Compare commits
69 Commits
version3.4
...
proxy_bran
| Author | SHA1 | Date | |
|---|---|---|---|
| 6df33c95d4 | |||
| 59877dd728 | |||
| a4f187b8dc | |||
| 5f7ffef238 | |||
| 41c10f5688 | |||
| d7ac99f603 | |||
| 1616daae6a | |||
| a1092d8f92 | |||
| 34ca9f138f | |||
| df3f1aa3ca | |||
| bf805cf477 | |||
| ecb08e69be | |||
| 28c1e3f11b | |||
| 403667aec1 | |||
| 22f377e2fb | |||
| 37172906ef | |||
| 3b78e0538b | |||
| d8f9ac71d0 | |||
| aced272d3c | |||
| aff77a086d | |||
| 49253c4dc6 | |||
| 1a00093015 | |||
| 64f76e7401 | |||
| eb4c07997e | |||
| 99cf7205c3 | |||
| d684b4cdb3 | |||
| 601a95c948 | |||
| e18bef2e9c | |||
| f654c1af31 | |||
| e90048a671 | |||
| ea624b1510 | |||
| 057e3dda3c | |||
| 4290821a50 | |||
| 280e14d7b7 | |||
| 9f0cf9fb2b | |||
| b8560b7510 | |||
| d841d13b04 | |||
| efda9e5193 | |||
| 33d2e75aac | |||
| 74941170aa | |||
| cd38949903 | |||
| d87f1eb171 | |||
| cd1e4e1ba7 | |||
| cf5f348d70 | |||
| 0ee25f475e | |||
| 1fede6df7f | |||
| f3e4e26e2f | |||
| d5bab093f9 | |||
| f94b167dc2 | |||
| 016d8ee156 | |||
| dca9ec4bae | |||
| 7fdf0a8e51 | |||
| 9a5a509dd9 | |||
| 2da36c7667 | |||
| 0e1de5a184 | |||
| 344579fa79 | |||
| 6d7ee17dbd | |||
| 0a83ba91e9 | |||
| ffd7363c4c | |||
| b538d31b13 | |||
| 543a8b98e9 | |||
| 55c6e9c59a | |||
| 0fc8f740d0 | |||
| a019a64e65 | |||
| a75ae327e7 | |||
| 3c38fad4aa | |||
| bf9731e937 | |||
| 0f6e3e2dbb | |||
| f3205994ea |
30
README.md
30
README.md
@ -97,7 +97,7 @@ cd gpt_academic
|
||||
|
||||
2. 配置API_KEY
|
||||
|
||||
在`config.py`中,配置API KEY等设置,[特殊网络环境设置](https://github.com/binary-husky/gpt_academic/issues/1) 。
|
||||
在`config.py`中,配置API KEY等设置,[点击查看特殊网络环境设置方法](https://github.com/binary-husky/gpt_academic/issues/1) 。
|
||||
|
||||
(P.S. 程序运行时会优先检查是否存在名为`config_private.py`的私密配置文件,并用其中的配置覆盖`config.py`的同名配置。因此,如果您能理解我们的配置读取逻辑,我们强烈建议您在`config.py`旁边创建一个名为`config_private.py`的新配置文件,并把`config.py`中的配置转移(复制)到`config_private.py`中。`config_private.py`不受git管控,可以让您的隐私信息更加安全。P.S.项目同样支持通过`环境变量`配置大多数选项,环境变量的书写格式参考`docker-compose`文件。读取优先级: `环境变量` > `config_private.py` > `config.py`)
|
||||
|
||||
@ -140,15 +140,9 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-
|
||||
python main.py
|
||||
```
|
||||
|
||||
5. 测试函数插件
|
||||
```
|
||||
- 测试函数插件模板函数(要求gpt回答历史上的今天发生了什么),您可以根据此函数为模板,实现更复杂的功能
|
||||
点击 "[函数插件模板Demo] 历史上的今天"
|
||||
```
|
||||
|
||||
## 安装-方法2:使用Docker
|
||||
|
||||
1. 仅ChatGPT(推荐大多数人选择)
|
||||
1. 仅ChatGPT(推荐大多数人选择,等价于docker-compose方案1)
|
||||
|
||||
``` sh
|
||||
git clone https://github.com/binary-husky/gpt_academic.git # 下载项目
|
||||
@ -161,41 +155,43 @@ docker run --rm -it --net=host gpt-academic
|
||||
#(最后一步-选择2)在macOS/windows环境下,只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
||||
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
|
||||
```
|
||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki
|
||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能(修改docker-compose.yml,保留方案4并删除其他方案)。
|
||||
|
||||
2. ChatGPT + ChatGLM + MOSS(需要熟悉Docker)
|
||||
|
||||
``` sh
|
||||
# 修改docker-compose.yml,删除方案1和方案3,保留方案2。修改docker-compose.yml中方案2的配置,参考其中注释即可
|
||||
# 修改docker-compose.yml,保留方案2并删除其他方案。修改docker-compose.yml中方案2的配置,参考其中注释即可
|
||||
docker-compose up
|
||||
```
|
||||
|
||||
3. ChatGPT + LLAMA + 盘古 + RWKV(需要熟悉Docker)
|
||||
``` sh
|
||||
# 修改docker-compose.yml,删除方案1和方案2,保留方案3。修改docker-compose.yml中方案3的配置,参考其中注释即可
|
||||
# 修改docker-compose.yml,保留方案3并删除其他方案。修改docker-compose.yml中方案3的配置,参考其中注释即可
|
||||
docker-compose up
|
||||
```
|
||||
|
||||
|
||||
## 安装-方法3:其他部署姿势
|
||||
1. 一键运行脚本。
|
||||
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本,
|
||||
不建议电脑上已有python的用户采用此方法(在此基础上安装插件的依赖很麻烦)。
|
||||
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。
|
||||
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
|
||||
|
||||
2. 使用docker-compose运行。
|
||||
请阅读docker-compose.yml后,按照其中的提示操作即可
|
||||
|
||||
3. 如何使用反代URL/微软云AzureAPI。
|
||||
3. 如何使用反代URL
|
||||
按照`config.py`中的说明配置API_URL_REDIRECT即可。
|
||||
|
||||
4. 远程云服务器部署(需要云服务器知识与经验)。
|
||||
4. 微软云AzureAPI
|
||||
按照`config.py`中的说明配置即可(AZURE_ENDPOINT等四个配置)
|
||||
|
||||
5. 远程云服务器部署(需要云服务器知识与经验)。
|
||||
请访问[部署wiki-1](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
|
||||
|
||||
5. 使用WSL2(Windows Subsystem for Linux 子系统)。
|
||||
6. 使用WSL2(Windows Subsystem for Linux 子系统)。
|
||||
请访问[部署wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
|
||||
|
||||
6. 如何在二级网址(如`http://localhost/subpath`)下运行。
|
||||
7. 如何在二级网址(如`http://localhost/subpath`)下运行。
|
||||
请访问[FastAPI运行说明](docs/WithFastapi.md)
|
||||
|
||||
---
|
||||
|
||||
@ -1,10 +1,10 @@
|
||||
|
||||
def check_proxy(proxies):
|
||||
def check_proxy(proxies: dict):
|
||||
import requests
|
||||
proxies_https = proxies['https'] if proxies is not None else '无'
|
||||
proxies_https = proxies.get('https') if proxies is not None else '无'
|
||||
try:
|
||||
response = requests.get("https://ipapi.co/json/",
|
||||
proxies=proxies, timeout=4)
|
||||
proxies=proxies, timeout=30)
|
||||
data = response.json()
|
||||
print(f'查询代理的地理位置,返回的结果是{data}')
|
||||
if 'country_name' in data:
|
||||
@ -12,10 +12,12 @@ def check_proxy(proxies):
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
||||
elif 'error' in data:
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
||||
else:
|
||||
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
||||
print(result)
|
||||
return result
|
||||
except:
|
||||
result = f"代理配置 {proxies_https}, 代理所在地查询超时,代理可能无效"
|
||||
except Exception as e:
|
||||
result = f"代理 {proxies_https} 查询出现异常: {e},代理可能无效"
|
||||
print(result)
|
||||
return result
|
||||
|
||||
|
||||
15
config.py
15
config.py
@ -1,6 +1,7 @@
|
||||
# [step 1]>> 例如: API_KEY = "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" (此key无效)
|
||||
API_KEY = "sk-此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
||||
|
||||
|
||||
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
|
||||
USE_PROXY = False
|
||||
if USE_PROXY:
|
||||
@ -46,8 +47,8 @@ MAX_RETRY = 2
|
||||
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 同时它必须被包含在AVAIL_LLM_MODELS切换列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "newbing-free", "stack-claude"]
|
||||
# P.S. 其他可用的模型还包括 ["newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt35", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "newbing-free", "stack-claude"]
|
||||
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
@ -55,6 +56,9 @@ LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
# 设置gradio的并行线程数(不需要修改)
|
||||
CONCURRENT_COUNT = 100
|
||||
|
||||
# 是否在提交时自动清空输入框
|
||||
AUTO_CLEAR_TXT = False
|
||||
|
||||
# 加一个live2d装饰
|
||||
ADD_WAIFU = False
|
||||
|
||||
@ -81,3 +85,10 @@ your bing cookies here
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llm/README.md
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
SLACK_CLAUDE_USER_TOKEN = ''
|
||||
|
||||
|
||||
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
|
||||
AZURE_ENDPOINT = "https://你的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "填入api版本"
|
||||
AZURE_ENGINE = "填入ENGINE"
|
||||
|
||||
@ -63,6 +63,7 @@ def get_core_functions():
|
||||
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," +
|
||||
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n",
|
||||
"Suffix": r"",
|
||||
"Visible": False,
|
||||
},
|
||||
"解释代码": {
|
||||
"Prefix": r"请解释以下代码:" + "\n```\n",
|
||||
@ -73,6 +74,5 @@ def get_core_functions():
|
||||
r"Note that, reference styles maybe more than one kind, you should transform each item correctly." +
|
||||
r"Items need to be transformed:",
|
||||
"Suffix": r"",
|
||||
"Visible": False,
|
||||
}
|
||||
}
|
||||
|
||||
@ -112,11 +112,11 @@ def get_crazy_functions():
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(解析项目本身)
|
||||
},
|
||||
"[老旧的Demo] 把本项目源代码切换成全英文": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(全项目切换英文)
|
||||
},
|
||||
# "[老旧的Demo] 把本项目源代码切换成全英文": {
|
||||
# # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
# "AsButton": False, # 加入下拉菜单中
|
||||
# "Function": HotReload(全项目切换英文)
|
||||
# },
|
||||
"[插件demo] 历史上的今天": {
|
||||
# HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
|
||||
"Function": HotReload(高阶功能模板函数)
|
||||
@ -226,12 +226,20 @@ def get_crazy_functions():
|
||||
try:
|
||||
from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(先输入问题,再点击按钮,需要访问谷歌)": {
|
||||
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(连接网络回答问题)
|
||||
}
|
||||
})
|
||||
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(连接bing搜索回答问题)
|
||||
}
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
@ -348,17 +356,28 @@ def get_crazy_functions():
|
||||
try:
|
||||
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
|
||||
function_plugins.update({
|
||||
"[功能尚不稳定] Latex英文纠错+LatexDiff高亮修正位置": {
|
||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
# "AdvancedArgs": True,
|
||||
# "ArgsReminder": "",
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||
"Function": HotReload(Latex英文纠错加PDF对比)
|
||||
}
|
||||
})
|
||||
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
|
||||
function_plugins.update({
|
||||
"Arixv翻译(输入arxivID) [需Latex]": {
|
||||
"Arixv翻译(输入arxivID)[需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder":
|
||||
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "+
|
||||
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " + 'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
}
|
||||
})
|
||||
function_plugins.update({
|
||||
"本地论文翻译(上传Latex压缩包)[需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
@ -368,17 +387,6 @@ def get_crazy_functions():
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
}
|
||||
})
|
||||
# function_plugins.update({
|
||||
# "本地论文翻译(上传Latex压缩包) [需Latex]": {
|
||||
# "Color": "stop",
|
||||
# "AsButton": False,
|
||||
# "AdvancedArgs": True,
|
||||
# "ArgsReminder":
|
||||
# "如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "+
|
||||
# "例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " + 'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
# "Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
# }
|
||||
# })
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
|
||||
@ -19,9 +19,9 @@ def switch_prompt(pfg, mode, more_requirement):
|
||||
- sys_prompt_array: A list of strings containing prompts for system prompts.
