{ "cells": [ { "cell_type": "markdown", "id": "cfab521b-77fa-41be-a964-1f50f2ef4689", "metadata": {}, "source": [ "# 1. 简介\n", "
\n", "\n", "欢迎来到LangChain大模型应用开发短期课程👏🏻👏🏻\n", "\n", "本课程由哈里森·蔡斯 (Harrison Chase,LangChain作者)与Deeplearning.ai合作开发,旨在教大家使用这个神奇工具。\n", "\n", "\n", "\n", "## 1.1 LangChain的诞生和发展\n", "\n", "通过对LLM或大型语言模型给出提示(prompt),现在可以比以往更快地开发AI应用程序,但是一个应用程序可能需要进行多轮提示以及解析输出。\n", "\n", "在此过程有很多胶水代码需要编写,基于此需求,哈里森·蔡斯 (Harrison Chase) 创建了LangChain,使开发过程变得更加丝滑。\n", "\n", "LangChain开源社区快速发展,贡献者已达数百人,正以惊人的速度更新代码和功能。\n", "\n", "\n", "## 1.2 课程基本内容\n", "\n", "LangChain是用于构建大模型应用程序的开源框架,有Python和JavaScript两个不同版本的包。LangChain基于模块化组合,有许多单独的组件,可以一起使用或单独使用。此外LangChain还拥有很多应用案例,帮助我们了解如何将这些模块化组件以链式方式组合,以形成更多端到端的应用程序 。\n", "\n", "在本课程中,我们将介绍LandChain的常见组件。具体而言我们会讨论一下几个方面\n", "- 模型(Models)\n", "- 提示(Prompts): 使模型执行操作的方式\n", "- 索引(Indexes): 获取数据的方式,可以与模型结合使用\n", "- 链式(Chains): 端到端功能实现\n", "- 代理(Agents): 使用模型作为推理引擎\n", "\n", " \n", "\n", "## 1.3 致谢课程重要贡献者\n", "\n", "最后特别感谢Ankush Gholar(LandChain的联合作者)、Geoff Ladwig,、Eddy Shyu 以及 Diala Ezzedine,他们也为本课程内容贡献颇多~ " ] }, { "cell_type": "code", "execution_count": null, "id": "e3618ca8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": true } }, "nbformat": 4, "nbformat_minor": 5 }