Compare commits

...

3 Commits

Author SHA1 Message Date
d364df1cd6 add test instance 2023-07-10 03:33:51 +08:00
f51bc03686 3.45版本说明 2023-07-10 03:24:34 +08:00
c010d50716 允许加入ChatGLM微调模型 2023-07-10 03:17:09 +08:00
7 changed files with 320 additions and 8 deletions

View File

@ -43,6 +43,7 @@ Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [函数
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [函数插件] PDF论文提取题目&摘要+翻译全文(多线程)
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
互联网信息聚合+GPT | [函数插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
⭐Arxiv论文精细翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
@ -50,8 +51,9 @@ chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
多线程函数插件支持 | 支持多线调用chatgpt一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
ChatGLM2微调模型 | 支持加载ChatGLM2微调模型提供ChatGLM2微调插件
更多LLM模型接入支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
更多新功能展示(图像生成等) …… | 见本文档结尾处 ……
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
</div>
@ -151,9 +153,9 @@ cd gpt_academic # 进入路径
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy” “API_KEY” 以及 “WEB_PORT” (例如50923) 等
docker build -t gpt-academic . # 安装
#(最后一步-选择1在Linux环境下用`--net=host`更方便快捷
#(最后一步-Linux操作系统用`--net=host`更方便快捷
docker run --rm -it --net=host gpt-academic
#(最后一步-选择2在macOS/windows环境下,只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
P.S. 如果需要依赖Latex的插件功能请见Wiki。另外您也可以直接使用docker-compose获取Latex功能修改docker-compose.yml保留方案4并删除其他方案
@ -284,6 +286,8 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
### II版本:
- version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级)
- version 3.45: 支持自定义ChatGLM2微调模型
- version 3.44: 正式支持Azure优化界面易用性
- version 3.4: +arxiv论文翻译、latex论文批改功能
- version 3.3: +互联网信息综合功能
- version 3.2: 函数插件支持更多参数接口 (保存对话功能, 解读任意语言代码+同时询问任意的LLM组合)

View File

@ -74,6 +74,10 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# ChatGLM(2) Finetune Model Path 如果使用ChatGLM2微调模型需要把"chatglmft"加入AVAIL_LLM_MODELS中
ChatGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"

View File

@ -18,6 +18,13 @@ def string_to_options(arguments):
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
parser.add_argument("--batch", type=int, help="System prompt", default=50)
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
# Parse the arguments
args = parser.parse_args(shlex.split(arguments))
@ -69,3 +76,66 @@ def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
return
@CatchException
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
import subprocess
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
pre_seq_len = arguments.pre_seq_len # 128
learning_rate = arguments.learning_rate # 2e-2
num_gpus = arguments.num_gpus # 1
json_dataset = arguments.json_dataset # 't_code.json'
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
--do_train \
--train_file AdvertiseGen/{json_dataset} \
--validation_file AdvertiseGen/{json_dataset} \
--preprocessing_num_workers 20 \
--prompt_column content \
--response_column summary \
--overwrite_cache \
--model_name_or_path THUDM/chatglm2-6b \
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
--overwrite_output_dir \
--max_source_length 256 \
--max_target_length 256 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--predict_with_generate \
--max_steps 100 \
--logging_steps 10 \
--save_steps 20 \
--learning_rate {learning_rate} \
--pre_seq_len {pre_seq_len} \
--quantization_bit 4"
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
try:
process.communicate(timeout=3600*24)
except subprocess.TimeoutExpired:
process.kill()
return

View File

@ -212,11 +212,17 @@ def test_Latex():
# cli_printer.print(cb) # print(cb)
def test_chatglm_finetune():
from crazy_functions.chatglm微调工具 import 微调数据集生成
from crazy_functions.chatglm微调工具 import 微调数据集生成, 启动微调
txt = 'build/dev.json'
plugin_kwargs = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示想象一个穿着者对这个人外貌、身处的环境、内心世界、人设进行描写。要求100字以内用第二人称。' --system_prompt=''" }
for cookies, cb, hist, msg in (微调数据集生成)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# for cookies, cb, hist, msg in (微调数据集生成)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# cli_printer.print(cb)
plugin_kwargs = {"advanced_arg":
" --pre_seq_len=128 --learning_rate=2e-2 --num_gpus=1 --json_dataset='t_code.json' --ptuning_directory='/home/hmp/ChatGLM2-6B/ptuning' " }
for cookies, cb, hist, msg in (启动微调)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb)

