fix 2.21 protocols

This commit is contained in:
stanzhai
2014-06-14 19:46:02 +08:00
parent f82f207871
commit 3ce6c6dd84

View File

@ -1,6 +1,5 @@
> 翻译geek5nan
> 校对dabing1022
> 翻译geek5nan
> 校对dabing1022
# 协议
-----------------
@ -30,22 +29,28 @@
`协议`的定义与类,结构体,枚举的定义非常相似,如下所示:
protocol SomeProtocol {
// 协议内容
}
```swift
protocol SomeProtocol {
// 协议内容
}
```
在类,结构体,枚举的名称后加上`协议名称`,中间以冒号`:`分隔即可实现协议;实现多个协议时,各协议之间用逗号`,`分隔,如下所示:
struct SomeStructure: FirstProtocol, AnotherProtocol {
// 结构体内容
}
```swift
struct SomeStructure: FirstProtocol, AnotherProtocol {
// 结构体内容
}
```
当某个类含有父类的同时并实现了协议,应当把父类放在所有的协议之前,如下所示:
class SomeClass: SomeSuperClass, FirstProtocol, AnotherProtocol {
// 类的内容
}
```swift
class SomeClass: SomeSuperClass, FirstProtocol, AnotherProtocol {
// 类的内容
}
```
<a name="property_requirements"></a>
## 属性要求
@ -54,46 +59,54 @@
通常前置`var`关键字将属性声明为变量。在属性声明后写上`{ get set }`表示属性为可读写的。`{ get }`用来表示属性为可读的。即使你为可读的属性实现了`setter`方法,它也不会出错。
protocol SomeProtocol {
var musBeSettable : Int { get set }
var doesNotNeedToBeSettable: Int { get }
}
```swift
protocol SomeProtocol {
var musBeSettable : Int { get set }
var doesNotNeedToBeSettable: Int { get }
}
```
用类来实现协议时,使用`class`关键字来表示该属性为类成员;用结构体或枚举实现协议时,则使用`static`关键字来表示:
protocol AnotherProtocol {
class var someTypeProperty: Int { get set }
}
```swift
protocol AnotherProtocol {
class var someTypeProperty: Int { get set }
}
protocol FullyNamed {
var fullName: String { get }
}
protocol FullyNamed {
var fullName: String { get }
}
```
`FullyNamed`协议含有`fullName`属性。因此其`遵循者`必须含有一个名为`fullName`,类型为`String`的可读属性。
struct Person: FullyNamed{
var fullName: String
}
let john = Person(fullName: "John Appleseed")
//john.fullName"John Appleseed"
```swift
struct Person: FullyNamed{
var fullName: String
}
let john = Person(fullName: "John Appleseed")
//john.fullName 为 "John Appleseed"
```
`Person`结构体含有一个名为`fullName``存储型属性`,完整的`遵循`了协议。(*若协议未被完整遵循,编译时则会报错*)。
如下所示,`Startship``遵循``FullyNamed`协议:
class Starship: FullyNamed {
var prefix: String?
var name: String
init(name: String, prefix: String? = nil ) {
self.anme = name
self.prefix = prefix
}
var fullName: String {
return (prefix ? prefix ! + " " : " ") + name
}
```swift
class Starship: FullyNamed {
var prefix: String?