|
||||
"""
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
if mode == 'proofread':
|
||||
if mode == 'proofread_en':
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
|
||||
r"Answer me only with the revised text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
@ -70,6 +70,12 @@ def move_project(project_folder, arxiv_id=None):
|
||||
shutil.rmtree(new_workfolder)
|
||||
except:
|
||||
pass
|
||||
|
||||
# align subfolder if there is a folder wrapper
|
||||
items = glob.glob(pj(project_folder,'*'))
|
||||
if len(glob.glob(pj(project_folder,'*.tex'))) == 0 and len(items) == 1:
|
||||
if os.path.isdir(items[0]): project_folder = items[0]
|
||||
|
||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||
return new_workfolder
|
||||
|
||||
@ -90,7 +96,7 @@ def arxiv_download(chatbot, history, txt):
|
||||
except ValueError:
|
||||
return False
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt
|
||||
txt = 'https://arxiv.org/abs/' + txt.strip()
|
||||
if ('.' in txt) and ('/' not in txt) and is_float(txt[:10]): # is arxiv ID
|
||||
txt = 'https://arxiv.org/abs/' + txt[:10]
|
||||
if not txt.startswith('https://arxiv.org'):
|
||||
@ -141,7 +147,11 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
chatbot.append([ "函数插件功能?",
|
||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
@ -180,13 +190,13 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_proofread.tex'):
|
||||
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='proofread_latex', switch_prompt=switch_prompt)
|
||||
chatbot, history, system_prompt, mode='proofread_en', switch_prompt=_switch_prompt_)
|
||||
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread',
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread_en',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
||||
|
||||
|
||||
@ -195,6 +205,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
@ -278,6 +289,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
|
||||
@ -188,7 +188,16 @@ def test_Latex():
|
||||
# txt = r"https://arxiv.org/abs/2305.17608"
|
||||
# txt = r"https://arxiv.org/abs/2211.16068" # ACE
|
||||
# txt = r"C:\Users\x\arxiv_cache\2211.16068\workfolder" # ACE
|
||||
txt = r"https://arxiv.org/abs/2002.09253"
|
||||
# txt = r"https://arxiv.org/abs/2002.09253"
|
||||
# txt = r"https://arxiv.org/abs/2306.07831"
|
||||
# txt = r"https://arxiv.org/abs/2212.10156"
|
||||
# txt = r"https://arxiv.org/abs/2211.11559"
|
||||
# txt = r"https://arxiv.org/abs/2303.08774"
|
||||
# txt = r"https://arxiv.org/abs/2303.12712"
|
||||
# txt = r"C:\Users\fuqingxu\arxiv_cache\2303.12712\workfolder"
|
||||
txt = r"2306.17157" # 这个paper有个input命令文件名大小写错误!
|
||||
|
||||
|
||||
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
cli_printer.print(cb) # print(cb)
|
||||
|
||||
@ -217,6 +226,7 @@ def test_Latex():
|
||||
# test_数学动画生成manim()
|
||||
# test_Langchain知识库()
|
||||
# test_Langchain知识库读取()
|
||||
test_Latex()
|
||||
input("程序完成,回车退出。")
|
||||
print("退出。")
|
||||
if __name__ == "__main__":
|
||||
test_Latex()
|
||||
input("程序完成,回车退出。")
|
||||
print("退出。")
|
||||
@ -1,16 +1,19 @@
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||
import threading
|
||||
|
||||
|
||||
def input_clipping(inputs, history, max_token_limit):
|
||||
import numpy as np
|
||||
from request_llm.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
|
||||
def get_token_num(txt):
|
||||
return len(enc.encode(txt, disallowed_special=()))
|
||||
|
||||
mode = 'input-and-history'
|
||||
# 当 输入部分的token占比 小于 全文的一半时,只裁剪历史
|
||||
input_token_num = get_token_num(inputs)
|
||||
if input_token_num < max_token_limit//2:
|
||||
if input_token_num < max_token_limit // 2:
|
||||
mode = 'only-history'
|
||||
max_token_limit = max_token_limit - input_token_num
|
||||
|
||||
@ -18,13 +21,13 @@ def input_clipping(inputs, history, max_token_limit):
|
||||
everything.extend(history)
|
||||
n_token = get_token_num('\n'.join(everything))
|
||||
everything_token = [get_token_num(e) for e in everything]
|
||||
delta = max(everything_token) // 16 # 截断时的颗粒度
|
||||
|
||||
delta = max(everything_token) // 16 # 截断时的颗粒度
|
||||
|
||||
while n_token > max_token_limit:
|
||||
where = np.argmax(everything_token)
|
||||
encoded = enc.encode(everything[where], disallowed_special=())
|
||||
clipped_encoded = encoded[:len(encoded)-delta]
|
||||
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char
|
||||
clipped_encoded = encoded[:len(encoded) - delta]
|
||||
everything[where] = enc.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char
|
||||
everything_token[where] = get_token_num(everything[where])
|
||||
n_token = get_token_num('\n'.join(everything))
|
||||
|
||||
@ -35,12 +38,13 @@ def input_clipping(inputs, history, max_token_limit):
|
||||
history = everything[1:]
|
||||
return inputs, history
|
||||
|
||||
|
||||
def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs, inputs_show_user, llm_kwargs,
|
||||
inputs, inputs_show_user, llm_kwargs,
|
||||
chatbot, history, sys_prompt, refresh_interval=0.2,
|
||||
handle_token_exceed=True,
|
||||
handle_token_exceed=True,
|
||||
retry_times_at_unknown_error=2,
|
||||
):
|
||||
):
|
||||
"""
|
||||
Request GPT model,请求GPT模型同时维持用户界面活跃。
|
||||
|
||||
@ -64,15 +68,16 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
# 用户反馈
|
||||
chatbot.append([inputs_show_user, ""])
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
executor = ThreadPoolExecutor(max_workers=16)
|
||||
mutable = ["", time.time(), ""]
|
||||
|
||||
def _req_gpt(inputs, history, sys_prompt):
|
||||
retry_op = retry_times_at_unknown_error
|
||||
exceeded_cnt = 0
|
||||
while True:
|
||||
# watchdog error
|
||||
if len(mutable) >= 2 and (time.time()-mutable[1]) > 5:
|
||||
if len(mutable) >= 2 and (time.time() - mutable[1]) > 5:
|
||||
raise RuntimeError("检测到程序终止。")
|
||||
try:
|
||||
# 【第一种情况】:顺利完成
|
||||
@ -89,14 +94,14 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
|
||||
MAX_TOKEN = 4096
|
||||
EXCEED_ALLO = 512 + 512 * exceeded_cnt
|
||||
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
|
||||
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN - EXCEED_ALLO)
|
||||
mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n'
|
||||
continue # 返回重试
|
||||
continue # 返回重试
|
||||
else:
|
||||
# 【选择放弃】
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||
return mutable[0] # 放弃
|
||||
return mutable[0] # 放弃
|
||||
except:
|
||||
# 【第三种情况】:其他错误:重试几次
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
@ -104,14 +109,15 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||
if retry_op > 0:
|
||||
retry_op -= 1
|
||||
mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}:\n\n"
|
||||
mutable[
|
||||
0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error - retry_op}/{retry_times_at_unknown_error}:\n\n"
|
||||
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
|
||||
time.sleep(30)
|
||||
time.sleep(5)
|
||||
continue # 返回重试
|
||||
continue # 返回重试
|
||||
else:
|
||||
time.sleep(5)
|
||||
return mutable[0] # 放弃
|
||||
return mutable[0] # 放弃
|
||||
|
||||
# 提交任务
|
||||
future = executor.submit(_req_gpt, inputs, history, sys_prompt)
|
||||
@ -123,21 +129,21 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
if future.done():
|
||||
break
|
||||
chatbot[-1] = [chatbot[-1][0], mutable[0]]
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
|
||||
final_result = future.result()
|
||||
chatbot[-1] = [chatbot[-1][0], final_result]
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||
return final_result
|
||||
|
||||
|
||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
chatbot, history_array, sys_prompt_array,
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
chatbot, history_array, sys_prompt_array,
|
||||
refresh_interval=0.2, max_workers=-1, scroller_max_len=30,
|
||||
handle_token_exceed=True, show_user_at_complete=False,
|
||||
retry_times_at_unknown_error=2,
|
||||
):
|
||||
):
|
||||
"""
|
||||
Request GPT model using multiple threads with UI and high efficiency
|
||||
请求GPT模型的[多线程]版。
|
||||
@ -170,19 +176,21 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
assert len(inputs_array) == len(history_array)
|
||||
assert len(inputs_array) == len(sys_prompt_array)
|
||||
if max_workers == -1: # 读取配置文件
|
||||
try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
|
||||
except: max_workers = 8
|
||||
if max_workers == -1: # 读取配置文件
|
||||
try:
|
||||
max_workers, = get_conf('DEFAULT_WORKER_NUM')
|
||||
except:
|
||||
max_workers = 8
|
||||
if max_workers <= 0: max_workers = 3
|
||||
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
|
||||
if not (llm_kwargs['llm_model'].startswith('gpt-') or llm_kwargs['llm_model'].startswith('api2d-')):
|
||||
max_workers = 1
|
||||
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||
n_frag = len(inputs_array)
|
||||
# 用户反馈
|
||||
chatbot.append(["请开始多线程操作。", ""])
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
# 跨线程传递
|
||||
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)]
|
||||
|
||||
@ -194,13 +202,13 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
mutable[index][2] = "执行中"
|
||||
while True:
|
||||
# watchdog error
|
||||
if len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > 5:
|
||||
if len(mutable[index]) >= 2 and (time.time() - mutable[index][1]) > 5:
|
||||
raise RuntimeError("检测到程序终止。")
|
||||
try:
|
||||
# 【第一种情况】:顺利完成
|
||||
# time.sleep(10); raise RuntimeError("测试")
|
||||
gpt_say = predict_no_ui_long_connection(
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
|
||||
inputs=inputs, llm_kwargs=llm_kwargs, history=history,
|
||||
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True
|
||||
)
|
||||
mutable[index][2] = "已成功"
|
||||
@ -214,24 +222,26 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error))
|
||||
MAX_TOKEN = 4096
|
||||
EXCEED_ALLO = 512 + 512 * exceeded_cnt
|
||||
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO)
