update Day6 Logisitic Regression code
This commit is contained in:
97
Code/Day6 Logistic Regression.md
Normal file
97
Code/Day6 Logistic Regression.md
Normal file
@ -0,0 +1,97 @@
|
||||

|
||||
|
||||
### 数据集 | 社交网络
|
||||

|
||||
该数据集包含了社交网络中用户的信息。这些信息涉及用户ID,性别,年龄以及预估薪资。一家汽车公司刚刚推出了他们新型的豪华SUV,我们尝试预测哪些用户会购买这种全新SUV。并且在最后一列用来表示用户是否购买。我们将建立一种模型来预测用户是否购买这种SUV,该模型基于两个变量,分别是年龄和预计薪资。因此我们的特征矩阵将是这两列。我们尝试寻找用户年龄与预估薪资之间的某种相关性,以及他是否购买SUV的决定。
|
||||
|
||||
### 步骤1 | 数据预处理
|
||||
#### 导入库
|
||||
|
||||
```python
|
||||
import numpy as numpy
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
```
|
||||
|
||||
#### 导入数据集
|
||||
获取数据集
|
||||
|
||||
```python
|
||||
dataset = pd.read_csv('Social_Network_Ads.csv')
|
||||
X = dataset.iloc[:, [2, 3]].values
|
||||
Y = dataset.iloc[:,4].values
|
||||
```
|
||||
|
||||
#### 讲数据集分成训练集和测试集
|
||||
|
||||
```python
|
||||
from sklearn.cross_validation import train_test_split
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
||||
```
|
||||
|
||||
#### 特征缩放
|
||||
|
||||
```python
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
sc = StandardScaler()
|
||||
X_train = sc.fit_transform(X_train)
|
||||
X_test = sc.transform(X_test)
|
||||
```
|
||||
|
||||
### 步骤2 | 逻辑回归模型
|
||||
|
||||
该项工作的库将会是一个线性模型库,之所以被称为线性是因为逻辑回归是一个线性分类器,这意味着我们在二维空间中,我们两类用户(购买和不购买)将被一条直线分割。然后导入逻辑回归类。下一步我们将创建该类的对象,它将作为我们训练集的分类器。
|
||||
|
||||
#### 将逻辑回归应用于训练集
|
||||
|
||||
```python
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
classifier = LogisticRegression()
|
||||
classifier.fit(X_train, y_train)
|
||||
```
|
||||
|
||||
### 步骤3 | 预测
|
||||
|
||||
#### 预测测试集结果
|
||||
```python
|
||||
y_pred = classifier.predict(X_test)
|
||||
```
|
||||
|
||||
### 步骤4 | 评估预测
|
||||
|
||||
我们预测了测试集。 现在我们将评估逻辑回归模型是否正确的学习和理解。因此这个混淆矩阵将包含我们模型的正确和错误的预测。
|
||||
|
||||
#### 生成混淆矩阵
|
||||
|
||||
```python
|
||||
from sklearn.metrics import confusion_matrix
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
```
|
||||
|
||||
#### 可视化
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
Reference in New Issue
Block a user