Compare commits

4 Commits
main ... dev

Author SHA1 Message Date
7f5de57f11 Merge pull request #72 from WNJXYK/main
[ENH] Add knowledge base for LawGPT
2023-05-28 13:37:42 +08:00
cb6a4a9f6b [FIX] Remove duplicate 2023-05-27 17:19:21 +08:00
dc849bd282 [ENH] Update GUI for matching legal grounds 2023-05-27 17:04:11 +08:00
39eed4febe [ENH] Build knowledge util 2023-05-27 17:03:28 +08:00
2 changed files with 54 additions and 2 deletions

46
utils/knowledge.py Normal file
View File

@ -0,0 +1,46 @@
from langchain.vectorstores.faiss import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
import sentence_transformers
import numpy as np
import re, os
__all__ = ["Knowledge"]
class Knowledge(object):
def __init__(self, knowledge_path="./knowledge", embedding_name='GanymedeNil/text2vec-large-chinese') -> None:
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_name)
self.knowledge = FAISS.load_local(knowledge_path, embeddings=self.embeddings)
# EMBEDDINGS.client = sentence_transformers.SentenceTransformer("/home/wnjxyk/Projects/wenda/model/text2vec-large-chinese", device="cuda")
def render_index(self, idx, score):
indices = self.knowledge.index_to_docstore_id[idx]
doc = self.knowledge.docstore.search(indices)
meta_content = doc.metadata
return {"title": meta_content['source'], "score": int(score), "content": meta_content["content"]}
def query_prompt(self, prompt, topk=3, threshold=700):
embedding = self.knowledge.embedding_function(prompt)
scores, indices = self.knowledge.index.search(np.array([embedding], dtype=np.float32), topk)
docs = []
titles = set()
for j, i in enumerate(indices[0]):
if i == -1: continue
if scores[0][j] > threshold: continue
item = self.render_index(i, scores[0][j])
if item["title"] in titles: continue
titles.add(item["title"])
docs.append(item)
return docs
def get_response(self, output: str) -> str:
first, res = True, ""
for doc in output:
if not first: res += "---\n"
res += doc["content"]
first = False
return res
# knowledge = Knowledge()
# answer = knowledge.query_prompt("强奸男性犯法吗?")
# print(answer)
# print(knowledge.get_response(answer))

View File

@ -10,6 +10,7 @@ from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, Aut
from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter
from utils.knowledge import Knowledge
if torch.cuda.is_available():
device = "cuda"
@ -37,6 +38,7 @@ def main(
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template)
knowledge = Knowledge()
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
@ -106,6 +108,7 @@ def main(
):
input=None
prompt = prompter.generate_prompt(instruction, input)
legals = knowledge.query_prompt(instruction)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
@ -152,7 +155,7 @@ def main(
if output[-1] in [tokenizer.eos_token_id]:
break
yield prompter.get_response(decoded_output)
yield prompter.get_response(decoded_output), knowledge.get_response(legals)
print(decoded_output)
return # early return for stream_output
@ -168,7 +171,7 @@ def main(
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print(output)
yield prompter.get_response(output)
yield prompter.get_response(output), knowledge.get_response(legals)
gr.Interface(
fn=evaluate,
@ -200,6 +203,9 @@ def main(
gr.inputs.Textbox(
lines=8,
label="Output",
),
gr.inputs.Textbox(
label="Legal Ground",
)
],
title="🦙🌲 LaWGPT",