|
||||
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN - EXCEED_ALLO)
|
||||
gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n'
|
||||
mutable[index][2] = f"截断重试"
|
||||
continue # 返回重试
|
||||
continue # 返回重试
|
||||
else:
|
||||
# 【选择放弃】
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
||||
if len(mutable[index][0]) > 0:
|
||||
gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
||||
mutable[index][2] = "输入过长已放弃"
|
||||
return gpt_say # 放弃
|
||||
except:
|
||||
return gpt_say # 放弃
|
||||
except Exception as e:
|
||||
# 【第三种情况】:其他错误
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
print(tb_str)
|
||||
print(f"发生异常:{e}, 调用栈信息:{tb_str}")
|
||||
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||||
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
||||
if retry_op > 0:
|
||||
if len(mutable[index][0]) > 0:
|
||||
gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0]
|
||||
if retry_op > 0:
|
||||
retry_op -= 1
|
||||
wait = random.randint(5, 20)
|
||||
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str):
|
||||
@ -241,19 +251,22 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
fail_info = ""
|
||||
# 也许等待十几秒后,情况会好转
|
||||
for i in range(wait):
|
||||
mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1)
|
||||
mutable[index][2] = f"{fail_info}等待重试 {wait - i}";
|
||||
time.sleep(1)
|
||||
# 开始重试
|
||||
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}"
|
||||
continue # 返回重试
|
||||
mutable[index][
|
||||
2] = f"重试中 {retry_times_at_unknown_error - retry_op}/{retry_times_at_unknown_error}"
|
||||
continue # 返回重试
|
||||
else:
|
||||
mutable[index][2] = "已失败"
|
||||
wait = 5
|
||||
time.sleep(5)
|
||||
return gpt_say # 放弃
|
||||
return gpt_say # 放弃
|
||||
|
||||
# 异步任务开始
|
||||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
||||
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in
|
||||
zip(
|
||||
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||||
cnt = 0
|
||||
while True:
|
||||
# yield一次以刷新前端页面
|
||||
@ -267,17 +280,17 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
mutable[thread_index][1] = time.time()
|
||||
# 在前端打印些好玩的东西
|
||||
for thread_index, _ in enumerate(worker_done):
|
||||
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
||||
print_something_really_funny = "[ ...`" + mutable[thread_index][0][-scroller_max_len:]. \
|
||||
replace('\n', '').replace('```', '...').replace(
|
||||
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||
' ', '.').replace('<br/>', '.....').replace('$', '.') + "`... ]"
|
||||
observe_win.append(print_something_really_funny)
|
||||
# 在前端打印些好玩的东西
|
||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
if not done else f'`{mutable[thread_index][2]}`\n\n'
|
||||
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n'
|
||||
if not done else f'`{mutable[thread_index][2]}`\n\n'
|
||||
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)])
|
||||
# 在前端打印些好玩的东西
|
||||
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.'] * (cnt % 10 + 1))]
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
if all(worker_done):
|
||||
executor.shutdown()
|
||||
break
|
||||
@ -287,13 +300,13 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
for inputs_show_user, f in zip(inputs_show_user_array, futures):
|
||||
gpt_res = f.result()
|
||||
gpt_response_collection.extend([inputs_show_user, gpt_res])
|
||||
|
||||
|
||||
# 是否在结束时,在界面上显示结果
|
||||
if show_user_at_complete:
|
||||
for inputs_show_user, f in zip(inputs_show_user_array, futures):
|
||||
gpt_res = f.result()
|
||||
chatbot.append([inputs_show_user, gpt_res])
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
time.sleep(0.3)
|
||||
return gpt_response_collection
|
||||
|
||||
@ -306,6 +319,7 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
||||
lines = txt_tocut.split('\n')
|
||||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||||
estimated_line_cut = int(estimated_line_cut)
|
||||
cnt = 0
|
||||
for cnt in reversed(range(estimated_line_cut)):
|
||||
if must_break_at_empty_line:
|
||||
if lines[cnt] != "":
|
||||
@ -322,6 +336,7 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
||||
result = [prev]
|
||||
result.extend(cut(post, must_break_at_empty_line))
|
||||
return result
|
||||
|
||||
try:
|
||||
return cut(txt, must_break_at_empty_line=True)
|
||||
except RuntimeError:
|
||||
@ -337,9 +352,10 @@ def force_breakdown(txt, limit, get_token_fn):
|
||||
return txt[:i], txt[i:]
|
||||
return "Tiktoken未知错误", "Tiktoken未知错误"
|
||||
|
||||
|
||||
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||||
# 递归
|
||||
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
|
||||
def cut(txt_tocut, must_break_at_empty_line, break_anyway=False):
|
||||
if get_token_fn(txt_tocut) <= limit:
|
||||
return [txt_tocut]
|
||||
else:
|
||||
@ -365,6 +381,7 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||||
result = [prev]
|
||||
result.extend(cut(post, must_break_at_empty_line, break_anyway=break_anyway))
|
||||
return result
|
||||
|
||||
try:
|
||||
# 第1次尝试,将双空行(\n\n)作为切分点
|
||||
return cut(txt, must_break_at_empty_line=True)
|
||||
@ -375,7 +392,7 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||||
except RuntimeError:
|
||||
try:
|
||||
# 第3次尝试,将英文句号(.)作为切分点
|
||||
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
|
||||
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False) # 这个中文的句号是故意的,作为一个标识而存在
|
||||
return [r.replace('。\n', '.') for r in res]
|
||||
except RuntimeError as e:
|
||||
try:
|
||||
@ -387,7 +404,6 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||||
return cut(txt, must_break_at_empty_line=False, break_anyway=True)
|
||||
|
||||
|
||||
|
||||
def read_and_clean_pdf_text(fp):
|
||||
"""
|
||||
这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好
|
||||
@ -415,8 +431,9 @@ def read_and_clean_pdf_text(fp):
|
||||
fc = 0 # Index 0 文本
|
||||
fs = 1 # Index 1 字体
|
||||
fb = 2 # Index 2 框框
|
||||
REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等)
|
||||
REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的?时,判定为不是正文(有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化)
|
||||
REMOVE_FOOT_NOTE = True # 是否丢弃掉 不是正文的内容 (比正文字体小,如参考文献、脚注、图注等)
|
||||
REMOVE_FOOT_FFSIZE_PERCENT = 0.95 # 小于正文的?时,判定为不是正文(有些文章的正文部分字体大小不是100%统一的,有肉眼不可见的小变化)
|
||||
|
||||
def primary_ffsize(l):
|
||||
"""
|
||||
提取文本块主字体
|
||||
@ -426,12 +443,12 @@ def read_and_clean_pdf_text(fp):
|
||||
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
|
||||
fsize_statiscs[wtf['size']] += len(wtf['text'])
|
||||
return max(fsize_statiscs, key=fsize_statiscs.get)
|
||||
|
||||
def ffsize_same(a,b):
|
||||
|
||||
def ffsize_same(a, b):
|
||||
"""
|
||||
提取字体大小是否近似相等
|
||||
"""
|
||||
return abs((a-b)/max(a,b)) < 0.02
|
||||
return abs((a - b) / max(a, b)) < 0.02
|
||||
|
||||
with fitz.open(fp) as doc:
|
||||
meta_txt = []
|
||||
@ -451,18 +468,19 @@ def read_and_clean_pdf_text(fp):
|
||||
if len(txt_line) == 0: continue
|
||||
pf = primary_ffsize(l)
|
||||
meta_line.append([txt_line, pf, l['bbox'], l])
|
||||
for wtf in l['spans']: # for l in t['lines']:
|
||||
for wtf in l['spans']: # for l in t['lines']:
|
||||
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
|
||||
# meta_line.append(["NEW_BLOCK", pf])
|
||||
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
||||
# 块元提取 for each word segment with in line for each line
|
||||
# cross-line words for each block
|
||||
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||||
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
|
||||
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
|
||||
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
|
||||
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
|
||||
if index == 0:
|
||||
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||||
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
|
||||
|
||||
|
||||
############################## <第 2 步,获取正文主字体> ##################################
|
||||
fsize_statiscs = {}
|
||||
for span in meta_span:
|
||||
@ -476,32 +494,33 @@ def read_and_clean_pdf_text(fp):
|
||||
mega_sec = []
|
||||
sec = []
|
||||
for index, line in enumerate(meta_line):
|
||||
if index == 0:
|
||||
if index == 0:
|
||||
sec.append(line[fc])
|
||||
continue
|
||||
if REMOVE_FOOT_NOTE:
|
||||
if meta_line[index][fs] <= give_up_fize_threshold:
|
||||
continue
|
||||
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
|
||||
if ffsize_same(meta_line[index][fs], meta_line[index - 1][fs]):
|
||||
# 尝试识别段落
|
||||
if meta_line[index][fc].endswith('.') and\
|
||||
(meta_line[index-1][fc] != 'NEW_BLOCK') and \
|
||||
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
|
||||
if meta_line[index][fc].endswith('.') and \
|
||||
(meta_line[index - 1][fc] != 'NEW_BLOCK') and \
|
||||
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (
|
||||
meta_line[index - 1][fb][2] - meta_line[index - 1][fb][0]) * 0.7:
|
||||
sec[-1] += line[fc]
|
||||
sec[-1] += "\n\n"
|
||||
else:
|
||||
sec[-1] += " "
|
||||
sec[-1] += line[fc]
|
||||
else:
|
||||
if (index+1 < len(meta_line)) and \
|
||||
meta_line[index][fs] > main_fsize:
|
||||
if (index + 1 < len(meta_line)) and \
|
||||
meta_line[index][fs] > main_fsize:
|
||||
# 单行 + 字体大
|
||||
mega_sec.append(copy.deepcopy(sec))
|
||||
sec = []
|
||||
sec.append("# " + line[fc])
|
||||
else:
|
||||
# 尝试识别section
|
||||
if meta_line[index-1][fs] > meta_line[index][fs]:
|
||||
if meta_line[index - 1][fs] > meta_line[index][fs]:
|
||||
sec.append("\n" + line[fc])
|
||||
else:
|
||||
sec.append(line[fc])
|
||||
@ -520,13 +539,15 @@ def read_and_clean_pdf_text(fp):
|
||||
if len(block_txt) < 100:
|
||||
meta_txt[index] = '\n'
|
||||
return meta_txt
|
||||
|
||||
meta_txt = 把字符太少的块清除为回车(meta_txt)
|
||||
|
||||
def 清理多余的空行(meta_txt):
|
||||
for index in reversed(range(1, len(meta_txt))):
|
||||
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
