合并master修改
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
# 如何使用其他大语言模型(v3.0分支测试中)
|
||||
# 如何使用其他大语言模型
|
||||
|
||||
## ChatGLM
|
||||
|
||||
@ -15,7 +15,7 @@ LLM_MODEL = "chatglm"
|
||||
|
||||
|
||||
---
|
||||
## Text-Generation-UI (TGUI)
|
||||
## Text-Generation-UI (TGUI,调试中,暂不可用)
|
||||
|
||||
### 1. 部署TGUI
|
||||
``` sh
|
||||
|
||||
@ -1,16 +1,17 @@
|
||||
|
||||
"""
|
||||
该文件中主要包含2个函数
|
||||
该文件中主要包含2个函数,是所有LLM的通用接口,它们会继续向下调用更底层的LLM模型,处理多模型并行等细节
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
不具备多线程能力的函数:正常对话时使用,具备完备的交互功能,不可多线程
|
||||
1. predict(...)
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||
具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
|
||||
2. predict_no_ui_long_connection(...)
|
||||
"""
|
||||
import tiktoken
|
||||
from functools import wraps, lru_cache
|
||||
from functools import lru_cache
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from toolbox import get_conf
|
||||
|
||||
from request_llm.bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from request_llm.bridge_chatgpt import predict as chatgpt_ui
|
||||
@ -42,18 +43,37 @@ class LazyloadTiktoken(object):
|
||||
def decode(self, *args, **kwargs):
|
||||
encoder = self.get_encoder(self.model)
|
||||
return encoder.decode(*args, **kwargs)
|
||||
|
||||
|
||||
# Endpoint 重定向
|
||||
API_URL_REDIRECT, = get_conf("API_URL_REDIRECT")
|
||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||
# 兼容旧版的配置
|
||||
try:
|
||||
API_URL, = get_conf("API_URL")
|
||||
if API_URL != "https://api.openai.com/v1/chat/completions":
|
||||
openai_endpoint = API_URL
|
||||
print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
|
||||
except:
|
||||
pass
|
||||
# 新版配置
|
||||
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
|
||||
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
|
||||
|
||||
|
||||
# 获取tokenizer
|
||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||
tokenizer_gpt4 = LazyloadTiktoken("gpt-4")
|
||||
get_token_num_gpt35 = lambda txt: len(tokenizer_gpt35.encode(txt, disallowed_special=()))
|
||||
get_token_num_gpt4 = lambda txt: len(tokenizer_gpt4.encode(txt, disallowed_special=()))
|
||||
|
||||
|
||||
model_info = {
|
||||
# openai
|
||||
"gpt-3.5-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://api.openai.com/v1/chat/completions",
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
@ -62,7 +82,7 @@ model_info = {
|
||||
"gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://api.openai.com/v1/chat/completions",
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 8192,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
@ -72,7 +92,7 @@ model_info = {
|
||||
"api2d-gpt-3.5-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://openai.api2d.net/v1/chat/completions",
|
||||
"endpoint": api2d_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
@ -81,7 +101,7 @@ model_info = {
|
||||
"api2d-gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": "https://openai.api2d.net/v1/chat/completions",
|
||||
"endpoint": api2d_endpoint,
|
||||
"max_token": 8192,
|
||||
"tokenizer": tokenizer_gpt4,
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
@ -190,7 +210,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
||||
return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
|
||||
|
||||
window_mutex[-1] = False # stop mutex thread
|
||||
res = '<br/>\n\n---\n\n'.join(return_string_collect)
|
||||
res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
|
||||
return res
|
||||
|
||||
|
||||
|
||||
@ -92,8 +92,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
|
||||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", sys_prompt])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append(["What can I do?", sys_prompt] )
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
@ -131,10 +131,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", system_prompt] )
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append(["What can I do?", system_prompt] )
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@ -21,7 +21,7 @@ import importlib
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys
|
||||
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
|
||||
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
|
||||
@ -118,7 +118,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
"""
|
||||
if is_any_api_key(inputs):
|
||||
chatbot._cookies['api_key'] = inputs
|
||||
chatbot.append(("输入已识别为openai的api_key", "api_key已导入"))
|
||||
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||
return
|
||||
elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||
@ -141,7 +141,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
try:
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
except RuntimeError as e:
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。")
|
||||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
Reference in New Issue
Block a user