Update Day2_Simple_Linear_Regression.md

This commit is contained in:
wengJJ
2018-08-06 09:18:05 +08:00
committed by GitHub
parent ecb9137a12
commit 6e2e608f4a

View File

@ -2,11 +2,11 @@
<p align="center"> <p align="center">
<img src="https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%202.jpg"> <img src="https://github.com/wengJJ/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%202.jpg">
</p> </p>
# Step 1: Data Preprocessing # 第一步:数据预处理
```python ```python
import pandas as pd import pandas as pd
import numpy as np import numpy as np
@ -20,24 +20,24 @@ from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0) X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
``` ```
# Step 2: Fitting Simple Linear Regression Model to the training set # 第二步:训练集使用简单线性模型来训练
```python ```python
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression
regressor = LinearRegression() regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train) regressor = regressor.fit(X_train, Y_train)
``` ```
# Step 3: Predecting the Result # 第三步:预测结果
```python ```python
Y_pred = regressor.predict(X_test) Y_pred = regressor.predict(X_test)
``` ```
# Step 4: Visualization # 第四步:可视化
## Visualising the Training results ## 训练集结果可视化
```python ```python
plt.scatter(X_train , Y_train, color = 'red') plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue') plt.plot(X_train , regressor.predict(X_train), color ='blue')
``` ```
## Visualizing the test results ## 测试集结果可视化
```python ```python
plt.scatter(X_test , Y_test, color = 'red') plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue') plt.plot(X_test , regressor.predict(X_test), color ='blue')