var name: String
init(name: String, prefix: String? = nil ) {
self.anme = name
self.prefix = prefix
}
var ncc1701 = Starship(name: "Enterprise", prefix: "USS")
// ncc1701.fullName == "USS Enterprise"
var fullName: String {
return (prefix ? prefix ! + " " : " ") + name
}
}
var ncc1701 = Starship(name: "Enterprise", prefix: "USS")
// ncc1701.fullName == "USS Enterprise"
```
`Starship`类将`fullName`实现为可读的`计算型属性`。它的每一个实例都有一个名为`name`的必备属性和一个名为`prefix`的可选属性。 当`prefix`存在时,将`prefix`插入到`name`之前来为`Starship`构建`fullName`
@ -102,39 +115,42 @@
`协议`能够要求其`遵循者`必备某些特定的`实例方法``类方法`。协议方法的声明与普通方法声明相似,但它不需要`方法`内容。
> 注意:
>
> 注意:
协议方法支持`变长参数(variadic parameter)`,不支持`默认参数(default parameter)`
前置`class`关键字表示协议中的成员为`类成员`;当协议用于被`枚举``结构体`遵循时,则使用`static`关键字。如下所示:
protocol SomeProtocol {
class func someTypeMethod()
}
```swift
protocol SomeProtocol {
class func someTypeMethod()
}
protocol RandomNumberGenerator {
func random() -> Double
}
protocol RandomNumberGenerator {
func random() -> Double
}
```
`RandomNumberGenerator`协议要求其`遵循者`必须拥有一个名为`random` 返回值类型为`Double`的实例方法。(我们假设随机数在[01]区间内)。
`LinearCongruentialGenerator``遵循``RandomNumberGenerator`协议,并提供了一个叫做*线性同余生成器(linear congruential generator)*的伪随机数算法。
class LinearCongruentialGenerator: RandomNumberGenerator {
var lastRandom = 42.0
let m = 139968.0
let a = 3877.0
let c = 29573.0
func random() -> Double {
lastRandom = ((lastRandom * a + c) % m)
return lastRandom / m
}
```swift
class LinearCongruentialGenerator: RandomNumberGenerator {
var lastRandom = 42.0
let m = 139968.0
let a = 3877.0
let c = 29573.0
func random() -> Double {
lastRandom = ((lastRandom * a + c) % m)
return lastRandom / m
}
let generator = LinearCongruentialGenerator()
println("Here's a random number: \(generator.random())")
// 输出 : "Here's a random number: 0.37464991998171"
println("And another one: \(generator.random())")
// 输出 : "And another one: 0.729023776863283"
}
let generator = LinearCongruentialGenerator()
println("Here's a random number: \(generator.random())")
// 输出 : "Here's a random number: 0.37464991998171"
println("And another one: \(generator.random())")
// 输出 : "And another one: 0.729023776863283"
```
<a name="mutating_method_requirements"></a>
## 突变方法要求
@ -143,34 +159,37 @@
(*译者注:类中的成员为`引用类型(Reference Type)`,可以方便的修改实例及其属性的值而无需改变类型;而`结构体``枚举`中的成员均为`值类型(Value Type)`,修改变量的值就相当于修改变量的类型,而`Swift`默认不允许修改类型,因此需要前置`mutating`关键字用来表示该`函数`中能够修改类型*)
> 注意:
>
> 注意:
`class`实现协议中的`mutating`方法时,不用写`mutating`关键字;用`结构体``枚举`实现协议中的`mutating`方法时,必须写`mutating`关键字。
如下所示,`Togglable`协议含有`toggle`函数。根据函数名称推测,`toggle`可能用于**切换或恢复**某个属性的状态。`mutating`关键字表示它为`突变方法`
protocol Togglable {
mutating func toggle()
}
```swift
protocol Togglable {
mutating func toggle()
}
```
当使用`枚举``结构体`来实现`Togglabl`协议时,必须在`toggle`方法前加上`mutating`关键字。
如下所示,`OnOffSwitch`枚举`遵循``Togglable`协议,`On``Off`两个成员用于表示当前状态
enum OnOffSwitch: Togglable {
case Off, On
mutating func toggle() {
switch self {
case Off:
self = On
case On:
self = Off
}
```swift
enum OnOffSwitch: Togglable {
case Off, On
mutating func toggle() {
switch self {
case Off:
self = On
case On:
self = Off
}
}
var lightSwitch = OnOffSwitch.Off
lightSwitch.toggle()
//lightSwitch 现在的值为 .On
}
var lightSwitch = OnOffSwitch.Off
lightSwitch.toggle()
//lightSwitch 现在的值为 .On
```
<a name="protocols_as_types"></a>
## 协议类型
@ -183,25 +202,26 @@
* 作为常量,变量,属性的类型
* 作为数组,字典或其他容器中的元素类型
> 注意:
>
> 注意:
协议类型应与其他类型(IntDoubleString)的写法相同,使用驼峰式
class Dice {
