Files
30-seconds-of-code/snippets/kMeans.md
Isabelle Viktoria Maciohsek 1ee4c38c0f Update kMeans.md
2020-12-29 16:32:46 +02:00

59 lines
2.0 KiB
Markdown

---
title: kMeans
tags: algorithm,array,advanced
---
Groups the given data into `k` clusters, using the [k-means clustering](https://en.wikipedia.org/wiki/K-means_clustering) algorithm.
- Use `Array.from()` and `Array.prototype.slice()` to initialize appropriate variables for the cluster `centroids`, `distances` and `classes`.
- Use a `while` loop to repeat the assignment and update steps as long as there are changes in the previous iteration, as indicated by `itr`.
- Calculate the euclidean distance between each data point and centroid using `Math.hypot()`, `Object.keys()` and `Array.prototype.map()`.
- Use `Array.prototype.indexOf()` and `Math.min()` to find the closest centroid.
- Use `Array.from()` and `Array.prototype.reduce()`, as well as `parseFloat()` and `Number.prototype.toFixed()` to calculate the new centroids.
```js
const kMeans = (data, k = 1) => {
const centroids = data.slice(0, k);
const distances = Array.from({ length: data.length }, () =>
Array.from({ length: k }, () => 0)
);
const classes = Array.from({ length: data.length }, () => -1);
let itr = true;
while (itr) {
itr = false;
for (let d in data) {
for (let c = 0; c < k; c++) {
distances[d][c] = Math.hypot(
...Object.keys(data[0]).map(key => data[d][key] - centroids[c][key])
);
}
const m = distances[d].indexOf(Math.min(...distances[d]));
if (classes[d] !== m) itr = true;
classes[d] = m;
}
for (let c = 0; c < k; c++) {
centroids[c] = Array.from({ length: data[0].length }, () => 0);
const size = data.reduce((acc, _, d) => {
if (classes[d] === c) {
acc++;
for (let i in data[0]) centroids[c][i] += data[d][i];
}
return acc;
}, 0);
for (let i in data[0]) {
centroids[c][i] = parseFloat(Number(centroids[c][i] / size).toFixed(2));
}
}
}
return classes;
};
```
```js
kMeans([[0, 0], [0, 1], [1, 3], [2, 0]], 2); // [0, 1, 1, 0]
```