部分修改5

This commit is contained in:
nowadays0421
2023-07-15 23:09:26 +08:00
parent b5de76eb8c
commit d1685e1e26
12 changed files with 28 additions and 9 deletions

View File

@ -55,7 +55,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "51b15e5c-9b92-4d40-a149-b56335d330d9",
"metadata": {
"tags": []
@ -70,7 +70,9 @@
"from dotenv import load_dotenv, find_dotenv\n",
"_ = load_dotenv(find_dotenv()) # read local .env file\n",
"\n",
"openai.api_key = os.environ['OPENAI_API_KEY']"
"openai.api_key = os.environ['OPENAI_API_KEY']\n",
"os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'\n",
"os.environ[\"HTTP_PROXY\"] = 'http://127.0.0.1:7890'"
]
},
{
@ -84,7 +86,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 9,
"id": "fe368042",
"metadata": {
"tags": []
@ -108,7 +110,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "a0189dc5",
"metadata": {
"tags": []
@ -120,7 +122,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 10,
"id": "2be10170",
"metadata": {},
"outputs": [],
@ -133,7 +135,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 11,
"id": "3659e0f7",
"metadata": {
"tags": []
@ -143,7 +145,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"209\n"
"0\n"
]
}
],
@ -1647,7 +1649,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.10.11"
}
},
"nbformat": 4,

View File

@ -1 +0,0 @@
{"cells": [{"cell_type": "markdown", "id": "bc0c33a4", "metadata": {}, "source": ["# \u7b2c\u516b\u7ae0\u3001\u603b\u7ed3", "\n"]}, {"cell_type": "markdown", "id": "9d273d1f", "metadata": {}, "source": ["\u8fd9\u6b21\u8bfe\u7a0b\u7684\u5185\u5bb9\u5305\u62ec\uff1a\n", "1. \u4f7f\u7528 LangChain \u7684 80 \u591a\u79cd\u6587\u6863\u88c5\u8f7d\u5668\u4ece\u5404\u79cd\u6587\u6863\u6e90\u4e2d\u52a0\u8f7d\u6570\u636e\u3002\n", "2. \u5c06\u8fd9\u4e9b\u6587\u6863\u5206\u5272\u6210\u5757\uff0c\u5e76\u8ba8\u8bba\u4e86\u5176\u4e2d\u7684\u4e00\u4e9b\u5fae\u5999\u4e4b\u5904\u3002\n", "3. \u4e3a\u8fd9\u4e9b\u5757\u521b\u5efa\u4e86 Embedding\uff0c\u5e76\u5c06\u5b83\u4eec\u653e\u5165\u5411\u91cf\u5b58\u50a8\u5668\u4e2d\uff0c\u5e76\u8f7b\u677e\u5b9e\u73b0\u8bed\u4e49\u641c\u7d22\u3002\n", "4. \u8ba8\u8bba\u4e86\u8bed\u4e49\u641c\u7d22\u7684\u4e00\u4e9b\u7f3a\u70b9\uff0c\u4ee5\u53ca\u5728\u67d0\u4e9b\u8fb9\u7f18\u60c5\u51b5\u4e2d\u53ef\u80fd\u4f1a\u53d1\u751f\u7684\u641c\u7d22\u5931\u8d25\u3002\n", "5. \u4ecb\u7ecd\u4e86\u8bb8\u591a\u65b0\u7684\u9ad8\u7ea7\u4e14\u6709\u8da3\u7684\u68c0\u7d22\u7b97\u6cd5\uff0c\u7528\u4e8e\u514b\u670d\u90a3\u4e9b\u8fb9\u7f18\u60c5\u51b5\u3002\n", "6. \u4e0e LLMs \u76f8\u7ed3\u5408\uff0c\u5c06\u68c0\u7d22\u5230\u7684\u6587\u6863\uff0c\u548c\u7528\u6237\u95ee\u9898\u4f20\u9012\u7ed9 LLM\uff0c\u751f\u6210\u5bf9\u539f\u59cb\u95ee\u9898\u7684\u7b54\u6848\u3002\n", "7. \u5bf9\u5bf9\u8bdd\u5185\u5bb9\u8fdb\u884c\u4e86\u8865\u5168\uff0c\u521b\u5efa\u4e86\u4e00\u4e2a\u5b8c\u5168\u529f\u80fd\u7684\u3001\u7aef\u5230\u7aef\u7684\u804a\u5929\u673a\u5668\u4eba\u3002\n", "\n", "**\ud83d\udcaa\ud83c\udffb \u51fa\u53d1 \u53bb\u63a2\u7d22\u65b0\u4e16\u754c\u5427**\n", "\n", "\u5e0c\u671b\u60a8\u4eec\u5728\u5b66\u4e60\u8fc7\u7a0b\u4e2d\u53d7\u76ca\u532a\u6d45\u3002\n", "\n", "\u4e5f\u611f\u8c22\u5f00\u6e90\u793e\u533a\u4e3a\u8fd9\u4e2a\u8bfe\u7a0b\u505a\u51fa\u8d21\u732e\uff0c\u5982\u679c\u60a8\u5728 LangChain \u4e0a\u53d1\u73b0\u4e86\u65b0\u7684\u529f\u80fd\u548c\u6280\u5de7\uff0c\u5e0c\u671b\u60a8\u5206\u4eab\u5230 Twitter \u6216\u8005 github \u4e0a\u3002\n", "\n", "\u8fd9\u662f\u4e00\u4e2a\u5feb\u901f\u53d1\u5c55\u7684\u9886\u57df\uff0c\u975e\u5e38\u4ee4\u4eba\u6fc0\u52a8\u3002\u671f\u5f85\u770b\u5230\u60a8\u4eec\u5c06\u6240\u5b66\u5e94\u7528\u5230\u5b9e\u9645\u4e2d\u7684\u6837\u5b50\u3002"]}], "metadata": {"kernelspec": {"display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12"}, "toc": {"base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": true}}, "nbformat": 4, "nbformat_minor": 5}

View File

@ -0,0 +1,18 @@
# 第八章、总结
这次课程的内容包括:
1. 使用 LangChain 的 80 多种文档装载器从各种文档源中加载数据。
2. 将这些文档分割成块,并讨论了其中的一些微妙之处。
3. 为这些块创建了 Embedding并将它们放入向量存储器中并轻松实现语义搜索。
4. 讨论了语义搜索的一些缺点,以及在某些边缘情况中可能会发生的搜索失败。
5. 介绍了许多新的高级且有趣的检索算法,用于克服那些边缘情况。
6. 与 LLMs 相结合,将检索到的文档,和用户问题传递给 LLM生成对原始问题的答案。
7. 对对话内容进行了补全,创建了一个完全功能的、端到端的聊天机器人。
**💪🏻 出发 去探索新世界吧**
希望您们在学习过程中受益匪浅。
也感谢开源社区为这个课程做出贡献,如果您在 LangChain 上发现了新的功能和技巧,希望您分享到 Twitter 或者 github 上。
这是一个快速发展的领域,非常令人激动。期待看到您们将所学应用到实际中的样子。