let sides: Int
let generator: RandomNumberGenerator
init(sides: Int, generator: RandomNumberGenerator) {
self.sides = sides
self.generator = generator
}
func roll() -> Int {
return Int(generator.random() * Double(sides)) +1
}
```swift
class Dice {
let sides: Int
let generator: RandomNumberGenerator
init(sides: Int, generator: RandomNumberGenerator) {
self.sides = sides
self.generator = generator
}
func roll() -> Int {
return Int(generator.random() * Double(sides)) +1
}
}
```
这里定义了一个名为 `Dice`的类用来代表桌游中的N个面的骰子。
`Dice`含有`sides``generator`两个属性,前者用来表示骰子有几个面,后者为骰子提供一个随机数生成器。由于后者为`RandomNumberGenerator`的协议类型。所以它能够被赋值为任意`遵循`该协议的类型。
`Dice`含有`sides``generator`两个属性,前者用来表示骰子有几个面,后者为骰子提供一个随机数生成器。由于后者为`RandomNumberGenerator`的协议类型。所以它能够被赋值为任意`遵循`该协议的类型。
此外,使用`构造器(init)`来代替之前版本中的`setup`操作。构造器中含有一个名为`generator`,类型为`RandomNumberGenerator`的形参,使得它可以接收任意遵循`RandomNumberGenerator`协议的类型。
@ -209,16 +229,18 @@
如下所示,`LinearCongruentialGenerator`的实例作为随机数生成器传入`Dice``构造器`
var d6 = Dice(sides: 6,generator: LinearCongruentialGenerator())
for _ in 1...5 {
println("Random dice roll is \(d6.roll())")
}
//输出结果
//Random dice roll is 3
//Random dice roll is 5
//Random dice roll is 4
//Random dice roll is 5
//Random dice roll is 4
```swift
var d6 = Dice(sides: 6,generator: LinearCongruentialGenerator())
for _ in 1...5 {
println("Random dice roll is \(d6.roll())")
}
//输出结果
//Random dice roll is 3
//Random dice roll is 5
//Random dice roll is 4
//Random dice roll is 5
//Random dice roll is 4
```
<a name="delegation"></a>
## 委托(代理)模式
@ -231,55 +253,59 @@
下文是两个基于骰子游戏的协议:
protocol DiceGame {
var dice: Dice { get }
func play()
}
protocol DiceGameDelegate {
func gameDidStart(game: DiceGame)
func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll:Int)
func gameDidEnd(game: DiceGame)
}
```swift
protocol DiceGame {
var dice: Dice { get }
func play()
}
protocol DiceGameDelegate {
func gameDidStart(game: DiceGame)
func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll:Int)
func gameDidEnd(game: DiceGame)
}
```
`DiceGame`协议可以在任意含有骰子的游戏中实现,`DiceGameDelegate`协议可以用来追踪`DiceGame`的游戏过程。
如下所示,`SnakesAndLadders``Snakes and Ladders`(译者注:[控制流](05_Control_Flow.html)章节有该游戏的详细介绍)游戏的新版本。新版本使用`Dice`作为骰子,并且实现了`DiceGame``DiceGameDelegate`协议
class SnakesAndLadders: DiceGame {
let finalSquare = 25
let dic = Dice(sides: 6, generator: LinearCongruentialGenerator())
var square = 0
var board: Int[]
init() {
board = Int[](count: finalSquare + 1, repeatedValue: 0)
board[03] = +08; board[06] = +11; borad[09] = +09; board[10] = +02
borad[14] = -10; board[19] = -11; borad[22] = -02; board[24] = -08
}
var delegate: DiceGameDelegate?
func play() {
square = 0
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare {
let diceRoll = dice.roll()
delegate?.game(self,didStartNewTurnWithDiceRoll: diceRoll)
switch square + diceRoll {
case finalSquare:
break gameLoop
case let newSquare where newSquare > finalSquare:
continue gameLoop
default:
square += diceRoll
square += board[square]
}
}
delegate?.gameDIdEnd(self)
}
```swift
class SnakesAndLadders: DiceGame {
let finalSquare = 25
let dic = Dice(sides: 6, generator: LinearCongruentialGenerator())
var square = 0
var board: Int[]
init() {
board = Int[](count: finalSquare + 1, repeatedValue: 0)
board[03] = +08; board[06] = +11; borad[09] = +09; board[10] = +02
borad[14] = -10; board[19] = -11; borad[22] = -02; board[24] = -08
}
var delegate: DiceGameDelegate?
