Travis build: 187

This commit is contained in:
Travis CI
2017-12-23 10:22:50 +00:00
parent 3ebce1453f
commit 2446be2556
2 changed files with 54 additions and 0 deletions

View File

@ -99,6 +99,8 @@
* [`distance`](#distance)
* [`factorial`](#factorial)
* [`fibonacci`](#fibonacci)
* [`fibonacciCountUntilNum`](#fibonaccicountuntilnum)
* [`fibonacciUntilNum`](#fibonacciuntilnum)
* [`gcd`](#gcd)
* [`hammingDistance`](#hammingdistance)
* [`inRange`](#inrange)
@ -1368,6 +1370,38 @@ const fibonacci = n =>
[⬆ back to top](#table-of-contents)
### fibonacciCountUntilNum
Returns the number of fibonnacci numbers up to `num`(`0` and `num` inclusive).
Use a mathematical formula to calculate the number of fibonacci numbers until `num`.
```js
const fibonacciCountUntilNum = num =>
Math.ceil(Math.log(num * Math.sqrt(5) + 1/2) / Math.log((Math.sqrt(5)+1)/2));
// fibonacciCountUntilNum(10) -> 7
```
[⬆ back to top](#table-of-contents)
### fibonacciUntilNum
Generates an array, containing the Fibonacci sequence, up until the nth term.
Create an empty array of the specific length, initializing the first two values (`0` and `1`).
Use `Array.reduce()` to add values into the array, using the sum of the last two values, except for the first two.
Uses a mathematical formula to calculate the length of the array required.
```js
const fibonacciUntilNum = num => {
let n = Math.ceil(Math.log(num * Math.sqrt(5) + 1/2) / Math.log((Math.sqrt(5)+1)/2));
return Array.from({ length: n}).reduce((acc, val, i) => acc.concat(i > 1 ? acc[i - 1] + acc[i - 2] : i), []);
}
// fibonacciUntilNum(15) -> [0,1,1,2,3,5,8,13]
```
[⬆ back to top](#table-of-contents)
### gcd
Calculates the greatest common divisor between two numbers.

View File

@ -127,6 +127,8 @@
<a class="sublink-1" href="#distance">distance</a>
<a class="sublink-1" href="#factorial">factorial</a>
<a class="sublink-1" href="#fibonacci">fibonacci</a>
<a class="sublink-1" href="#fibonaccicountuntilnum">fibonacciCountUntilNum</a>
<a class="sublink-1" href="#fibonacciuntilnum">fibonacciUntilNum</a>
<a class="sublink-1" href="#gcd">gcd</a>
<a class="sublink-1" href="#hammingdistance">hammingDistance</a>
<a class="sublink-1" href="#inrange">inRange</a>
@ -867,6 +869,24 @@ Use <code>Array.reduce()</code> to add values into the array, using the sum of t
Array.from({ length: n}).reduce((acc, val, i) =&gt; acc.concat(i &gt; 1 ? acc[i - 1] + acc[i - 2] : i), []);
// fibonacci(5) -&gt; [0,1,1,2,3]
</code></pre>
</div></div><br/><div class="card fluid"><div class="section double-padded"><h3 id="fibonaccicountuntilnum">fibonacciCountUntilNum</h3></div><div class="section double-padded">
<p>Returns the number of fibonnacci numbers up to <code>num</code>(<code>0</code> and <code>num</code> inclusive).</p>
<p>Use a mathematical formula to calculate the number of fibonacci numbers until <code>num</code>.</p>
<pre><code class="language-js">const fibonacciCountUntilNum = num =&gt;
Math.ceil(Math.log(num * Math.sqrt(5) + 1/2) / Math.log((Math.sqrt(5)+1)/2));
// fibonacciCountUntilNum(10) -&gt; 7
</code></pre>
</div></div><br/><div class="card fluid"><div class="section double-padded"><h3 id="fibonacciuntilnum">fibonacciUntilNum</h3></div><div class="section double-padded">
<p>Generates an array, containing the Fibonacci sequence, up until the nth term.</p>
<p>Create an empty array of the specific length, initializing the first two values (<code>0</code> and <code>1</code>).
Use <code>Array.reduce()</code> to add values into the array, using the sum of the last two values, except for the first two.
Uses a mathematical formula to calculate the length of the array required.</p>
<pre><code class="language-js">const fibonacciUntilNum = num =&gt; {
let n = Math.ceil(Math.log(num * Math.sqrt(5) + 1/2) / Math.log((Math.sqrt(5)+1)/2));
return Array.from({ length: n}).reduce((acc, val, i) =&gt; acc.concat(i &gt; 1 ? acc[i - 1] + acc[i - 2] : i), []);
}
// fibonacciUntilNum(15) -&gt; [0,1,1,2,3,5,8,13]
</code></pre>
</div></div><br/><div class="card fluid"><div class="section double-padded"><h3 id="gcd">gcd</h3></div><div class="section double-padded">
<p>Calculates the greatest common divisor between two numbers.</p>
<p>Use recursion.