优化标题换行
This commit is contained in:
@ -87,15 +87,15 @@ var someValue: ExampleModule.MyType
|
||||
元组类型是使用括号括起来的零个或多个类型,类型间用逗号隔开。
|
||||
|
||||
你可以使用元组类型作为一个函数的返回类型,这样就可以使函数返回多个值。你也可以命名元组类型中的元素,然后用这些名字来引用每个元素的值。元素的名字由一个标识符紧跟一个冒号 `(:)` 组成。[函数和多返回值](../chapter2/06_Functions.html#functions_with_multiple_return_values) 章节里有一个展示上述特性的例子。
|
||||
|
||||
当一个元组类型的元素有名字的时候,这个名字就是类型的一部分。
|
||||
|
||||
|
||||
当一个元组类型的元素有名字的时候,这个名字就是类型的一部分。
|
||||
|
||||
```swift
|
||||
var someTuple = (top: 10, bottom: 12) // someTuple 的类型为 (top: Int, bottom: Int)
|
||||
someTuple = (top: 4, bottom: 42) // 正确:命名类型匹配
|
||||
someTuple = (9, 99) // 正确:命名类型被自动推断
|
||||
var someTuple = (top: 10, bottom: 12) // someTuple 的类型为 (top: Int, bottom: Int)
|
||||
someTuple = (top: 4, bottom: 42) // 正确:命名类型匹配
|
||||
someTuple = (9, 99) // 正确:命名类型被自动推断
|
||||
someTuple = (left: 5, right: 5) // 错误:命名类型不匹配
|
||||
```
|
||||
```
|
||||
|
||||
`Void` 是空元组类型 `()` 的别名。如果括号内只有一个元素,那么该类型就是括号内元素的类型。比如,`(Int)` 的类型是 `Int` 而不是 `(Int)`。所以,只有当元组类型包含的元素个数在两个及以上时才可以命名元组元素。
|
||||
|
||||
@ -107,7 +107,7 @@ someTuple = (left: 5, right: 5) // 错误:命名类型不匹配
|
||||
<a name="tuple-type-element"></a>
|
||||
> *元组类型元素* → [*元素名*](#element-name) [*类型注解*](#type-annotation) | [*类型*](#type)
|
||||
<a name="element-name"></a>
|
||||
> *元素名* → [*标识符*](02_Lexical_Structure.html#identifier)
|
||||
> *元素名* → [*标识符*](02_Lexical_Structure.html#identifier)
|
||||
|
||||
<a name="function_type"></a>
|
||||
## 函数类型
|
||||
@ -123,42 +123,42 @@ someTuple = (left: 5, right: 5) // 错误:命名类型不匹配
|
||||
函数类型可以拥有一个可变长参数作为参数类型中的最后一个参数。从语法角度上讲,可变长参数由一个基础类型名字紧随三个点(`...`)组成,如 `Int...`。可变长参数被认为是一个包含了基础类型元素的数组。即 `Int...` 就是 `[Int]`。关于使用可变长参数的例子,请参阅 [可变参数](../chapter2/06_Functions.html#variadic_parameters)。
|
||||
|
||||
为了指定一个 `in-out` 参数,可以在参数类型前加 `inout` 前缀。但是你不可以对可变长参数或返回值类型使用 `inout`。关于这种参数的详细讲解请参阅 [输入输出参数](../chapter2/06_Functions.html#in_out_parameters)。
|
||||
|
||||
函数和方法中的参数名并不是函数类型的一部分。例如:
|
||||
|
||||
```swift
|
||||
func someFunction(left: Int, right: Int) {}
|
||||
func anotherFunction(left: Int, right: Int) {}
|
||||
func functionWithDifferentLabels(top: Int, bottom: Int) {}
|
||||
|
||||
var f = someFunction // 函数f的类型为 (Int, Int) -> Void, 而不是 (left: Int, right: Int) -> Void.
|
||||
f = anotherFunction // 正确
|
||||
f = functionWithDifferentLabels // 正确
|
||||
|
||||
func functionWithDifferentArgumentTypes(left: Int, right: String) {}
|
||||
func functionWithDifferentNumberOfArguments(left: Int, right: Int, top: Int) {}
|
||||
|
||||
f = functionWithDifferentArgumentTypes // 错误
|
||||
f = functionWithDifferentNumberOfArguments // 错误
|
||||
```
|
||||
|
||||
函数和方法中的参数名并不是函数类型的一部分。例如:
|
||||
|
||||
```swift
|
||||
func someFunction(left: Int, right: Int) {}
|
||||
func anotherFunction(left: Int, right: Int) {}
|
||||
func functionWithDifferentLabels(top: Int, bottom: Int) {}
|
||||
|
||||
var f = someFunction // 函数f的类型为 (Int, Int) -> Void, 而不是 (left: Int, right: Int) -> Void.