func play() {
square = 0
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare {
let diceRoll = dice.roll()
delegate?.game(self,didStartNewTurnWithDiceRoll: diceRoll)
switch square + diceRoll {
case finalSquare:
break gameLoop
case let newSquare where newSquare > finalSquare:
continue gameLoop
default:
square += diceRoll
square += board[square]
}
}
delegate?.gameDIdEnd(self)
}
}
```
游戏的`初始化设置(setup)``SnakesAndLadders`类的`构造器(initializer)`实现。所有的游戏逻辑被转移到了`play`方法中。
> 注意:
>
> 注意:
因为`delegate`并不是该游戏的必备条件,`delegate`被定义为遵循`DiceGameDelegate`协议的可选属性
`DicegameDelegate`协议提供了三个方法用来追踪游戏过程。被放置于游戏的逻辑中,即`play()`方法内。分别在游戏开始时,新一轮开始时,游戏结束时被调用。
@ -288,23 +314,25 @@
如下所示,`DiceGameTracker`遵循了`DiceGameDelegate`协议
class DiceGameTracker: DiceGameDelegate {
var numberOfTurns = 0
func gameDidStart(game: DiceGame) {
numberOfTurns = 0
if game is SnakesAndLadders {
println("Started a new game of Snakes and Ladders")
}
println("The game is using a \(game.dice.sides)-sided dice")
}
func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
++numberOfTurns
println("Rolled a \(diceRoll)")
}
func gameDidEnd(game: DiceGame) {
println("The game lasted for \(numberOfTurns) turns")
}
}
```swift
class DiceGameTracker: DiceGameDelegate {
var numberOfTurns = 0
func gameDidStart(game: DiceGame) {
numberOfTurns = 0
if game is SnakesAndLadders {
println("Started a new game of Snakes and Ladders")
}
println("The game is using a \(game.dice.sides)-sided dice")
}
func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
++numberOfTurns
println("Rolled a \(diceRoll)")
}
func gameDidEnd(game: DiceGame) {
println("The game lasted for \(numberOfTurns) turns")
}
}
```
`DiceGameTracker`实现了`DiceGameDelegate`协议的方法要求,用来记录游戏已经进行的轮数。 当游戏开始时,`numberOfTurns`属性被赋值为0在每新一轮中递加游戏结束后输出打印游戏的总轮数。
@ -312,79 +340,91 @@
`DiceGameTracker`的运行情况,如下所示:
“let tracker = DiceGameTracker()
let game = SnakesAndLadders()
game.delegate = tracker
game.play()
// Started a new game of Snakes and Ladders
// The game is using a 6-sided dice
// Rolled a 3
// Rolled a 5
// Rolled a 4
// Rolled a 5
// The game lasted for 4 turns”
```swift
let tracker = DiceGameTracker()
let game = SnakesAndLadders()
game.delegate = tracker
game.play()
// Started a new game of Snakes and Ladders
// The game is using a 6-sided dice
// Rolled a 3
// Rolled a 5
// Rolled a 4
// Rolled a 5
// The game lasted for 4 turns”
```
<a name="adding_protocol_conformance_with_an_extension"></a>
## 在扩展中添加协议成员
即便无法修改源代码,依然可以通过`扩展(Extension)`来扩充已存在类型(*译者注: 类,结构体,枚举等*)。`扩展`可以为已存在的类型添加`属性``方法``下标``协议`等成员。详情请在[扩展](20_Extensions.html)章节中查看。
> 注意:
>
> 注意:
通过`扩展`为已存在的类型`遵循`协议时,该类型的所有实例也会随之添加协议中的方法
`TextRepresentable`协议含有一个`asText`,如下所示:
protocol TextRepresentable {
func asText() -> String
}
```swift
protocol TextRepresentable {
func asText() -> String
}
```
通过`扩展`为上一节中提到的`Dice`类遵循`TextRepresentable`协议
extension Dice: TextRepresentable {
cun asText() -> String {
return "A \(sides)-sided dice"
}
```swift
extension Dice: TextRepresentable {
cun asText() -> String {
return "A \(sides)-sided dice"
}
}
```
从现在起,`Dice`类型的实例可被当作`TextRepresentable`类型:
let d12 = Dice(sides: 12,generator: LinearCongruentialGenerator())
println(d12.asText())
// 输出 "A 12-sided dice"
```swift
let d12 = Dice(sides: 12,generator: LinearCongruentialGenerator())
println(d12.asText())
// 输出 "A 12-sided dice"
```
`SnakesAndLadders`类也可以通过`扩展`的方式来遵循协议:
extension SnakeAndLadders: TextRepresentable {
func asText() -> String {
return "A game of Snakes and Ladders with \(finalSquare) squares"
}
```swift
extension SnakeAndLadders: TextRepresentable {
func asText() -> String {
return "A game of Snakes and Ladders with \(finalSquare) squares"
