88 lines
3.4 KiB
Plaintext
88 lines
3.4 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "cfab521b-77fa-41be-a964-1f50f2ef4689",
|
||
"metadata": {},
|
||
"source": [
|
||
"# 1. 简介\n",
|
||
"<div class=\"toc\"><ul class=\"toc-item\"><li><span><a href=\"#1.1-LangChain的诞生和发展\" data-toc-modified-id=\"1.1-LangChain的诞生和发展-1\">1.1 LangChain的诞生和发展</a></span></li><li><span><a href=\"#1.2-课程基本内容\" data-toc-modified-id=\"1.2-课程基本内容-2\">1.2 课程基本内容</a></span></li><li><span><a href=\"#1.3-致谢课程重要贡献者\" data-toc-modified-id=\"1.3-致谢课程重要贡献者-3\">1.3 致谢课程重要贡献者</a></span></li></ul></div>\n",
|
||
"\n",
|
||
"欢迎来到LangChain大模型应用开发短期课程👏🏻👏🏻\n",
|
||
"\n",
|
||
"本课程由哈里森·蔡斯 (Harrison Chase,LangChain作者)与Deeplearning.ai合作开发,旨在教大家使用这个神奇工具。\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"## 1.1 LangChain的诞生和发展\n",
|
||
"\n",
|
||
"通过对LLM或大型语言模型给出提示(prompt),现在可以比以往更快地开发AI应用程序,但是一个应用程序可能需要进行多轮提示以及解析输出。\n",
|
||
"\n",
|
||
"在此过程有很多胶水代码需要编写,基于此需求,哈里森·蔡斯 (Harrison Chase) 创建了LangChain,使开发过程变得更加丝滑。\n",
|
||
"\n",
|
||
"LangChain开源社区快速发展,贡献者已达数百人,正以惊人的速度更新代码和功能。\n",
|
||
"\n",
|
||
"\n",
|
||
"## 1.2 课程基本内容\n",
|
||
"\n",
|
||
"LangChain是用于构建大模型应用程序的开源框架,有Python和JavaScript两个不同版本的包。LangChain基于模块化组合,有许多单独的组件,可以一起使用或单独使用。此外LangChain还拥有很多应用案例,帮助我们了解如何将这些模块化组件以链式方式组合,以形成更多端到端的应用程序 。\n",
|
||
"\n",
|
||
"在本课程中,我们将介绍LandChain的常见组件。具体而言我们会讨论一下几个方面\n",
|
||
"- 模型(Models)\n",
|
||
"- 提示(Prompts): 使模型执行操作的方式\n",
|
||
"- 索引(Indexes): 获取数据的方式,可以与模型结合使用\n",
|
||
"- 链式(Chains): 端到端功能实现\n",
|
||
"- 代理(Agents): 使用模型作为推理引擎\n",
|
||
"\n",
|
||
" \n",
|
||
"\n",
|
||
"## 1.3 致谢课程重要贡献者\n",
|
||
"\n",
|
||
"最后特别感谢Ankush Gholar(LandChain的联合作者)、Geoff Ladwig,、Eddy Shyu 以及 Diala Ezzedine,他们也为本课程内容贡献颇多~ "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "e3618ca8",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.12"
|
||
},
|
||
"toc": {
|
||
"base_numbering": 1,
|
||
"nav_menu": {},
|
||
"number_sections": false,
|
||
"sideBar": true,
|
||
"skip_h1_title": false,
|
||
"title_cell": "Table of Contents",
|
||
"title_sidebar": "Contents",
|
||
"toc_cell": false,
|
||
"toc_position": {},
|
||
"toc_section_display": true,
|
||
"toc_window_display": true
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|