|
||||
f = anotherFunction // 正确
|
||||
f = functionWithDifferentLabels // 正确
|
||||
|
||||
func functionWithDifferentArgumentTypes(left: Int, right: String) {}
|
||||
func functionWithDifferentNumberOfArguments(left: Int, right: Int, top: Int) {}
|
||||
|
||||
f = functionWithDifferentArgumentTypes // 错误
|
||||
f = functionWithDifferentNumberOfArguments // 错误
|
||||
```
|
||||
|
||||
如果一个函数类型包涵多个箭头(->),那么函数类型将从右向左进行组合。例如,函数类型 `Int -> Int -> Int` 可以理解为 `Int -> (Int -> Int)`,也就是说,该函数类型的参数为 `Int` 类型,其返回类型是一个参数类型为 `Int`,返回类型为 `Int` 的函数类型。
|
||||
|
||||
函数类型若要抛出错误就必须使用 `throws` 关键字来标记,若要重抛错误则必须使用 `rethrows` 关键字来标记。`throws` 关键字是函数类型的一部分,非抛出函数是抛出函数函数的一个子类型。因此,在使用抛出函数的地方也可以使用不抛出函数。抛出和重抛函数的相关描述见章节 [抛出函数与方法](05_Declarations.html#throwing_functions_and_methods) 和 [重抛函数与方法](05_Declarations.html#rethrowing_functions_and_methods)。
|
||||
|
||||
> 函数类型语法
|
||||
<a name="function-type"></a>
|
||||
> *函数类型* → [*特性列表*](06_Attributes.html#attributes)<sub>可选</sub> [*函数类型子句*](#function-type-argument-clause) **throws**<sub>可选</sub> **->** [*类型*](#type)
|
||||
> *函数类型* → [*特性列表*](06_Attributes.html#attributes)<sub>可选</sub> [*函数类型子句*](#function-type-argument-clause) **rethrows** **->** [*类型*](#type)
|
||||
<a name="function-type-argument-clause"></a>
|
||||
> *函数类型子句* → ()
|
||||
> *函数类型子句* → ([*函数类型参数列表*](#function-type-argument-list)*...*<sub>可选</sub>)
|
||||
<a name="function-type-argument-list"></a>
|
||||
> *函数类型参数列表* → [*函数类型参数*](function-type-argument) | [*函数类型参数*](function-type-argument), [*函数类型参数列表*](#function-type-argument-list)
|
||||
<a name="function-type-argument"></a>
|
||||
<a name="function-type"></a>
|
||||
> *函数类型* → [*特性列表*](06_Attributes.html#attributes)<sub>可选</sub> [*函数类型子句*](#function-type-argument-clause) **throws**<sub>可选</sub> **->** [*类型*](#type)
|
||||
> *函数类型* → [*特性列表*](06_Attributes.html#attributes)<sub>可选</sub> [*函数类型子句*](#function-type-argument-clause) **rethrows** **->** [*类型*](#type)
|
||||
<a name="function-type-argument-clause"></a>
|
||||
> *函数类型子句* → ()
|
||||
> *函数类型子句* → ([*函数类型参数列表*](#function-type-argument-list)*...*<sub>可选</sub>)
|
||||
<a name="function-type-argument-list"></a>
|
||||
> *函数类型参数列表* → [*函数类型参数*](function-type-argument) | [*函数类型参数*](function-type-argument), [*函数类型参数列表*](#function-type-argument-list)
|
||||
<a name="function-type-argument"></a>
|
||||
> *函数类型参数* → [*特性列表*](06_Attributes.html#attributes)<sub>可选</sub> **输入输出参数**<sub>可选</sub> [*类型*](#type) | [*参数标签*](#argument-label) [*类型注解*](#type-annotation)
|
||||
<a name="argument-label"></a>
|
||||
> *参数标签* → [*标识符*](02_Lexical_Structure.html#identifier)
|
||||
> *参数标签* → [*标识符*](02_Lexical_Structure.html#identifier)
|
||||
|
||||
<a name="array_type"></a>
|
||||
## 数组类型
|
||||
@ -258,17 +258,17 @@ var explicitlyUnwrappedString: Optional<String>
|
||||
```
|
||||
|
||||
注意类型与 `!` 之间没有空格。
|
||||
|
||||
由于隐式解包修改了包涵其类型的声明语义,嵌套在元组类型或泛型的可选类型(比如字典元素类型或数组元素类型),不能被标记为隐式解包。例如:
|
||||
|
||||
```swift
|
||||
let tupleOfImplicitlyUnwrappedElements: (Int!, Int!) // 错误
|
||||
let implicitlyUnwrappedTuple: (Int, Int)! // 正确
|
||||
|
||||
let arrayOfImplicitlyUnwrappedElements: [Int!] // 错误
|
||||
let implicitlyUnwrappedArray: [Int]! // 正确
|
||||
```
|
||||
|
||||
|
||||
由于隐式解包修改了包涵其类型的声明语义,嵌套在元组类型或泛型的可选类型(比如字典元素类型或数组元素类型),不能被标记为隐式解包。例如:
|
||||
|
||||
```swift
|
||||
let tupleOfImplicitlyUnwrappedElements: (Int!, Int!) // 错误
|
||||
let implicitlyUnwrappedTuple: (Int, Int)! // 正确
|
||||
|
||||
let arrayOfImplicitlyUnwrappedElements: [Int!] // 错误
|
||||
let implicitlyUnwrappedArray: [Int]! // 正确
|
||||
```
|
||||
|
||||
由于隐式解析可选类型和可选类型有同样的表达式`Optional<Wrapped>`,你可以在使用可选类型的地方使用隐式解析可选类型。比如,你可以将隐式解析可选类型的值赋给变量、常量和可选属性,反之亦然。
|
||||
|
||||
正如可选类型一样,你在声明隐式解析可选类型的变量或属性的时候也不用指定初始值,因为它有默认值 `nil`。
|
||||
@ -332,11 +332,11 @@ type(of: someInstance).printClassName()
|
||||
可以使用恒等运算符(`===` 和 `!==`)来测试一个实例的运行时类型和它的编译时类型是否一致。
|
||||
|
||||
```swift
|
||||
if type(of: someInstance) === someInstance.self {
|
||||
print("The dynamic and static type of someInstance are the same")
|
||||
} else {
|
||||
print("The dynamic and static type of someInstance are different")
|
||||
}
|
||||
if type(of: someInstance) === someInstance.self {
|
||||
print("The dynamic and static type of someInstance are the same")
|
||||
} else {
|
||||
print("The dynamic and static type of someInstance are different")
|
||||
}
|
||||
// 打印 "The dynamic and static type of someInstance are different"
|
||||
```
|
||||
|
||||
@ -396,5 +396,3 @@ let eFloat: Float = 2.71828 // eFloat 的类型为 Float
|
||||
```
|
||||
|
||||
Swift 中的类型推断在单独的表达式或语句上进行。这意味着所有用于类型推断的信息必须可以从表达式或其某个子表达式的类型检查中获取到。
|
||||
|
||||
|
||||
|
||||
@ -29,6 +29,7 @@
|
||||
|
||||
<a name="declaration_attributes"></a>
|
||||
##声明特性
|
||||
|
||||
声明特性只能应用于声明。
|
||||
|
||||
`available`
|
||||
@ -180,6 +181,7 @@ NSApplicationMain(CommandLine.argc, CommandLine.unsafeArgv)
|
||||
|
||||
<a name="declaration_attributes_used_by_interface_builder"></a>
|
||||
###Interface Builder 使用的声明特性
|
||||
|
||||
`Interface Builder` 特性是 `Interface Builder` 用来与 Xcode 同步的声明特性。`Swift` 提供了以下的 `Interface Builder` 特性:`IBAction`,`IBOutlet`,`IBDesignable`,以及`IBInspectable` 。这些特性与 Objective-C 中对应的特性在概念上是相同的。
|
||||
|
||||
`IBOutlet` 和 `IBInspectable` 用于修饰一个类的属性声明,`IBAction` 特性用于修饰一个类的方法声明,`IBDesignable` 用于修饰类的声明。
|
||||
@ -188,6 +190,7 @@ NSApplicationMain(CommandLine.argc, CommandLine.unsafeArgv)
|
||||
|
||||
<a name="type_attributes"></a>
|
||||
##类型特性
|
||||
|
||||
类型特性只能用于修饰类型。
|
||||
|
||||
`autoclosure`
|
||||
|
||||
@ -475,7 +475,7 @@ f()
|
||||
> *延迟语句* → **defer** [*代码块*](05_Declarations.md#code-block)
|
||||
|
||||
<a name="do_statements"></a>
|
||||
## Do 语句
|
||||
## Do 语句
|
||||
|
||||
`do` 语句用于引入一个新的作用域,该作用域中可以含有一个或多个 `catch` 子句,`catch` 子句中定义了一些匹配错误条件的模式。`do` 语句作用域内定义的常量和变量只能在 `do` 语句作用域内使用。
|
||||
|
||||
@ -623,7 +623,7 @@ do {
|
||||
> *文件名* → [*静态字符串字面量*](02_Lexical_Structure.md#static-string-literal)
|
||||
|
||||
<a name="availability_condition"></a>
|
||||
### 可用性条件
|
||||
### 可用性条件
|
||||
|
||||
可用性条件可作为 `if`,`while`,`guard` 语句的条件,可以在运行时基于特定的平台参数来查询 API 的可用性。
|
||||
|
||||
@ -661,5 +661,3 @@ if #available(平台名称 版本, ..., *) {
|
||||
> *平台版本* → [十进制数字](02_Lexical_Structure.md#decimal-digits)
|
||||
> *平台版本* → [十进制数字](02_Lexical_Structure.md#decimal-digits) **.** [十进制数字](02_Lexical_Structure.md#decimal-digits)
|
||||
> *平台版本* → [十进制数字](02_Lexical_Structure.md#decimal-digits) **.** [十进制数字](02_Lexical_Structure.md#decimal-digits) **.** [十进制数字](02_Lexical_Structure.md#decimal-digits)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user