|
||||
if meta_txt[index] == '\n' and meta_txt[index - 1] == '\n':
|
||||
meta_txt.pop(index)
|
||||
return meta_txt
|
||||
|
||||
meta_txt = 清理多余的空行(meta_txt)
|
||||
|
||||
def 合并小写开头的段落块(meta_txt):
|
||||
@ -537,16 +558,18 @@ def read_and_clean_pdf_text(fp):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
for _ in range(100):
|
||||
for index, block_txt in enumerate(meta_txt):
|
||||
if starts_with_lowercase_word(block_txt):
|
||||
if meta_txt[index-1] != '\n':
|
||||
meta_txt[index-1] += ' '
|
||||
if meta_txt[index - 1] != '\n':
|
||||
meta_txt[index - 1] += ' '
|
||||
else:
|
||||
meta_txt[index-1] = ''
|
||||
meta_txt[index-1] += meta_txt[index]
|
||||
meta_txt[index - 1] = ''
|
||||
meta_txt[index - 1] += meta_txt[index]
|
||||
meta_txt[index] = '\n'
|
||||
return meta_txt
|
||||
|
||||
meta_txt = 合并小写开头的段落块(meta_txt)
|
||||
meta_txt = 清理多余的空行(meta_txt)
|
||||
|
||||
@ -566,7 +589,7 @@ def read_and_clean_pdf_text(fp):
|
||||
return meta_txt, page_one_meta
|
||||
|
||||
|
||||
def get_files_from_everything(txt, type): # type='.md'
|
||||
def get_files_from_everything(txt, type): # type='.md'
|
||||
"""
|
||||
这个函数是用来获取指定目录下所有指定类型(如.md)的文件,并且对于网络上的文件,也可以获取它。
|
||||
下面是对每个参数和返回值的说明:
|
||||
@ -588,9 +611,10 @@ def get_files_from_everything(txt, type): # type='.md'
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
r = requests.get(txt, proxies=proxies)
|
||||
with open('./gpt_log/temp'+type, 'wb+') as f: f.write(r.content)
|
||||
with open('./gpt_log/temp' + type, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
project_folder = './gpt_log/'
|
||||
file_manifest = ['./gpt_log/temp'+type]
|
||||
file_manifest = ['./gpt_log/temp' + type]
|
||||
elif txt.endswith(type):
|
||||
# 直接给定文件
|
||||
file_manifest = [txt]
|
||||
@ -598,7 +622,7 @@ def get_files_from_everything(txt, type): # type='.md'
|
||||
elif os.path.exists(txt):
|
||||
# 本地路径,递归搜索
|
||||
project_folder = txt
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*'+type, recursive=True)]
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*' + type, recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
success = False
|
||||
else:
|
||||
@ -609,16 +633,14 @@ def get_files_from_everything(txt, type): # type='.md'
|
||||
return success, file_manifest, project_folder
|
||||
|
||||
|
||||
|
||||
|
||||
def Singleton(cls):
|
||||
_instance = {}
|
||||
|
||||
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
|
||||
|
||||
return _singleton
|
||||
|
||||
|
||||
@ -637,31 +659,30 @@ class knowledge_archive_interface():
|
||||
from toolbox import ProxyNetworkActivate
|
||||
print('Checking Text2vec ...')
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
with ProxyNetworkActivate(): # 临时地激活代理网络
|
||||
with ProxyNetworkActivate(): # 临时地激活代理网络
|
||||
self.text2vec_large_chinese = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese")
|
||||
|
||||
return self.text2vec_large_chinese
|
||||
|
||||
|
||||
def feed_archive(self, file_manifest, id="default"):
|
||||
self.threadLock.acquire()
|
||||
# import uuid
|
||||
self.current_id = id
|
||||
from zh_langchain import construct_vector_store
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
files=file_manifest,
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
files=file_manifest,
|
||||
sentence_size=100,
|
||||
history=[],
|
||||
one_conent="",
|
||||
one_content_segmentation="",
|
||||
text2vec = self.get_chinese_text2vec(),
|
||||
text2vec=self.get_chinese_text2vec(),
|
||||
)
|
||||
self.threadLock.release()
|
||||
|
||||
def get_current_archive_id(self):
|
||||
return self.current_id
|
||||
|
||||
|
||||
def get_loaded_file(self):
|
||||
return self.qa_handle.get_loaded_file()
|
||||
|
||||
@ -670,30 +691,31 @@ class knowledge_archive_interface():
|
||||
if not self.current_id == id:
|
||||
self.current_id = id
|
||||
from zh_langchain import construct_vector_store
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
files=[],
|
||||
self.qa_handle, self.kai_path = construct_vector_store(
|
||||
vs_id=self.current_id,
|
||||
files=[],
|
||||
sentence_size=100,
|
||||
history=[],
|
||||
one_conent="",
|
||||
one_content_segmentation="",
|
||||
text2vec = self.get_chinese_text2vec(),
|
||||
text2vec=self.get_chinese_text2vec(),
|
||||
)
|
||||
VECTOR_SEARCH_SCORE_THRESHOLD = 0
|
||||
VECTOR_SEARCH_TOP_K = 4
|
||||
CHUNK_SIZE = 512
|
||||
resp, prompt = self.qa_handle.get_knowledge_based_conent_test(
|
||||
query = txt,
|
||||
vs_path = self.kai_path,
|
||||
query=txt,
|
||||
vs_path=self.kai_path,
|
||||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
||||
vector_search_top_k=VECTOR_SEARCH_TOP_K,
|
||||
chunk_conent=True,
|
||||
chunk_size=CHUNK_SIZE,
|
||||
text2vec = self.get_chinese_text2vec(),
|
||||
text2vec=self.get_chinese_text2vec(),
|
||||
)
|
||||
self.threadLock.release()
|
||||
return resp, prompt
|
||||
|
||||
|
||||
def try_install_deps(deps):
|
||||
for dep in deps:
|
||||
import subprocess, sys
|
||||
|
||||
@ -8,24 +8,49 @@ pj = os.path.join
|
||||
"""
|
||||
========================================================================
|
||||
Part One
|
||||
Latex segmentation to a linklist
|
||||
Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1)
|
||||
========================================================================
|
||||
"""
|
||||
PRESERVE = 0
|
||||
TRANSFORM = 1
|
||||
|
||||
def split_worker(text, mask, pattern, flags=0):
|
||||
def set_forbidden_text(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper
|
||||
e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}"
|
||||
you can mask out (mask = PRESERVE so that text become untouchable for GPT)
|
||||
everything between "\begin{equation}" and "\end{equation}"
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
mask[res.span()[0]:res.span()[1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def split_worker_careful_brace(text, mask, pattern, flags=0):
|
||||
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area into preserve area
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\begin{abstract} blablablablablabla. \end{abstract}
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
if not forbid_wrapper:
|
||||
mask[res.span()[0]:res.span()[1]] = TRANSFORM
|
||||
else:
|
||||
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
|
||||
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
|
||||
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
|
||||
return text, mask
|
||||
|
||||
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper (text become untouchable for GPT).
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
@ -40,9 +65,12 @@ def split_worker_careful_brace(text, mask, pattern, flags=0):
|
||||
mask[begin:end] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def split_worker_reverse_careful_brace(text, mask, pattern, flags=0):
|
||||
def reverse_forbidden_text_careful_brace(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\caption{blablablablabla\texbf{blablabla}blablabla.}
|
||||
"""
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
@ -55,9 +83,12 @@ def split_worker_reverse_careful_brace(text, mask, pattern, flags=0):
|
||||
p += 1
|
||||
end = p
|
||||
mask[begin:end] = TRANSFORM
|
||||
if forbid_wrapper:
|
||||
mask[res.regs[0][0]:begin] = PRESERVE
|
||||
mask[end:res.regs[0][1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def split_worker_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
|
||||
def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42):
|
||||
"""
|
||||
Find all \begin{} ... \end{} text block that with less than limit_n_lines lines.
|
||||
Add it to preserve area
|
||||
@ -110,19 +141,41 @@ Latex Merge File
|
||||
def 寻找Latex主文件(file_manifest, mode):
|
||||
"""
|
||||
在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。
|
||||
P.S. 但愿没人把latex模板放在里面传进来
|
||||
P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码)
|
||||
"""
|
||||
canidates = []
|
||||
for texf in file_manifest:
|
||||
if os.path.basename(texf).startswith('merge'):
|
||||
continue
|
||||
with open(texf, 'r', encoding='utf8') as f:
|
||||
file_content = f.read()
|
||||
if r'\documentclass' in file_content:
|
||||
return texf
|
||||
canidates.append(texf)
|
||||
else:
|
||||
continue
|
||||
raise RuntimeError('无法找到一个主Tex文件(包含documentclass关键字)')
|
||||
|
||||
if len(canidates) == 0:
|
||||
raise RuntimeError('无法找到一个主Tex文件(包含documentclass关键字)')
|
||||
elif len(canidates) == 1:
|
||||
return canidates[0]
|
||||
else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回
|
||||
canidates_score = []
|
||||
# 给出一些判定模板文档的词作为扣分项
|
||||
unexpected_words = ['\LaTeX', 'manuscript', 'Guidelines', 'font', 'citations', 'rejected', 'blind review', 'reviewers']
|
||||
expected_words = ['\input', '\ref', '\cite']
|
||||
for texf in canidates:
|
||||
canidates_score.append(0)
|
||||
with open(texf, 'r', encoding='utf8') as f:
|
||||
file_content = f.read()
|
||||
for uw in unexpected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] -= 1
|
||||
for uw in expected_words:
|
||||
if uw in file_content:
|
||||
canidates_score[-1] += 1
|
||||
select = np.argmax(canidates_score) # 取评分最高者返回
|
||||
return canidates[select]
|
||||
|
||||
def rm_comments(main_file):
|
||||
new_file_remove_comment_lines = []
|
||||
for l in main_file.splitlines():
|
||||
@ -132,6 +185,7 @@ def rm_comments(main_file):
|
||||
else:
|
||||
new_file_remove_comment_lines.append(l)
|
||||
main_file = '\n'.join(new_file_remove_comment_lines)
|
||||
# main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令
|
||||
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
return main_file
|
||||
|
||||
@ -149,6 +203,7 @@ def merge_tex_files_(project_foler, main_file, mode):
|
||||
c = fx.read()
|
||||
else:
|
||||
# e.g., \input{srcs/07_appendix}
|
||||
assert os.path.exists(fp+'.tex'), f'即找不到{fp},也找不到{fp}.tex,Tex源文件缺失!'
