Update Day2_Simple_Linear_Regression.md
This commit is contained in:
@ -2,11 +2,11 @@
|
|||||||
|
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%202.jpg">
|
<img src="https://github.com/wengJJ/100-Days-Of-ML-Code/blob/master/Info-graphs/Day%202.jpg">
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
|
||||||
# Step 1: Data Preprocessing
|
# 第一步:数据预处理
|
||||||
```python
|
```python
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -20,24 +20,24 @@ from sklearn.cross_validation import train_test_split
|
|||||||
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
|
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
|
||||||
```
|
```
|
||||||
|
|
||||||
# Step 2: Fitting Simple Linear Regression Model to the training set
|
# 第二步:训练集使用简单线性模型来训练
|
||||||
```python
|
```python
|
||||||
from sklearn.linear_model import LinearRegression
|
from sklearn.linear_model import LinearRegression
|
||||||
regressor = LinearRegression()
|
regressor = LinearRegression()
|
||||||
regressor = regressor.fit(X_train, Y_train)
|
regressor = regressor.fit(X_train, Y_train)
|
||||||
```
|
```
|
||||||
# Step 3: Predecting the Result
|
# 第三步:预测结果
|
||||||
```python
|
```python
|
||||||
Y_pred = regressor.predict(X_test)
|
Y_pred = regressor.predict(X_test)
|
||||||
```
|
```
|
||||||
|
|
||||||
# Step 4: Visualization
|
# 第四步:可视化
|
||||||
## Visualising the Training results
|
## 训练集结果可视化
|
||||||
```python
|
```python
|
||||||
plt.scatter(X_train , Y_train, color = 'red')
|
plt.scatter(X_train , Y_train, color = 'red')
|
||||||
plt.plot(X_train , regressor.predict(X_train), color ='blue')
|
plt.plot(X_train , regressor.predict(X_train), color ='blue')
|
||||||
```
|
```
|
||||||
## Visualizing the test results
|
## 测试集结果可视化
|
||||||
```python
|
```python
|
||||||
plt.scatter(X_test , Y_test, color = 'red')
|
plt.scatter(X_test , Y_test, color = 'red')
|
||||||
plt.plot(X_test , regressor.predict(X_test), color ='blue')
|
plt.plot(X_test , regressor.predict(X_test), color ='blue')
|
||||||
|
|||||||
Reference in New Issue
Block a user