update accuracy function
This commit is contained in:
@ -62,7 +62,7 @@ for t in range(100):
|
||||
pred_y = prediction.data.numpy().squeeze()
|
||||
target_y = y.data.numpy()
|
||||
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
|
||||
accuracy = sum(pred_y == target_y)/200.
|
||||
accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)
|
||||
plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
|
||||
plt.pause(0.1)
|
||||
|
||||
|
||||
@ -115,8 +115,8 @@ for epoch in range(EPOCH):
|
||||
|
||||
if step % 50 == 0:
|
||||
test_output, last_layer = cnn(test_x)
|
||||
pred_y = torch.max(test_output, 1)[1].data.squeeze()
|
||||
accuracy = float(sum(pred_y == test_y)) / float(test_y.size(0))
|
||||
pred_y = torch.max(test_output, 1)[1].data.squeeze().numpy()
|
||||
accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
|
||||
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
|
||||
if HAS_SK:
|
||||
# Visualization of trained flatten layer (T-SNE)
|
||||
|
||||
@ -95,7 +95,7 @@ for epoch in range(EPOCH):
|
||||
if step % 50 == 0:
|
||||
test_output = rnn(test_x) # (samples, time_step, input_size)
|
||||
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
|
||||
accuracy = float(sum(pred_y == test_y)) / float(test_y.size)
|
||||
accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
|
||||
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
|
||||
|
||||
# print 10 predictions from test data
|
||||
|
||||
Reference in New Issue
Block a user