View File

@ -269,6 +269,24 @@ if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
})
except:
print(trimmed_format_exc())
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
try:
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
from .bridge_chatglmft import predict as chatglmft_ui
# claude
model_info.update({
"chatglmft": {
"fn_with_ui": chatglmft_ui,
"fn_without_ui": chatglmft_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
def LLM_CATCH_EXCEPTION(f):
"""
@ -372,6 +390,6 @@ def predict(inputs, llm_kwargs, *args, **kwargs):
additional_fn代表点击的哪个按钮按钮见functional.py
"""
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错检查config中的AVAIL_LLM_MODELS选项
yield from method(inputs, llm_kwargs, *args, **kwargs)

View File

@ -0,0 +1,210 @@
from transformers import AutoModel, AutoTokenizer
import time
import os
import json
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
load_message = "ChatGLMFT尚未加载加载需要一段时间。注意取决于`config.py`的配置ChatGLMFT消耗大量的内存CPU或显存GPU也许会导致低配计算机卡死 ……"
def string_to_options(arguments):
import argparse
import shlex
# Create an argparse.ArgumentParser instance
parser = argparse.ArgumentParser()
# Add command-line arguments
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
parser.add_argument("--batch", type=int, help="System prompt", default=50)
# Parse the arguments
args = parser.parse_args(shlex.split(arguments))
return args
#################################################################################
class GetGLMFTHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.chatglmft_model = None
self.chatglmft_tokenizer = None
self.info = ""
self.success = True
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def check_dependency(self):
try:
import sentencepiece
self.info = "依赖检测通过"
self.success = True
except:
self.info = "缺少ChatGLMFT的依赖如果要使用ChatGLMFT除了基础的pip依赖以外您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
self.success = False
def ready(self):
return self.chatglmft_model is not None
def run(self):
# 子进程执行
# 第一次运行,加载参数
retry = 0
while True:
try:
if self.chatglmft_model is None:
from transformers import AutoConfig
import torch
# conf = 'request_llm/current_ptune_model.json'
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
# with open(conf, 'r', encoding='utf8') as f:
# model_args = json.loads(f.read())
ChatGLM_PTUNING_CHECKPOINT, = get_conf('ChatGLM_PTUNING_CHECKPOINT')
assert os.path.exists(ChatGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
conf = os.path.join(ChatGLM_PTUNING_CHECKPOINT, "config.json")
with open(conf, 'r', encoding='utf8') as f:
model_args = json.loads(f.read())
if 'model_name_or_path' not in model_args:
model_args['model_name_or_path'] = model_args['_name_or_path']
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
model_args['model_name_or_path'], trust_remote_code=True)
config = AutoConfig.from_pretrained(
model_args['model_name_or_path'], trust_remote_code=True)
config.pre_seq_len = model_args['pre_seq_len']
config.prefix_projection = model_args['prefix_projection']
print(f"Loading prefix_encoder weight from {ChatGLM_PTUNING_CHECKPOINT}")
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(ChatGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
if model_args['quantization_bit'] is not None:
print(f"Quantized to {model_args['quantization_bit']} bit")
model = model.quantize(model_args['quantization_bit'])
model = model.cuda()
if model_args['pre_seq_len'] is not None:
# P-tuning v2
model.transformer.prefix_encoder.float()
self.chatglmft_model = model.eval()
break
else:
break
except Exception as e:
retry += 1
if retry > 3:
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
raise RuntimeError("不能正常加载ChatGLMFT的参数")
while True:
# 进入任务等待状态
kwargs = self.child.recv()
# 收到消息,开始请求
try:
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
self.child.send(response)
# # 中途接收可能的终止指令(如果有的话)
# if self.child.poll():
# command = self.child.recv()
# if command == '[Terminate]': break
except:
from toolbox import trimmed_format_exc
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
# 请求处理结束,开始下一个循环
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# 主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res != '[Finish]':
yield res
else:
break
self.threadLock.release()
global glmft_handle
glmft_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
global glmft_handle
if glmft_handle is None:
glmft_handle = GetGLMFTHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
if not glmft_handle.success:
error = glmft_handle.info
glmft_handle = None
raise RuntimeError(error)
# chatglmft 没有 sys_prompt 接口因此把prompt加入 history
history_feedin = []
history_feedin.append(["What can I do?", sys_prompt])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1: observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
global glmft_handle
if glmft_handle is None:
glmft_handle = GetGLMFTHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not glmft_handle.success:
glmft_handle = None
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
# 处理历史信息
history_feedin = []
history_feedin.append(["What can I do?", system_prompt] )
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收chatglmft的回复
response = "[Local Message]: 等待ChatGLMFT响应中 ..."
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
response = "[Local Message]: ChatGLMFT响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

View File

@ -1,5 +1,5 @@
{
"version": 3.44,
"version": 3.45,
"show_feature": true,
"new_feature": "[改善UI] 动态ChatBot窗口高度 <-> 修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件"
"new_feature": "支持加载自定义的ChatGLM2微调模型 <-> [改善UI] 动态ChatBot窗口高度 <-> 修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件"
}