diff --git a/source/chapter2/21_Extensions.md b/source/chapter2/21_Extensions.md index 3e085b4a..cbdf946a 100644 --- a/source/chapter2/21_Extensions.md +++ b/source/chapter2/21_Extensions.md @@ -13,22 +13,24 @@ - [下标](#subscripts) - [嵌套类型](#nested_types) -*扩展*就是向一个已有的类、结构体或枚举类型添加新功能(functionality)。这包括在没有权限获取原始源代码的情况下扩展类型的能力(即*逆向建模*)。扩展和 Objective-C 中的分类(categories)类似。(不过与Objective-C不同的是,Swift 的扩展没有名字。) +*扩展*就是向一个已有的类、结构体、枚举类型或者协议类型添加新功能(functionality)。这包括在没有权限获取原始源代码的情况下扩展类型的能力(即*逆向建模*)。扩展和 Objective-C 中的分类(categories)类似。(不过与 Objective-C 不同的是,Swift 的扩展没有名字。) Swift 中的扩展可以: -- 添加计算型属性和计算静态属性 +- 添加计算型属性和计算型静态属性 - 定义实例方法和类型方法 - 提供新的构造器 - 定义下标 - 定义和使用新的嵌套类型 - 使一个已有类型符合某个协议 +TODO: +在 Swift 中,你甚至可以对一个协议(Procotol)进行扩展,提供协议需要的实现,或者添加额外的功能能够对合适的类型带来额外的好处。你可以从[协议扩展](#)获取更多的细节。 >注意: -如果你定义了一个扩展向一个已有类型添加新功能,那么这个新功能对该类型的所有已有实例中都是可用的,即使它们是在你的这个扩展的前面定义的。 - +扩展可以对一个类型添加新的功能,但是不能重写已有的功能。 + ## 扩展语法(Extension Syntax) 声明一个扩展使用关键字`extension`: @@ -38,7 +40,6 @@ extension SomeType { // 加到SomeType的新功能写到这里 } ``` - 一个扩展可以扩展一个已有类型,使其能够适配一个或多个协议(protocol)。当这种情况发生时,协议的名字应该完全按照类或结构体的名字的方式进行书写: ```swift @@ -49,10 +50,13 @@ extension SomeType: SomeProtocol, AnotherProctocol { 按照这种方式添加的协议遵循者(protocol conformance)被称之为[在扩展中添加协议遵循者](21_Protocols.html#adding_protocol_conformance_with_an_extension) +>注意: +如果你定义了一个扩展向一个已有类型添加新功能,那么这个新功能对该类型的所有已有实例中都是可用的,即使它们是在你的这个扩展的前面定义的。 + ## 计算型属性(Computed Properties) -扩展可以向已有类型添加计算型实例属性和计算型类型属性。下面的例子向 Swift 的内建`Double`类型添加了5个计算型实例属性,从而提供与距离单位协作的基本支持。 +扩展可以向已有类型添加计算型实例属性和计算型类型属性。下面的例子向 Swift 的内建`Double`类型添加了5个计算型实例属性,从而提供与距离单位协作的基本支持: ```swift extension Double { @@ -84,7 +88,6 @@ println("A marathon is \(aMarathon) meters long") // 打印输出:"A marathon is 42195.0 meters long" ``` - >注意: 扩展可以添加新的计算属性,但是不可以添加存储属性,也不可以向已有属性添加属性观测器(property observers)。 @@ -93,14 +96,13 @@ println("A marathon is \(aMarathon) meters long") 扩展可以向已有类型添加新的构造器。这可以让你扩展其它类型,将你自己的定制类型作为构造器参数,或者提供该类型的原始实现中没有包含的额外初始化选项。 -扩展能向类中添加新的便利构造器,但是它们不能向类中添加新的指定构造器或析构函数。指定构造器和析构函数必须总是由原始的类实现来提供。 +扩展能向类中添加新的便利构造器,但是它们不能向类中添加新的指定构造器或析构器。指定构造器和析构器必须总是由原始的类实现来提供。 > 注意: 如果你使用扩展向一个值类型添加一个构造器,在该值类型已经向所有的存储属性提供默认值,而且没有定义任何定制构造器(custom initializers)时,你可以在值类型的扩展构造器中调用默认构造器(default initializers)和逐一成员构造器(memberwise initializers)。 > 正如在[值类型的构造器代理](14_Initialization.html#initializer_delegation_for_value_types)中描述的,如果你已经把构造器写成值类型原始实现的一部分,上述规则不再适用。 - 下面的例子定义了一个用于描述几何矩形的定制结构体`Rect`。这个例子同时定义了两个辅助结构体`Size`和`Point`,它们都把`0.0`作为所有属性的默认值: ```swift @@ -115,8 +117,7 @@ struct Rect { var size = Size() } ``` - -因为结构体`Rect`提供了其所有属性的默认值,所以正如默认构造器中描述的,它可以自动接受一个默认的构造器和一个成员级构造器。