|
||||
with open(fp+'.tex', 'r', encoding='utf-8', errors='replace') as fx:
|
||||
c = fx.read()
|
||||
c = merge_tex_files_(project_foler, c, mode)
|
||||
@ -178,9 +233,11 @@ def merge_tex_files(project_foler, main_file, mode):
|
||||
main_file = re.sub(r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}",main_file)
|
||||
main_file = re.sub(r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}",main_file)
|
||||
# find paper abstract
|
||||
pattern = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
match = pattern.search(main_file)
|
||||
assert match is not None, "Cannot find paper abstract section!"
|
||||
pattern_opt1 = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
|
||||
match_opt1 = pattern_opt1.search(main_file)
|
||||
match_opt2 = pattern_opt2.search(main_file)
|
||||
assert (match_opt1 is not None) or (match_opt2 is not None), "Cannot find paper abstract section!"
|
||||
return main_file
|
||||
|
||||
|
||||
@ -212,6 +269,8 @@ def fix_content(final_tex, node_string):
|
||||
final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex)
|
||||
final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex)
|
||||
|
||||
if "Traceback" in final_tex and "[Local Message]" in final_tex:
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\\begin') != final_tex.count('\\begin'):
|
||||
final_tex = node_string # 出问题了,还原原文
|
||||
if node_string.count('\_') > 0 and node_string.count('\_') > final_tex.count('\_'):
|
||||
@ -259,45 +318,34 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
mask = np.zeros(len(txt), dtype=np.uint8) + TRANSFORM
|
||||
|
||||
# 吸收title与作者以上的部分
|
||||
text, mask = split_worker(text, mask, r"(.*?)\\maketitle", re.DOTALL)
|
||||
# 删除iffalse注释
|
||||
text, mask = split_worker(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
|
||||
# 吸收在25行以内的begin-end组合
|
||||
text, mask = split_worker_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=25)
|
||||
text, mask = set_forbidden_text(text, mask, r"(.*?)\\maketitle", re.DOTALL)
|
||||
# 吸收iffalse注释
|
||||
text, mask = set_forbidden_text(text, mask, r"\\iffalse(.*?)\\fi", re.DOTALL)
|
||||
# 吸收在42行以内的begin-end组合
|
||||
text, mask = set_forbidden_text_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=42)
|
||||
# 吸收匿名公式
|
||||
text, mask = split_worker(text, mask, r"\$\$(.*?)\$\$", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\$\$(.*?)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
|
||||
# 吸收其他杂项
|
||||
text, mask = split_worker(text, mask, r"\\section\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\section\*\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\subsection\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\subsubsection\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\bibliography\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\bibliographystyle\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\begin\{lstlisting\}(.*?)\\end\{lstlisting\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{wraptable\}(.*?)\\end\{wraptable\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{wrapfigure\}(.*?)\\end\{wrapfigure\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{wrapfigure\*\}(.*?)\\end\{wrapfigure\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{figure\}(.*?)\\end\{figure\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{figure\*\}(.*?)\\end\{figure\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{multline\}(.*?)\\end\{multline\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{multline\*\}(.*?)\\end\{multline\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{table\}(.*?)\\end\{table\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{table\*\}(.*?)\\end\{table\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{minipage\}(.*?)\\end\{minipage\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{minipage\*\}(.*?)\\end\{minipage\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{align\*\}(.*?)\\end\{align\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{align\}(.*?)\\end\{align\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{equation\}(.*?)\\end\{equation\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\begin\{equation\*\}(.*?)\\end\{equation\*\}", re.DOTALL)
|
||||
text, mask = split_worker(text, mask, r"\\item ")
|
||||
text, mask = split_worker(text, mask, r"\\label\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\begin\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\vspace\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\hspace\{(.*?)\}")
|
||||
text, mask = split_worker(text, mask, r"\\end\{(.*?)\}")
|
||||
text, mask = split_worker_careful_brace(text, mask, r"\\hl\{(.*?)\}", re.DOTALL)
|
||||
text, mask = split_worker_reverse_careful_brace(text, mask, r"\\caption\{(.*?)\}", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\\section\{(.*?)\}", r"\\section\*\{(.*?)\}", r"\\subsection\{(.*?)\}", r"\\subsubsection\{(.*?)\}" ])
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\\bibliography\{(.*?)\}", r"\\bibliographystyle\{(.*?)\}" ])
|
||||
text, mask = set_forbidden_text(text, mask, r"\\begin\{thebibliography\}.*?\\end\{thebibliography\}", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, r"\\begin\{lstlisting\}(.*?)\\end\{lstlisting\}", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, r"\\begin\{wraptable\}(.*?)\\end\{wraptable\}", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}", re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\begin\{wrapfigure\}(.*?)\\end\{wrapfigure\}", r"\\begin\{wrapfigure\*\}(.*?)\\end\{wrapfigure\*\}"], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\begin\{figure\}(.*?)\\end\{figure\}", r"\\begin\{figure\*\}(.*?)\\end\{figure\*\}"], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\begin\{multline\}(.*?)\\end\{multline\}", r"\\begin\{multline\*\}(.*?)\\end\{multline\*\}"], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\begin\{table\}(.*?)\\end\{table\}", r"\\begin\{table\*\}(.*?)\\end\{table\*\}"], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\begin\{minipage\}(.*?)\\end\{minipage\}", r"\\begin\{minipage\*\}(.*?)\\end\{minipage\*\}"], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\begin\{align\*\}(.*?)\\end\{align\*\}", r"\\begin\{align\}(.*?)\\end\{align\}"], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\begin\{equation\}(.*?)\\end\{equation\}", r"\\begin\{equation\*\}(.*?)\\end\{equation\*\}"], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\includepdf\[(.*?)\]\{(.*?)\}", r"\\clearpage", r"\\newpage", r"\\appendix", r"\\tableofcontents", r"\\include\{(.*?)\}"])
|
||||
text, mask = set_forbidden_text(text, mask, [r"\\vspace\{(.*?)\}", r"\\hspace\{(.*?)\}", r"\\label\{(.*?)\}", r"\\begin\{(.*?)\}", r"\\end\{(.*?)\}", r"\\item "])
|
||||
text, mask = set_forbidden_text_careful_brace(text, mask, r"\\hl\{(.*?)\}", re.DOTALL)
|
||||
# reverse 操作必须放在最后
|
||||
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\caption\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
|
||||
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\abstract\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
|
||||
text, mask = reverse_forbidden_text(text, mask, r"\\begin\{abstract\}(.*?)\\end\{abstract\}", re.DOTALL, forbid_wrapper=True)
|
||||
root = convert_to_linklist(text, mask)
|
||||
|
||||
# 修复括号
|
||||
@ -371,7 +419,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
prev_node = node
|
||||
node = node.next
|
||||
if node is None: break
|
||||
|
||||
# 输出html调试文件,用红色标注处保留区(PRESERVE),用黑色标注转换区(TRANSFORM)
|
||||
with open(pj(project_folder, 'debug_log.html'), 'w', encoding='utf8') as f:
|
||||
segment_parts_for_gpt = []
|
||||
nodes = []
|
||||
@ -402,7 +450,7 @@ class LatexPaperSplit():
|
||||
"""
|
||||
def __init__(self) -> None:
|
||||
self.nodes = None
|
||||
self.msg = "{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
||||
self.msg = "*{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
||||
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
||||
@ -423,8 +471,14 @@ class LatexPaperSplit():
|
||||
if mode == 'translate_zh':
|
||||
pattern = re.compile(r'\\begin\{abstract\}.*\n')
|
||||
match = pattern.search(result_string)
|
||||
assert match is not None, "Cannot find paper abstract section!"
|
||||
position = match.end()
|
||||
if not match:
|
||||
# match \abstract{xxxx}
|
||||
pattern_compile = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL)
|
||||
match = pattern_compile.search(result_string)
|
||||
position = match.regs[1][0]
|
||||
else:
|
||||
# match \begin{abstract}xxxx\end{abstract}
|
||||
position = match.end()
|
||||
result_string = result_string[:position] + self.msg + msg + self.msg_declare + result_string[position:]
|
||||
return result_string
|
||||
|
||||
@ -443,6 +497,7 @@ class LatexPaperSplit():
|
||||
args=(txt, project_folder, return_dict, opts))
|
||||
p.start()
|
||||
p.join()
|
||||
p.close()
|
||||
self.nodes = return_dict['nodes']
|
||||
self.sp = return_dict['segment_parts_for_gpt']
|
||||
return self.sp
|
||||
@ -497,11 +552,11 @@ class LatexPaperFileGroup():
|
||||
f.write(res)
|
||||
return manifest
|
||||
|
||||
def write_html(sp_file_contents, sp_file_result, chatbot):
|
||||
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
||||
|
||||
# write html
|
||||
try:
|
||||
import copy
|
||||
import shutil
|
||||
from .crazy_utils import construct_html
|
||||
from toolbox import gen_time_str
|
||||
ch = construct_html()
|
||||
@ -519,6 +574,7 @@ def write_html(sp_file_contents, sp_file_result, chatbot):
|
||||
ch.add_row(a=orig, b=trans)
|
||||
create_report_file_name = f"{gen_time_str()}.trans.html"
|
||||
ch.save_file(create_report_file_name)
|
||||
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
|
||||
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
@ -599,7 +655,7 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
pfg.get_token_num = None
|
||||
objdump(pfg, file=pj(project_folder,'temp.pkl'))
|
||||
|
||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot)
|
||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||
|
||||
# <-------- 写出文件 ---------->
|
||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||
@ -636,10 +692,9 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
|
||||
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
||||
return False, -1, [-1]
|
||||
|
||||
|
||||
def compile_latex_with_timeout(command, timeout=60):
|
||||
def compile_latex_with_timeout(command, cwd, timeout=60):
|
||||
import subprocess
|
||||
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
|
||||
try:
|
||||
stdout, stderr = process.communicate(timeout=timeout)
|
||||
except subprocess.TimeoutExpired:
|
||||
@ -663,24 +718,24 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
|
||||
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
|
||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||
# 只有第二步成功,才能继续下面的步骤
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
||||
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
|
||||
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
|
||||
if mode!='translate_zh':
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
