Files
100-Days-Of-ML-Code/Code/Day 1_Data_Preprocessing.md
2022-04-06 18:00:20 +08:00

1.9 KiB
Raw Permalink Blame History

数据预处理

如图所示通过6步完成数据预处理。

此例用到的数据代码

第1步导入库

import numpy as np
import pandas as pd

第2步导入数据集

//随后一列是label
dataset = pd.read_csv('Data.csv')//读取csv文件
X = dataset.iloc[ : , :-1].values//.iloc[]
Y = dataset.iloc[ : , 3].values  // : 全部行 or [a]第a行 or 
                                 // [a,b,c] a,b,c  or 

第3步处理丢失数据

from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])

第4步解析分类数据

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])

创建虚拟变量

onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder()
Y =  labelencoder_Y.fit_transform(Y)

第5步拆分数据集为训练集合和测试集合

#from sklearn.model_selection import train_test_split
from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)

第6步特征量化

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)