}
println(game.asText())
// 输出 "A game of Snakes and Ladders with 25 squares"
}
println(game.asText())
// 输出 "A game of Snakes and Ladders with 25 squares"
```
<a name="declaring_protocol_adoption_with_an_extension"></a>
## 通过延展补充协议声明
当一个类型已经实现了协议中的所有要求,却没有声明时,可以通过`扩展`来补充协议声明:
struct Hamster {
var name: String
func asText() -> String {
return "A hamster named \(name)"
}
```swift
struct Hamster {
var name: String
func asText() -> String {
return "A hamster named \(name)"
}
extension Hamster: TextRepresentabl {}
}
extension Hamster: TextRepresentabl {}
```
从现在起,`Hamster`的实例可以作为`TextRepresentable`类型使用
let simonTheHamster = Hamster(name: "Simon")
let somethingTextRepresentable: TextRepresentabl = simonTheHamester
println(somethingTextRepresentable.asText())
// 输出 "A hamster named Simon"
```swift
let simonTheHamster = Hamster(name: "Simon")
let somethingTextRepresentable: TextRepresentabl = simonTheHamester
println(somethingTextRepresentable.asText())
// 输出 "A hamster named Simon"
```
> 注意:
>
> 注意:
即时满足了协议的所有要求,类型也不会自动转变,因此你必须为它做出明显的协议声明
<a name="collections_of_protocol_types"></a>
@ -392,16 +432,20 @@
协议类型可以被集合使用,表示集合中的元素均为协议类型:
let things: TextRepresentable[] = [game,d12,simoTheHamster]
```swift
let things: TextRepresentable[] = [game,d12,simoTheHamster]
```
如下所示,`things`数组可以被直接遍历,并调用其中元素的`asText()`函数:
for thing in things {
println(thing.asText())
}
// A game of Snakes and Ladders with 25 squares
// A 12-sided dice
// A hamster named Simon
```swift
for thing in things {
println(thing.asText())
}
// A game of Snakes and Ladders with 25 squares
// A 12-sided dice
// A hamster named Simon
```
`thing`被当做是`TextRepresentable`类型而不是`Dice``DiceGame``Hamster`等类型。因此能且仅能调用`asText`方法
@ -410,36 +454,42 @@
协议能够*继承*一到多个其他协议。语法与类的继承相似,多个协议间用逗号`,`分隔
protocol InheritingProtocol: SomeProtocol, AnotherProtocol {
// 协议定义
}
```swift
protocol InheritingProtocol: SomeProtocol, AnotherProtocol {
// 协议定义
}
```
如下所示,`PrettyTextRepresentable`协议继承了`TextRepresentable`协议
protocol PrettyTextRepresentable: TextRepresentable {
func asPrettyText() -> String
}
```swift
protocol PrettyTextRepresentable: TextRepresentable {
func asPrettyText() -> String
}
```
`遵循``PrettyTextRepresentable`协议的同时,也需要`遵循`TextRepresentable`协议。
如下所示,用`扩展`为`SnakesAndLadders`遵循`PrettyTextRepresentable`协议:
extension SnakesAndLadders: PrettyTextRepresentable {
func asPrettyText() -> String {
var output = asText() + ":\n"
for index in 1...finalSquare {
switch board[index] {
case let ladder where ladder > 0:
output += "▲ "
case let snake where snake < 0:
output += "▼ "
default:
output += "○ "
}
}
return output
}
}
```swift
extension SnakesAndLadders: PrettyTextRepresentable {
func asPrettyText() -> String {
var output = asText() + ":\n"
for index in 1...finalSquare {
switch board[index] {
case let ladder where ladder > 0:
output += "▲ "
case let snake where snake < 0:
output += "▼ "
default:
output += "○ "
}
}
return output
}
}
```
在`for in`中迭代出了`board`数组中的每一个元素:
@ -449,9 +499,11 @@
任意`SankesAndLadders`的实例都可以使用`asPrettyText()`方法。
println(game.asPrettyText())
// A game of Snakes and Ladders with 25 squares:
// ○ ○ ▲ ○ ○ ▲ ○ ○ ▲ ▲ ○ ○ ○ ▼ ○ ○ ○ ○ ▼ ○ ○ ▼ ○ ▼ ○
```swift
println(game.asPrettyText())
// A game of Snakes and Ladders with 25 squares:
// ○ ○ ▲ ○ ○ ▲ ○ ○ ▲ ▲ ○ ○ ○ ▼ ○ ○ ○ ○ ▼ ○ ○ ▼ ○ ▼ ○
```
<a name="protocol_composition"></a>
## 协议合成
@ -460,29 +512,30 @@
举个例子:
protocol Named {
var name: String { get }
}
protocol Aged {
var age: Int { get }
}
struct Person: Named, Aged {
var name: String
var age: Int
}
func wishHappyBirthday(celebrator: protocol<Named, Aged>) {
println("Happy birthday \(celebrator.name) - you're \(celebrator.age)!")
