55 lines
1.2 KiB
Markdown
55 lines
1.2 KiB
Markdown
# 多元线性回归
|
||
|
||
|
||
<p align="center">
|
||
<img src="https://github.com/MachineLearning100/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%203.png">
|
||
</p>
|
||
|
||
|
||
## 第1步: 数据预处理
|
||
|
||
### 导入库
|
||
```python
|
||
import pandas as pd
|
||
import numpy as np
|
||
```
|
||
### 导入数据集
|
||
```python
|
||
dataset = pd.read_csv('50_Startups.csv')
|
||
X = dataset.iloc[ : , :-1].values
|
||
Y = dataset.iloc[ : , 4 ].values
|
||
```
|
||
|
||
### 将类别数据数字化
|
||
```python
|
||
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
|
||
labelencoder = LabelEncoder()
|
||
X[: , 3] = labelencoder.fit_transform(X[ : , 3])
|
||
onehotencoder = OneHotEncoder(categorical_features = [3])
|
||
X = onehotencoder.fit_transform(X).toarray()
|
||
```
|
||
|
||
### 躲避虚拟变量陷阱
|
||
```python
|
||
X = X[: , 1:]
|
||
```
|
||
|
||
### 拆分数据集为训练集和测试集
|
||
```python
|
||
from sklearn.model_selection import train_test_split
|
||
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
|
||
```
|
||
## 第2步: 在训练集上训练多元线性回归模型
|
||
```python
|
||
from sklearn.linear_model import LinearRegression
|
||
regressor = LinearRegression()
|
||
regressor.fit(X_train, Y_train)
|
||
```
|
||
|
||
## Step 3: 在测试集上预测结果
|
||
```python
|
||
y_pred = regressor.predict(X_test)
|
||
```
|
||
|
||
|