@ -688,13 +743,11 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'bibtex merge_diff.aux'); os.chdir(current_dir)
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
|
||||
# <--------------------->
|
||||
os.chdir(current_dir)
|
||||
|
||||
# <---------- 检查结果 ----------->
|
||||
results_ = ""
|
||||
@ -706,13 +759,15 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
||||
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
||||
|
||||
if diff_pdf_success:
|
||||
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
if modified_pdf_success:
|
||||
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(current_dir)
|
||||
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf')
|
||||
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
||||
if os.path.exists(pj(work_folder, '..', 'translation')):
|
||||
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot)
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
return True # 成功啦
|
||||
else:
|
||||
if n_fix>=max_try: break
|
||||
@ -728,7 +783,6 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
if not can_retry: break
|
||||
|
||||
os.chdir(current_dir)
|
||||
return False # 失败啦
|
||||
|
||||
|
||||
|
||||
@ -27,8 +27,10 @@ def gen_image(llm_kwargs, prompt, resolution="256x256"):
|
||||
}
|
||||
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
||||
print(response.content)
|
||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||
|
||||
try:
|
||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||
except:
|
||||
raise RuntimeError(response.content.decode())
|
||||
# 文件保存到本地
|
||||
r = requests.get(image_url, proxies=proxies)
|
||||
file_path = 'gpt_log/image_gen/'
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
from toolbox import CatchException, report_execption, write_results_to_file
|
||||
from toolbox import update_ui
|
||||
from toolbox import update_ui, promote_file_to_downloadzone
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
@ -147,23 +147,14 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
print('writing html result failed:', trimmed_format_exc())
|
||||
|
||||
# 准备文件的下载
|
||||
import shutil
|
||||
for pdf_path in generated_conclusion_files:
|
||||
# 重命名文件
|
||||
rename_file = f'./gpt_log/翻译-{os.path.basename(pdf_path)}'
|
||||
if os.path.exists(rename_file):
|
||||
os.remove(rename_file)
|
||||
shutil.copyfile(pdf_path, rename_file)
|
||||
if os.path.exists(pdf_path):
|
||||
os.remove(pdf_path)
|
||||
rename_file = f'翻译-{os.path.basename(pdf_path)}'
|
||||
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
|
||||
for html_path in generated_html_files:
|
||||
# 重命名文件
|
||||
rename_file = f'./gpt_log/翻译-{os.path.basename(html_path)}'
|
||||
if os.path.exists(rename_file):
|
||||
os.remove(rename_file)
|
||||
shutil.copyfile(html_path, rename_file)
|
||||
if os.path.exists(html_path):
|
||||
os.remove(html_path)
|
||||
rename_file = f'翻译-{os.path.basename(html_path)}'
|
||||
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@ -13,7 +13,9 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||
# 的长度必须小于 2500 个 Token
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
|
||||
102
crazy_functions/联网的ChatGPT_bing版.py
Normal file
102
crazy_functions/联网的ChatGPT_bing版.py
Normal file
@ -0,0 +1,102 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from request_llm.bridge_all import model_info
|
||||
|
||||
|
||||
def bing_search(query, proxies=None):
|
||||
query = query
|
||||
url = f"https://cn.bing.com/search?q={query}"
|
||||
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'}
|
||||
response = requests.get(url, headers=headers, proxies=proxies)
|
||||
soup = BeautifulSoup(response.content, 'html.parser')
|
||||
results = []
|
||||
for g in soup.find_all('li', class_='b_algo'):
|
||||
anchors = g.find_all('a')
|
||||
if anchors:
|
||||
link = anchors[0]['href']
|
||||
if not link.startswith('http'):
|
||||
continue
|
||||
title = g.find('h2').text
|
||||
item = {'title': title, 'link': link}
|
||||
results.append(item)
|
||||
|
||||
for r in results:
|
||||
print(r['link'])
|
||||
return results
|
||||
|
||||
|
||||
def scrape_text(url, proxies) -> str:
|
||||
"""Scrape text from a webpage
|
||||
|
||||
Args:
|
||||
url (str): The URL to scrape text from
|
||||
|
||||
Returns:
|
||||
str: The scraped text
|
||||
"""
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
except:
|
||||
return "无法连接到该网页"
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
text = soup.get_text()
|
||||
lines = (line.strip() for line in text.splitlines())
|
||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
@CatchException
|
||||
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
urls = bing_search(txt, proxies)
|
||||
history = []
|
||||
|
||||
# ------------- < 第2步:依次访问网页 > -------------
|
||||
max_search_result = 8 # 最多收纳多少个网页的结果
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
res = scrape_text(url['link'], proxies)
|
||||
history.extend([f"第{index}份搜索结果:", res])
|
||||
chatbot.append([f"第{index}份搜索结果:", res[:500]+"......"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@ -1,67 +1,78 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_execption, write_results_to_file
|
||||
from toolbox import update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
fast_debug = False
|
||||
|
||||
|
||||
def 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import time, glob, os
|
||||
import time
|
||||
import os
|
||||
print('begin analysis on:', file_manifest)
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as f:
|
||||
file_content = f.read()
|
||||
|
||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index == 0 else ""
|
||||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||||
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not fast_debug:
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs, chatbot, history=[], sys_prompt=system_prompt) # 带超时倒计时
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, llm_kwargs,
|
||||
chatbot, history=[],
|
||||
sys_prompt=system_prompt) # 带超时倒计时
|
||||
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.append(i_say_show_user); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
history.append(i_say_show_user);
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
if not fast_debug: time.sleep(2)
|
||||
|
||||
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
|
||||
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
|
||||
chatbot.append((i_say, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not fast_debug:
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot, history=history, sys_prompt=system_prompt) # 带超时倒计时
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say, llm_kwargs, chatbot,
|
||||
history=history,
|
||||
sys_prompt=system_prompt) # 带超时倒计时
|
||||
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
history.append(i_say)
|
||||
history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_results_to_file(history)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
|
||||
|
||||
@CatchException
|
||||
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob, os
|
||||
def 读文章写摘要(txt, llm_kwargs, plugin_kwargs, chatbot, system_prompt, web_port, history=None):
|
||||
# history = [] # 清空历史,以免输入溢出
|
||||
if history is None:
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
import glob
|
||||
import os
|
||||
if os.path.exists(txt):
|
||||
project_folder = txt
|
||||
else:
|
||||
if txt == "": txt = '空空如也的输入栏'
|
||||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
if txt == "":
|
||||
txt = '空空如也的输入栏'
|
||||
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] # + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
if len(file_manifest) == 0:
|
||||
report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex文件: {txt}")
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
yield from 解析Paper(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
28
crazy_functions/辅助回答.py
Normal file
28
crazy_functions/辅助回答.py
Normal file
@ -0,0 +1,28 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2023/4/19
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_execption, write_results_to_file
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
|
||||
@CatchException
|
||||
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
if txt:
|
||||
show_say = txt
|
||||
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
|
||||
else:
|
||||
prompt = history[-1]+"\n分析上述回答,再列出用户可能提出的三个问题。"
|
||||
show_say = '分析上述回答,再列出用户可能提出的三个问题。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=show_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
chatbot[-1] = (show_say, gpt_say)
|
||||
history.extend([show_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
@ -1,6 +1,7 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
import datetime
|
||||
import datetime, re
|
||||
|
||||
@CatchException
|
||||
def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
@ -18,12 +19,34 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
for i in range(5):
|
||||
currentMonth = (datetime.date.today() + datetime.timedelta(days=i)).month
|
||||
currentDay = (datetime.date.today() + datetime.timedelta(days=i)).day
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?列举两条并发送相关图片。发送图片时,请使用Markdown,将Unsplash API中的PUT_YOUR_QUERY_HERE替换成描述该事件的一个最重要的单词。'
|
||||
i_say = f'历史中哪些事件发生在{currentMonth}月{currentDay}日?用中文列举两条,然后分别给出描述事件的两个英文单词。' + '当你给出关键词时,使用以下json格式:{"KeyWords":[EnglishKeyWord1,EnglishKeyWord2]}。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="当你想发送一张照片时,请使用Markdown, 并且不要有反斜线, 不要用代码块。使用 Unsplash API (https://source.unsplash.com/1280x720/? < PUT_YOUR_QUERY_HERE >)。"
|
||||
sys_prompt='输出格式示例:1908年,美国消防救援事业发展的“美国消防协会”成立。关键词:{"KeyWords":["Fire","American"]}。'
|
||||
)
|
||||
gpt_say = get_images(gpt_say)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
|
||||
def get_images(gpt_say):
|
||||
def get_image_by_keyword(keyword):
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
response = requests.get(f'https://wallhaven.cc/search?q={keyword}', timeout=2)
|
||||
for image_element in BeautifulSoup(response.content, 'html.parser').findAll("img"):
|
||||
if "data-src" in image_element: break
|
||||
return image_element["data-src"]
|
||||
|
||||
for keywords in re.findall('{"KeyWords":\[(.*?)\]}', gpt_say):
|
||||
keywords = [n.strip('"') for n in keywords.split(',')]
|
||||
try:
|
||||
description = keywords[0]
|
||||
url = get_image_by_keyword(keywords[0])
|
||||
img_tag = f"\n\n"
|
||||
gpt_say += img_tag
|
||||
except:
|
||||
continue
|
||||
return gpt_say
|
||||
@ -103,3 +103,30 @@ services:
|
||||
echo '[jittorllms] 正在从github拉取最新代码...' &&
|
||||
git --git-dir=request_llm/jittorllms/.git --work-tree=request_llm/jittorllms pull --force &&
|
||||
python3 -u main.py"
|
||||
|
||||
|
||||
## ===================================================
|
||||
## 【方案四】 chatgpt + Latex
|
||||
## ===================================================
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_with_latex:
|
||||
image: ghcr.io/binary-husky/gpt_academic_with_latex:master
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
USE_PROXY: ' True '
|
||||
proxies: ' { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } '
|
||||
LLM_MODEL: ' gpt-3.5-turbo '
|
||||
AVAIL_LLM_MODELS: ' ["gpt-3.5-turbo", "gpt-4"] '
