Add kNearestNeighbors
This commit is contained in:
49
snippets/kNearestNeighbors.md
Normal file
49
snippets/kNearestNeighbors.md
Normal file
@ -0,0 +1,49 @@
|
||||
---
|
||||
title: kNearestNeighbors
|
||||
tags: algorithm,array,advanced
|
||||
---
|
||||
|
||||
Classifies a data point relative to a labelled data set using the k-nearest neighbors algorithm.
|
||||
|
||||
- Use `Array.prototype.map()` to map the `data` to objects containing the euclidean distance of each element from `point`, calculated using `Math.hypot()`, `Object.keys()` and its `label`.
|
||||
- Use `Array.prototype.sort()` and `Array.prototype.slice()` to get the `k` nearest neighbors of `point`.
|
||||
- Use `Array.prototype.reduce()` in combination with `Object.keys()` and `Array.prototype.indexOf()` to find the most frequent `label` among them.
|
||||
|
||||
```js
|
||||
const kNearestNeighbors = (data, labels, point, k = 3) => {
|
||||
const kNearest = data
|
||||
.map((el, i) => ({
|
||||
dist: Math.hypot(...Object.keys(el).map(key => point[key] - el[key])),
|
||||
label: labels[i]
|
||||
}))
|
||||
.sort((a, b) => a.dist - b.dist)
|
||||
.slice(0, k);
|
||||
|
||||
return kNearest.reduce(
|
||||
(acc, { label }, i) => {
|
||||
acc.classCounts[label] =
|
||||
Object.keys(acc.classCounts).indexOf(label) !== -1
|
||||
? acc.classCounts[label] + 1
|
||||
: 1;
|
||||
if (acc.classCounts[label] > acc.topClassCount) {
|
||||
acc.topClassCount = acc.classCounts[label];
|
||||
acc.topClass = label;
|
||||
}
|
||||
return acc;
|
||||
},
|
||||
{
|
||||
classCounts: {},
|
||||
topClass: kNearest[0].label,
|
||||
topClassCount: 0
|
||||
}
|
||||
).topClass;
|
||||
};
|
||||
```
|
||||
|
||||
```js
|
||||
const data = [[0, 0], [0, 1], [1, 3], [2, 0]];
|
||||
const labels = [0, 1, 1, 0];
|
||||
|
||||
kNearestNeighbors(data, labels, [1, 2], 2); // 1
|
||||
kNearestNeighbors(data, labels, [1, 0], 2); // 0
|
||||
```
|
||||
Reference in New Issue
Block a user