Add files via upload
This commit is contained in:
@ -4,7 +4,7 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"#机器学习100天——第2天:简单线性回归\n",
|
"#机器学习100天——第一天:数据预处理\n",
|
||||||
"##第一步:数据预处理"
|
"##第一步:数据预处理"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -198,7 +198,7 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"##第四步:可视化"
|
"##可视化"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
55
Code/Day 11 K-NN.md
Normal file
55
Code/Day 11 K-NN.md
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
# K-Nearest Neighbors (K-NN)
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%207.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
## The DataSet | Social Network
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Other%20Docs/data.PNG">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
## Importing the libraries
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
```
|
||||||
|
|
||||||
|
## Importing the dataset
|
||||||
|
```python
|
||||||
|
dataset = pd.read_csv('Social_Network_Ads.csv')
|
||||||
|
X = dataset.iloc[:, [2, 3]].values
|
||||||
|
y = dataset.iloc[:, 4].values
|
||||||
|
```
|
||||||
|
|
||||||
|
## Splitting the dataset into the Training set and Test set
|
||||||
|
```python
|
||||||
|
from sklearn.cross_validation import train_test_split
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
||||||
|
```
|
||||||
|
## Feature Scaling
|
||||||
|
```python
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
sc = StandardScaler()
|
||||||
|
X_train = sc.fit_transform(X_train)
|
||||||
|
X_test = sc.transform(X_test)
|
||||||
|
```
|
||||||
|
## Fitting K-NN to the Training set
|
||||||
|
```python
|
||||||
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
|
||||||
|
classifier.fit(X_train, y_train)
|
||||||
|
```
|
||||||
|
## Predicting the Test set results
|
||||||
|
```python
|
||||||
|
y_pred = classifier.predict(X_test)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Making the Confusion Matrix
|
||||||
|
```python
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
cm = confusion_matrix(y_test, y_pred)
|
||||||
|
```
|
||||||
BIN
Code/Day 7.jpg
Normal file
BIN
Code/Day 7.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 891 KiB |
Reference in New Issue
Block a user