|
||||
LOCAL_MODEL_DEVICE: ' cuda '
|
||||
DEFAULT_WORKER_NUM: ' 10 '
|
||||
WEB_PORT: ' 12303 '
|
||||
|
||||
# 与宿主的网络融合
|
||||
network_mode: "host"
|
||||
|
||||
# 不使用代理网络拉取最新代码
|
||||
command: >
|
||||
bash -c "python3 -u main.py"
|
||||
|
||||
|
||||
152
docs/use_azure.md
Normal file
152
docs/use_azure.md
Normal file
@ -0,0 +1,152 @@
|
||||
# 通过微软Azure云服务申请 Openai API
|
||||
|
||||
由于Openai和微软的关系,现在是可以通过微软的Azure云计算服务直接访问openai的api,免去了注册和网络的问题。
|
||||
|
||||
快速入门的官方文档的链接是:[快速入门 - 开始通过 Azure OpenAI 服务使用 ChatGPT 和 GPT-4 - Azure OpenAI Service | Microsoft Learn](https://learn.microsoft.com/zh-cn/azure/cognitive-services/openai/chatgpt-quickstart?pivots=programming-language-python)
|
||||
|
||||
# 申请API
|
||||
|
||||
按文档中的“先决条件”的介绍,出了编程的环境以外,还需要以下三个条件:
|
||||
|
||||
1. Azure账号并创建订阅
|
||||
|
||||
2. 为订阅添加Azure OpenAI 服务
|
||||
|
||||
3. 部署模型
|
||||
|
||||
## Azure账号并创建订阅
|
||||
|
||||
### Azure账号
|
||||
|
||||
创建Azure的账号时最好是有微软的账号,这样似乎更容易获得免费额度(第一个月的200美元,实测了一下,如果用一个刚注册的微软账号登录Azure的话,并没有这一个月的免费额度)。
|
||||
|
||||
创建Azure账号的网址是:[立即创建 Azure 免费帐户 | Microsoft Azure](https://azure.microsoft.com/zh-cn/free/)
|
||||
|
||||

|
||||
|
||||
打开网页后,点击 “免费开始使用” 会跳转到登录或注册页面,如果有微软的账户,直接登录即可,如果没有微软账户,那就需要到微软的网页再另行注册一个。
|
||||
|
||||
注意,Azure的页面和政策时不时会变化,已实际最新显示的为准就好。
|
||||
|
||||
### 创建订阅
|
||||
|
||||
注册好Azure后便可进入主页:
|
||||
|
||||

|
||||
|
||||
首先需要在订阅里进行添加操作,点开后即可进入订阅的页面:
|
||||
|
||||

|
||||
|
||||
第一次进来应该是空的,点添加即可创建新的订阅(可以是“免费”或者“即付即用”的订阅),其中订阅ID是后面申请Azure OpenAI需要使用的。
|
||||
|
||||
## 为订阅添加Azure OpenAI服务
|
||||
|
||||
之后回到首页,点Azure OpenAI即可进入OpenAI服务的页面(如果不显示的话,则在首页上方的搜索栏里搜索“openai”即可)。
|
||||
|
||||

|
||||
|
||||
不过现在这个服务还不能用。在使用前,还需要在这个网址申请一下:
|
||||
|
||||
[Request Access to Azure OpenAI Service (microsoft.com)](https://customervoice.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR7en2Ais5pxKtso_Pz4b1_xUOFA5Qk1UWDRBMjg0WFhPMkIzTzhKQ1dWNyQlQCN0PWcu)
|
||||
|
||||
这里有二十来个问题,按照要求和自己的实际情况填写即可。
|
||||
|
||||
其中需要注意的是
|
||||
|
||||
1. 千万记得填对"订阅ID"
|
||||
|
||||
2. 需要填一个公司邮箱(可以不是注册用的邮箱)和公司网址
|
||||
|
||||
之后,在回到上面那个页面,点创建,就会进入创建页面了:
|
||||
|
||||

|
||||
|
||||
需要填入“资源组”和“名称”,按照自己的需要填入即可。
|
||||
|
||||
完成后,在主页的“资源”里就可以看到刚才创建的“资源”了,点击进入后,就可以进行最后的部署了。
|
||||
|
||||

|
||||
|
||||
## 部署模型
|
||||
|
||||
进入资源页面后,在部署模型前,可以先点击“开发”,把密钥和终结点记下来。
|
||||
|
||||

|
||||
|
||||
之后,就可以去部署模型了,点击“部署”即可,会跳转到 Azure OpenAI Stuido 进行下面的操作:
|
||||
|
||||

|
||||
|
||||
进入 Azure OpenAi Studio 后,点击新建部署,会弹出如下对话框:
|
||||
|
||||

|
||||
|
||||
在这里选 gpt-35-turbo 或需要的模型并按需要填入“部署名”即可完成模型的部署。
|
||||
|
||||

|
||||
|
||||
这个部署名需要记下来。
|
||||
|
||||
到现在为止,申请操作就完成了,需要记下来的有下面几个东西:
|
||||
|
||||
● 密钥(1或2都可以)
|
||||
|
||||
● 终结点
|
||||
|
||||
● 部署名(不是模型名)
|
||||
|
||||
# 修改 config.py
|
||||
|
||||
```
|
||||
AZURE_ENDPOINT = "填入终结点"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
|
||||
AZURE_ENGINE = "填入部署名"
|
||||
|
||||
```
|
||||
# API的使用
|
||||
|
||||
接下来就是具体怎么使用API了,还是可以参考官方文档:[快速入门 - 开始通过 Azure OpenAI 服务使用 ChatGPT 和 GPT-4 - Azure OpenAI Service | Microsoft Learn](https://learn.microsoft.com/zh-cn/azure/cognitive-services/openai/chatgpt-quickstart?pivots=programming-language-python)
|
||||
|
||||
和openai自己的api调用有点类似,都需要安装openai库,不同的是调用方式
|
||||
|
||||
```
|
||||
import openai
|
||||
openai.api_type = "azure" #固定格式,无需修改
|
||||
openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") #这里填入“终结点”
|
||||
openai.api_version = "2023-05-15" #固定格式,无需修改
|
||||
openai.api_key = os.getenv("AZURE_OPENAI_KEY") #这里填入“密钥1”或“密钥2”
|
||||
|
||||
response = openai.ChatCompletion.create(
|
||||
engine="gpt-35-turbo", #这里填入的不是模型名,是部署名
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
|
||||
{"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
|
||||
{"role": "user", "content": "Do other Azure Cognitive Services support this too?"}
|
||||
]
|
||||
)
|
||||
|
||||
print(response)
|
||||
print(response['choices'][0]['message']['content'])
|
||||
|
||||
```
|
||||
|
||||
需要注意的是:
|
||||
|
||||
1. engine那里填入的是部署名,不是模型名
|
||||
|
||||
2. 通过openai库获得的这个 response 和通过 request 库访问 url 获得的 response 不同,不需要 decode,已经是解析好的 json 了,直接根据键值读取即可。
|
||||
|
||||
更细节的使用方法,详见官方API文档。
|
||||
|
||||
# 关于费用
|
||||
|
||||
Azure OpenAI API 还是需要一些费用的(免费订阅只有1个月有效期),费用如下:
|
||||
|
||||

|
||||
|
||||
具体可以可以看这个网址 :[Azure OpenAI 服务 - 定价| Microsoft Azure](https://azure.microsoft.com/zh-cn/pricing/details/cognitive-services/openai-service/?cdn=disable)
|
||||
|
||||
并非网上说的什么“一年白嫖”,但注册方法以及网络问题都比直接使用openai的api要简单一些。
|
||||
11
main.py
11
main.py
@ -6,8 +6,8 @@ def main():
|
||||
from request_llm.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS = \
|
||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS')
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
|
||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
@ -104,7 +104,7 @@ def main():
|
||||
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=4096, value=512, step=1, interactive=True, label="Local LLM MaxLength",)
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=8192, value=4096, step=1, interactive=True, label="Local LLM MaxLength",)
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||
|
||||
@ -144,6 +144,11 @@ def main():
|
||||
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
||||
clearBtn.click(lambda: ("",""), None, [txt, txt2])
|
||||
clearBtn2.click(lambda: ("",""), None, [txt, txt2])
|
||||
if AUTO_CLEAR_TXT:
|
||||
submitBtn.click(lambda: ("",""), None, [txt, txt2])
|
||||
submitBtn2.click(lambda: ("",""), None, [txt, txt2])
|
||||
txt.submit(lambda: ("",""), None, [txt, txt2])
|
||||
txt2.submit(lambda: ("",""), None, [txt, txt2])
|
||||
# 基础功能区的回调函数注册
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
|
||||
@ -16,6 +16,9 @@ from toolbox import get_conf, trimmed_format_exc
|
||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from .bridge_chatgpt import predict as chatgpt_ui
|
||||
|
||||
from .bridge_azure_test import predict_no_ui_long_connection as azure_noui
|
||||
from .bridge_azure_test import predict as azure_ui
|
||||
|
||||
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
|
||||
from .bridge_chatglm import predict as chatglm_ui
|
||||
|
||||
@ -93,6 +96,24 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-0613": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-3.5-turbo-16k-0613": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": openai_endpoint,
|
||||
"max_token": 1024 * 16,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
"gpt-4": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
@ -102,6 +123,16 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
# azure openai
|
||||
"azure-gpt35":{
|
||||
"fn_with_ui": azure_ui,
|
||||
"fn_without_ui": azure_noui,
|
||||
"endpoint": get_conf("AZURE_ENDPOINT"),
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# api_2d
|
||||
"api2d-gpt-3.5-turbo": {
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
@ -121,7 +152,7 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
# chatglm
|
||||
# 将 chatglm 直接对齐到 chatglm2
|
||||
"chatglm": {
|
||||
"fn_with_ui": chatglm_ui,
|
||||
"fn_without_ui": chatglm_noui,
|
||||
@ -130,6 +161,15 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"chatglm2": {
|
||||
"fn_with_ui": chatglm_ui,
|
||||
"fn_without_ui": chatglm_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 1024,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
|
||||
# newbing
|
||||
"newbing": {
|
||||
"fn_with_ui": newbing_ui,
|
||||
|
||||
241
request_llm/bridge_azure_test.py
Normal file
241
request_llm/bridge_azure_test.py
Normal file
@ -0,0 +1,241 @@
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
||||
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||
"""
|
||||
|
||||
import logging
|
||||
import traceback
|
||||
import importlib
|
||||
import openai
|
||||
import time
|
||||
|
||||
|
||||
# 读取config.py文件中关于AZURE OPENAI API的信息
|
||||
from toolbox import get_conf, update_ui, clip_history, trimmed_format_exc
|
||||
TIMEOUT_SECONDS, MAX_RETRY, AZURE_ENGINE, AZURE_ENDPOINT, AZURE_API_VERSION, AZURE_API_KEY = \
|
||||
get_conf('TIMEOUT_SECONDS', 'MAX_RETRY',"AZURE_ENGINE","AZURE_ENDPOINT", "AZURE_API_VERSION", "AZURE_API_KEY")
|
||||
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Openai返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
发送至azure openai api,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
print(llm_kwargs["llm_model"])
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
|
||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
|
||||
openai.api_type = "azure"
|
||||
openai.api_version = AZURE_API_VERSION
|
||||
openai.api_base = AZURE_ENDPOINT
|
||||
openai.api_key = AZURE_API_KEY
|
||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||||
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], "获取response失败,重试中。。。"))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
|
||||
stream_response = response
|
||||
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
|
||||
except StopIteration:
|
||||
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk)}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk) # 刷新界面
|
||||
return
|
||||
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if chunk:
|
||||
#print(chunk)
|
||||
try:
|
||||
if "delta" in chunk["choices"][0]:
|
||||
if chunk["choices"][0]["finish_reason"] == "stop":
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
status_text = f"finish_reason: {chunk['choices'][0]['finish_reason']}"
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunk["choices"][0]["delta"]["content"]
|
||||
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
|
||||
error_msg = chunk
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
发送至AZURE OPENAI API,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
chatGPT的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
while True:
|
||||
|
||||
try:
|
||||
openai.api_type = "azure"
|
||||
openai.api_version = AZURE_API_VERSION
|
||||
openai.api_base = AZURE_ENDPOINT
|
||||
openai.api_key = AZURE_API_KEY
|
||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||||
|
||||
except:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
|
||||
stream_response = response
|
||||
result = ''
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
|
||||
if len(chunk)==0: continue
|
||||
if not chunk.startswith('data:'):
|
||||
error_msg = get_full_error(chunk, stream_response)
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("AZURE OPENAI API拒绝了请求:" + error_msg)
|
||||
else:
|
||||
raise RuntimeError("AZURE OPENAI API拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk): break
|
||||
|
||||
delta = chunk["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if "content" in delta:
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
if chunk['finish_reason'] == 'length':
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
return result
|
||||
|
||||
|
||||
def generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成 azure openai api请求,为发送请求做准备
|
||||
"""
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
payload = {
|
||||
"model": llm_kwargs['llm_model'],
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
"engine": AZURE_ENGINE
|
||||
}
|
||||
try:
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
except:
|
||||
print('输入中可能存在乱码。')
