Files
100-Days-Of-ML-Code/Code/Day2_Simple_Linear_Regression.md
2018-08-06 09:05:37 +08:00

45 lines
1.2 KiB
Markdown

# Simple Linear Regression
<p align="center">
<img src="https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%202.jpg">
</p>
# Step 1: Data Preprocessing
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv('studentscores.csv')
X = dataset.iloc[ : , : 1 ].values
Y = dataset.iloc[ : , 1 ].values
from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
```
# Step 2: Fitting Simple Linear Regression Model to the training set
```python
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)
```
# Step 3: Predecting the Result
```python
Y_pred = regressor.predict(X_test)
```
# Step 4: Visualization
## Visualising the Training results
```python
plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue')
```
## Visualizing the test results
```python
plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')
```