}
let birthdayPerson = Person(name: "Malcolm", age: 21)
wishHappyBirthday(birthdayPerson)
// 输出 "Happy birthday Malcolm - you're 21!
```swift
protocol Named {
var name: String { get }
}
protocol Aged {
var age: Int { get }
}
struct Person: Named, Aged {
var name: String
var age: Int
}
func wishHappyBirthday(celebrator: protocol<Named, Aged>) {
println("Happy birthday \(celebrator.name) - you're \(celebrator.age)!")
}
let birthdayPerson = Person(name: "Malcolm", age: 21)
wishHappyBirthday(birthdayPerson)
// 输出 "Happy birthday Malcolm - you're 21!
```
`Named`协议包含`String`类型的`name`属性;`Aged`协议包含`Int`类型的`age`属性。`Person`结构体`遵循`了这两个协议。
`wishHappyBirthday`函数的形参`celebrator`的类型为`protocol<Named,Aged>`。可以传入任意`遵循`这两个协议的类型的实例
> 注意:
>
> 注意:
`协议合成`并不会生成一个新协议类型,而是将多个协议合成为一个临时的协议,超出范围后立即失效。
<a name="checking_for_protocol_conformance"></a>
@ -494,57 +547,64 @@
* `as?`返回一个可选值,当实例`遵循`协议时,返回该协议类型;否则返回`nil`
* `as`用以强制向下转换型。
```
```swift
@objc protocol HasArea {
var area: Double { get }
var area: Double { get }
}
```
> 注意:
>
> 注意:
`@objc`用来表示协议是可选的,也可以用来表示暴露给`Objective-C`的代码,此外,`@objc`型协议只对``有效,因此只能在``中检查协议的一致性。详情查看*[Using Siwft with Cocoa and Objectivei-c](https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/BuildingCocoaApps/index.html#//apple_ref/doc/uid/TP40014216)*。
class Circle: HasArea {
let pi = 3.1415927
var radius: Double
var area:≈radius }
init(radius: Double) { self.radius = radius }
}
class Country: HasArea {
var area: Double
init(area: Double) { self.area = area }
}
```swift
class Circle: HasArea {
let pi = 3.1415927
var radius: Double
var area:≈radius }
init(radius: Double) { self.radius = radius }
}
class Country: HasArea {
var area: Double
init(area: Double) { self.area = area }
}
```
`Circle`和`Country`都遵循了`HasArea`协议,前者把`area`写为计算型属性computed property后者则把`area`写为存储型属性stored property
如下所示,`Animal`类没有实现任何协议
class Animal {
var legs: Int
init(legs: Int) { self.legs = legs }
}
```swift
class Animal {
var legs: Int
init(legs: Int) { self.legs = legs }
}
```
`Circle,Country,Animal`并没有一个相同的基类,所以采用`AnyObject`类型的数组来装载在他们的实例,如下所示:
let objects: AnyObject[] = [
Circle(radius: 2.0),
Country(area: 243_610),
Animal(legs: 4)
]
```swift
let objects: AnyObject[] = [
Circle(radius: 2.0),
Country(area: 243_610),
Animal(legs: 4)
]
```
如下所示,在迭代时检查`object`数组的元素是否`遵循`了`HasArea`协议:
for object in objects {
if let objectWithArea = object as? HasArea {
println("Area is \(objectWithArea.area)")
} else {
println("Something that doesn't have an area")
}
}
// Area is 12.5663708
// Area is 243610.0
// Something that doesn't have an area
```swift
for object in objects {
if let objectWithArea = object as? HasArea {
println("Area is \(objectWithArea.area)")
} else {
println("Something that doesn't have an area")
}
}
// Area is 12.5663708