|
||||
return payload
|
||||
|
||||
|
||||
@ -40,12 +40,12 @@ class GetGLMHandle(Process):
|
||||
while True:
|
||||
try:
|
||||
if self.chatglm_model is None:
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
if device=='cpu':
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).float()
|
||||
else:
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = self.chatglm_model.eval()
|
||||
break
|
||||
else:
|
||||
|
||||
@ -28,6 +28,7 @@ proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Openai返回的报错
|
||||
@ -40,7 +41,9 @@ def get_full_error(chunk, stream_response):
|
||||
return chunk
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
def predict_no_ui_long_connection(
|
||||
inputs, llm_kwargs, history=None, sys_prompt="", observe_window=None, console_slience=False
|
||||
):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
@ -54,45 +57,59 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
if history is None:
|
||||
history = []
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
from bridge_all import model_info
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
from .bridge_all import model_info
|
||||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS)
|
||||
stream_response = response.iter_lines()
|
||||
break
|
||||
except (requests.exceptions.ReadTimeout, requests.exceptions.ConnectionError):
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
if retry > MAX_RETRY:
|
||||
raise TimeoutError
|
||||
if MAX_RETRY != 0:
|
||||
print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
except Exception as e:
|
||||
print(f"出现异常:{e}")
|
||||
raise e
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
while True:
|
||||
try: chunk = next(stream_response).decode()
|
||||
try:
|
||||
chunk = next(stream_response).decode()
|
||||
except StopIteration:
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
|
||||
if len(chunk)==0: continue
|
||||
# except requests.exceptions.ConnectionError:
|
||||
# chunk = next(stream_response).decode() # 失败了,重试一次?再失败就没办法了。
|
||||
if len(chunk) == 0:
|
||||
continue
|
||||
if not chunk.startswith('data:'):
|
||||
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||
else:
|
||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk): break # api2d 正常完成
|
||||
if 'data: [DONE]' in chunk:
|
||||
break # api2d 正常完成
|
||||
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
|
||||
delta = json_data["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if len(delta) == 0:
|
||||
break
|
||||
if "role" in delta:
|
||||
continue
|
||||
if "content" in delta:
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if not console_slience:
|
||||
print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||||
@ -100,7 +117,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
else:
|
||||
raise RuntimeError("意外Json结构:"+delta)
|
||||
if json_data['finish_reason'] == 'length':
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
return result
|
||||
@ -228,6 +246,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
@ -247,23 +266,19 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
what_i_have_asked = {"role": "user", "content": history[index]}
|
||||
what_gpt_answer = {"role": "assistant", "content": history[index + 1]}
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg:
|
||||
continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
what_i_ask_now = {"role": "user", "content": inputs}
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
payload = {
|
||||
@ -278,8 +293,8 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
}
|
||||
try:
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
except:
|
||||
print('输入中可能存在乱码。')
|
||||
return headers,payload
|
||||
except Exception as e:
|
||||
print(f'输入中可能存在乱码。抛出异常: {e}')
|
||||
return headers, payload
|
||||
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
./docs/gradio-3.32.2-py3-none-any.whl
|
||||
gradio>=3.33.1
|
||||
tiktoken>=0.3.3
|
||||
requests[socks]
|
||||
transformers
|
||||
@ -15,4 +15,6 @@ pymupdf
|
||||
openai
|
||||
numpy
|
||||
arxiv
|
||||
rich
|
||||
rich
|
||||
langchain
|
||||
zh_langchain
|
||||
39
toolbox.py
39
toolbox.py
@ -21,6 +21,7 @@ pj = os.path.join
|
||||
========================================================================
|
||||
"""
|
||||
|
||||
|
||||
class ChatBotWithCookies(list):
|
||||
def __init__(self, cookie):
|
||||
self._cookies = cookie
|
||||
@ -71,11 +72,13 @@ def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
|
||||
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时,可用clear将其清空,然后用for+append循环重新赋值。"
|
||||
yield chatbot.get_cookies(), chatbot, history, msg
|
||||
|
||||
|
||||
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
if len(chatbot) == 0: chatbot.append(["update_ui_last_msg", lastmsg])
|
||||
if len(chatbot) == 0:
|
||||
chatbot.append(["update_ui_last_msg", lastmsg])
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1][-1] = lastmsg
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@ -83,24 +86,25 @@ def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
|
||||
|
||||
|
||||
def trimmed_format_exc():
|
||||
import os, traceback
|
||||
str = traceback.format_exc()
|
||||
import os
|
||||
import traceback
|
||||
_str = traceback.format_exc()
|
||||
current_path = os.getcwd()
|
||||
replace_path = "."
|
||||
return str.replace(current_path, replace_path)
|
||||
return _str.replace(current_path, replace_path)
|
||||
|
||||
|
||||
def CatchException(f):
|
||||
"""
|
||||
装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。
|
||||
"""
|
||||
|
||||
@wraps(f)
|
||||
def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT=-1):
|
||||
try:
|
||||
yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT)
|
||||
except Exception as e:
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import get_conf
|
||||
# from toolbox import get_conf # 不需要导入本文件内容
|
||||
proxies, = get_conf('proxies')
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
if len(chatbot) == 0:
|
||||
@ -108,7 +112,7 @@ def CatchException(f):
|
||||
chatbot.append(["插件调度异常", "异常原因"])
|
||||
chatbot[-1] = (chatbot[-1][0],
|
||||
f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面
|
||||
return decorated
|
||||
|
||||
|
||||
@ -148,6 +152,7 @@ def HotReload(f):
|
||||
========================================================================
|
||||
"""
|
||||
|
||||
|
||||
def get_reduce_token_percent(text):
|
||||
"""
|
||||
* 此函数未来将被弃用
|
||||
@ -207,8 +212,6 @@ def regular_txt_to_markdown(text):
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
def report_execption(chatbot, history, a, b):
|
||||
"""
|
||||
向chatbot中添加错误信息
|
||||
@ -238,6 +241,7 @@ def text_divide_paragraph(text):
|
||||
text = "</br>".join(lines)
|
||||
return pre + text + suf
|
||||
|
||||
|
||||
@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度
|
||||
def markdown_convertion(txt):
|
||||
"""
|
||||
@ -440,6 +444,7 @@ def find_recent_files(directory):
|
||||
|
||||
return recent_files
|
||||
|
||||
|
||||
def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
||||
# 将文件复制一份到下载区
|
||||
import shutil
|
||||
@ -452,6 +457,7 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
||||
else: current = []
|
||||
chatbot._cookies.update({'file_to_promote': [new_path] + current})
|
||||
|
||||
|
||||
def on_file_uploaded(files, chatbot, txt, txt2, checkboxes):
|
||||
"""
|
||||
当文件被上传时的回调函数
|
||||
@ -498,24 +504,27 @@ def on_report_generated(cookies, files, chatbot):
|
||||
else:
|
||||
report_files = find_recent_files('gpt_log')
|
||||
if len(report_files) == 0:
|
||||
return None, chatbot
|
||||
return cookies, None, chatbot
|
||||
# files.extend(report_files)
|
||||
file_links = ''
|
||||
for f in report_files: file_links += f'<br/><a href="file={os.path.abspath(f)}" target="_blank">{f}</a>'
|
||||
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
|
||||
return cookies, report_files, chatbot
|
||||
|
||||
|
||||
def is_openai_api_key(key):
|
||||
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
|
||||
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
|
||||
return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE)
|
||||
|
||||
|
||||
def is_api2d_key(key):
|
||||
if key.startswith('fk') and len(key) == 41:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def is_any_api_key(key):
|
||||
if ',' in key:
|
||||
keys = key.split(',')
|
||||
@ -525,6 +534,7 @@ def is_any_api_key(key):
|
||||
else:
|
||||
return is_openai_api_key(key) or is_api2d_key(key)
|
||||
|
||||
|
||||
def what_keys(keys):
|
||||
avail_key_list = {'OpenAI Key':0, "API2D Key":0}
|
||||
key_list = keys.split(',')
|
||||
@ -539,6 +549,7 @@ def what_keys(keys):
|
||||
|
||||
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个,API2D Key {avail_key_list['API2D Key']} 个"
|
||||
|
||||
|
||||
def select_api_key(keys, llm_model):
|
||||
import random
|
||||
avail_key_list = []
|
||||
@ -558,6 +569,7 @@ def select_api_key(keys, llm_model):
|
||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||
return api_key
|
||||
|
||||
|
||||
def read_env_variable(arg, default_value):
|
||||
"""
|
||||
环境变量可以是 `GPT_ACADEMIC_CONFIG`(优先),也可以直接是`CONFIG`
|
||||
@ -612,6 +624,7 @@ def read_env_variable(arg, default_value):
|
||||
print亮绿(f"[ENV_VAR] 成功读取环境变量{arg}")
|
||||
return r
|
||||
|
||||
|
||||
@lru_cache(maxsize=128)
|
||||
def read_single_conf_with_lru_cache(arg):
|
||||
from colorful import print亮红, print亮绿, print亮蓝
|
||||
@ -676,6 +689,7 @@ class DummyWith():
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
return
|
||||
|
||||
|
||||
def run_gradio_in_subpath(demo, auth, port, custom_path):
|
||||
"""
|
||||
把gradio的运行地址更改到指定的二次路径上
|
||||
@ -770,6 +784,7 @@ def clip_history(inputs, history, tokenizer, max_token_limit):
|
||||
========================================================================
|
||||
"""
|
||||
|
||||
|
||||
def zip_folder(source_folder, dest_folder, zip_name):
|
||||
import zipfile
|
||||
import os
|
||||
@ -801,6 +816,7 @@ def zip_folder(source_folder, dest_folder, zip_name):
|
||||
|
||||
print(f"Zip file created at {zip_file}")
|
||||
|
||||
|
||||
def zip_result(folder):
|
||||
import time
|
||||
t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
||||
@ -811,6 +827,7 @@ def gen_time_str():
|
||||
import time
|
||||
return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
||||
|
||||
|
||||
class ProxyNetworkActivate():
|
||||
"""
|
||||
这段代码定义了一个名为TempProxy的空上下文管理器, 用于给一小段代码上代理
|
||||
@ -830,12 +847,14 @@ class ProxyNetworkActivate():
|
||||
if 'HTTPS_PROXY' in os.environ: os.environ.pop('HTTPS_PROXY')
|
||||
return
|
||||
|
||||
|
||||
def objdump(obj, file='objdump.tmp'):
|
||||
import pickle
|
||||
with open(file, 'wb+') as f:
|
||||
pickle.dump(obj, f)
|
||||
return
|
||||
|
||||
|
||||
def objload(file='objdump.tmp'):
|
||||
import pickle, os
|
||||
if not os.path.exists(file):
|
||||
|
||||
4
version
4
version
@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 3.41,
|
||||
"version": 3.42,
|
||||
"show_feature": true,
|
||||
"new_feature": "增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持"
|
||||
"new_feature": "完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持"
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user