTH = 42
|
|
|
|
def separator(text: str):
|
|
half_sep_len = (SEPARATOR_LENGTH - 2 - len(text)) / 2
|
|
return f"{floor(half_sep_len)*'-'} {text.upper()} {ceil(half_sep_len)*'-'}"
|
|
|
|
formatted_messages = "\n".join(
|
|
[f"{separator(m.role)}\n{m.content}" for m in self.messages]
|
|
)
|
|
return f"""
|
|
============== ChatSequence ==============
|
|
Length: {self.token_length} tokens; {len(self.messages)} messages
|
|
{formatted_messages}
|
|
==========================================
|
|
"""
|
|
|
|
|
|
@dataclass
|
|
class LLMResponse:
|
|
"""Standard response struct for a response from an LLM model."""
|
|
|
|
model_info: ModelInfo
|
|
prompt_tokens_used: int = 0
|
|
completion_tokens_used: int = 0
|
|
|
|
|
|
@dataclass
|
|
class EmbeddingModelResponse(LLMResponse):
|
|
"""Standard response struct for a response from an embedding model."""
|
|
|
|
embedding: List[float] = field(default_factory=list)
|
|
|
|
def __post_init__(self):
|
|
if self.completion_tokens_used:
|
|
raise ValueError("Embeddings should not have completion tokens used.")
|
|
|
|
|
|
@dataclass
|
|
class ChatModelResponse(LLMResponse):
|
|
"""Standard response struct for a response from an LLM model."""
|
|
|
|
content: str = None
|