// Area is 243610.0
// Something that doesn't have an area
```
当数组中的元素遵循`HasArea`协议时,通过`as?`操作符将其`可选绑定(optional binding)`到`objectWithArea`常量上。
@ -559,36 +619,38 @@
像`someOptionalMethod?(someArgument)`一样,你可以在可选方法名称后加上`?`来检查该方法是否被实现。`可选方法`和`可选属性`都会返回一个`可选值(optional value)`,当其不可访问时,`?`之后语句不会执行,并返回`nil`。
> 注意:
>
> 注意:
可选协议只能在含有`@objc`前缀的协议中生效。且`@objc`的协议只能被``遵循。
`Counter`类使用`CounterDataSource`类型的外部数据源来提供`增量值(increment amount)`,如下所示:
@objc protocol CounterDataSource {
@optional func incrementForCount(count: Int) -> Int
@optional var fixedIncrement: Int { get }
}
```swift
@objc protocol CounterDataSource {
@optional func incrementForCount(count: Int) -> Int
@optional var fixedIncrement: Int { get }
}
```
`CounterDataSource`含有`incrementForCount`的`可选方法`和`fiexdIncrement`的`可选属性`。
> 注意:
>
> 注意:
`CounterDataSource`中的属性和方法都是可选的,因此可以在类中声明但不实现这些成员,尽管技术上允许这样做,不过最好不要这样写。
`Counter`类含有`CounterDataSource?`类型的可选属性`dataSource`,如下所示:
@objc class Counter {
var count = 0
var dataSource: CounterDataSource?
func increment() {
if let amount = dataSource?.incrementForCount?(count) {
count += amount
} else if let amount = dataSource?.fixedIncrement? {
count += amount
}
}
}
```swift
@objc class Counter {
var count = 0
var dataSource: CounterDataSource?
func increment() {
if let amount = dataSource?.incrementForCount?(count) {
count += amount
} else if let amount = dataSource?.fixedIncrement? {
count += amount
}
}
}
```
`count`属性用于存储当前的值,`increment`方法用来为`count`赋值。
@ -603,47 +665,57 @@
`ThreeSource`实现了`CounterDataSource`协议,如下所示:
class ThreeSource: CounterDataSource {
let fixedIncrement = 3
}
```swift
class ThreeSource: CounterDataSource {
let fixedIncrement = 3
}
```
使用`ThreeSource`作为数据源开实例化一个`Counter`
var counter = Counter()
counter.dataSource = ThreeSource()
for _ in 1...4 {
counter.increment()
println(counter.count)
}
// 3
// 6
// 9
// 12
```swift
var counter = Counter()
counter.dataSource = ThreeSource()
for _ in 1...4 {
counter.increment()
println(counter.count)
}
// 3
// 6
// 9
// 12
```
`TowardsZeroSource`实现了`CounterDataSource`协议中的`incrementForCount`方法,如下所示:
class TowardsZeroSource: CounterDataSource {
func incrementForCount(count: Int) -> Int {
if count == 0 {
return 0
} else if count < 0 {
return 1
} else {
return -1
}
}
}
```swift
class TowardsZeroSource: CounterDataSource {
func incrementForCount(count: Int) -> Int {
if count == 0 {
return 0
} else if count < 0 {
return 1
} else {
return -1
}
}
}
```
下边是执行的代码:
counter.count = -4
counter.dataSource = TowardsZeroSource()
for _ in 1...5 {
counter.increment()
println(counter.count)
}
// -3
// -2
// -1
// 0
// 0
```swift
counter.count = -4
counter.dataSource = TowardsZeroSource()
for _ in 1...5 {
counter.increment()
println(counter.count)
}
// -3
// -2
// -1
// 0
// 0
```
preview