这些构造器可以用于构造新的`Rect`实例: +因为结构体`Rect`提供了其所有属性的默认值,所以正如[默认构造器](14_Initialization.html#default_initializers)中描述的,它可以自动接受一个默认构造器和一个逐一成员构造器。这些构造器可以用于构造新的`Rect`实例: ```swift let defaultRect = Rect() @@ -135,8 +136,7 @@ extension Rect { } } ``` - -这个新的构造器首先根据提供的`center`和`size`值计算一个合适的原点。然后调用该结构体自动的成员构造器`init(origin:size:)`,该构造器将新的原点和大小存到了合适的属性中: +这个新的构造器首先根据提供的`center`和`size`值计算一个合适的原点。然后调用该结构体自动的逐一成员构造器`init(origin:size:)`,该构造器将新的原点和大小存到了合适的属性中: ```swift let centerRect = Rect(center: Point(x: 4.0, y: 4.0), @@ -250,52 +250,51 @@ extension Int { 扩展可以向已有的类、结构体和枚举添加新的嵌套类型: ```swift -extension Character { +extension Int { enum Kind { - case Vowel, Consonant, Other + case Negative, Zero, Positive } var kind: Kind { - switch String(self).lowercaseString { - case "a", "e", "i", "o", "u": - return .Vowel - case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m", - "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z": - return .Consonant + switch self { + case 0: + return .Zero + case let x where x > 0: + return .Positive default: - return .Other + return .Negative } } } ``` -该例子向`Character`添加了新的嵌套枚举。这个名为`Kind`的枚举表示特定字符的类型。具体来说,就是表示一个标准的拉丁脚本中的字符是元音还是辅音(不考虑口语和地方变种),或者是其它类型。 +该例子向`Int`添加了新的嵌套枚举。这个名为`Kind`的枚举表示特定整数的类型。具体来说,就是表示整数是正数,零或者负数。 -这个例子还向`Character`添加了一个新的计算实例属性,即`kind`,用来返回合适的`Kind`枚举成员。 +这个例子还向`Int`添加了一个新的计算实例属性,即`kind`,用来返回合适的`Kind`枚举成员。 + +现在,这个嵌套枚举可以和一个`Int`值联合使用了: -现在,这个嵌套枚举可以和一个`Character`值联合使用了: ```swift -func printLetterKinds(word: String) { - println("'\(word)' is made up of the following kinds of letters:") - for character in word { - switch character.kind { - case .Vowel: - print("vowel ") - case .Consonant: - print("consonant ") - case .Other: - print("other ") +func printIntegerKinds(numbers: [Int]) { + for number in numbers { + switch number.kind { + case .Negative: + print("- ", appendNewline: false) + case .Zero: + print("0 ", appendNewline: false) + case .Positive: + print("+ ", appendNewline: false) } } - print("\n") + print("") } -printLetterKinds("Hello") -// 'Hello' is made up of the following kinds of letters: -// consonant vowel consonant consonant vowel +printIntegerKinds([3, 19, -27, 0, -6, 0, 7]) +// prints "+ + - 0 - 0 +" ``` -函数`printLetterKinds`的输入是一个`String`值并对其字符进行迭代。在每次迭代过程中,考虑当前字符的`kind`计算属性,并打印出合适的类别描述。所以`printLetterKinds`就可以用来打印一个完整单词中所有字母的类型,正如上述单词`"hello"`所展示的。 +函数`printIntegerKinds`的输入是一个`Int`数组值并对其字符进行迭代。在每次迭代过程中,考虑当前字符的`kind`计算属性,并打印出合适的类别描述。 + +>注意: +由于已知`number.kind `是`Int.Kind`型,所以`Int.Kind`中的所有成员值都可以使用`switch`语句里的形式简写,比如使用 `. Negative`代替`Int.Kind.Negative`。 ->注意: -由于已知`character.kind`是`Character.Kind`型,所以`Character.Kind`中的所有成员值都可以使用`switch`语句里的形式简写,比如使用 `.Vowel`代替`Character.Kind.Vowel`