Files
100-Days-Of-ML-Code/Code/Day 2_Simple_Linear_Regression.py
2018-09-06 22:15:12 +08:00

29 lines
905 B
Python

# Data Preprocessing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv('../datasets/studentscores.csv')
X = dataset.iloc[ : , : 1 ].values
Y = dataset.iloc[ : , 1 ].values
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
# Fitting Simple Linear Regression Model to the training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)
# Predecting the Result
Y_pred = regressor.predict(X_test)
# Visualising the Training results
plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue')
# Visualizing the test results
plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')
plt.show()