Compare commits

...

51 Commits

Author SHA1 Message Date
3fcee3762d 微调样式 2023-07-15 14:35:24 +08:00
1f014779e4 微调样式 2023-07-15 14:31:38 +08:00
97879e73ef 恢复横向调整css 2023-07-15 13:35:11 +08:00
13d4cd3237 音频功能说明书 2023-07-15 13:30:12 +08:00
73e835885b Merge branch 'master' into improve_ui_master 2023-07-15 13:01:13 +08:00
2524c908fc 修改提示 2023-07-15 12:58:38 +08:00
0e71d81bb3 Update README.md 2023-07-14 16:30:03 +08:00
a47864888f Update build-with-latex.yml 2023-07-14 16:25:25 +08:00
9b61ac807c Update build-with-chatglm.yml 2023-07-14 16:25:03 +08:00
bc200dc555 Update build-without-local-llms.yml 2023-07-14 16:24:32 +08:00
2c18b84517 修复依赖自动安装程序 2023-07-12 22:16:25 +08:00
fe7b651c56 更新提示 2023-07-11 15:56:28 +08:00
9b8f160788 up 2023-07-11 15:52:38 +08:00
801d5e2fc2 audio readme 2023-07-11 11:11:06 +08:00
cecdd28e04 Update README.md 2023-07-10 03:41:19 +08:00
d364df1cd6 add test instance 2023-07-10 03:33:51 +08:00
f51bc03686 3.45版本说明 2023-07-10 03:24:34 +08:00
c010d50716 允许加入ChatGLM微调模型 2023-07-10 03:17:09 +08:00
acddb86f3a 小而美 2023-07-10 00:20:14 +08:00
4fde0120ab 完善提醒 2023-07-10 00:08:59 +08:00
592a354eef 完善插件提示 2023-07-10 00:06:48 +08:00
bd66cf3d8b 修复对话历史的问题 2023-07-10 00:02:22 +08:00
e6e5174734 改名 2023-07-09 23:47:10 +08:00
13ade82677 改善语音辅助 2023-07-09 23:18:06 +08:00
ce9eb8d20a UP 2023-07-09 21:18:04 +08:00
dd47c0a284 merge changes 2023-07-09 20:55:37 +08:00
f725ab1b31 Merge branch 'master' into improve_ui_master 2023-07-09 20:47:53 +08:00
7ce4192c52 add comments 2023-07-09 17:25:50 +08:00
c06aafb642 Merge branch 'master' of github.com:binary-husky/chatgpt_academic 2023-07-09 16:01:15 +08:00
b298c5416c 完善PDF总结插件 2023-07-09 16:01:08 +08:00
94abf302cb 修正模板注释 2023-07-09 12:50:51 +08:00
fcc5534e66 ChatGLM 黑盒微调插件 2023-07-09 03:37:47 +08:00
56c0e4d575 3.44说明 2023-07-09 01:21:18 +08:00
8a10db618e Merge branch 'master-interact' 2023-07-09 01:05:04 +08:00
1fe66f0291 优化azure的体验 2023-07-09 00:20:58 +08:00
ced977c443 修复双dollar公式匹配bug 2023-07-08 22:23:29 +08:00
6c2ffbae52 Update README.md 2023-07-08 19:17:35 +08:00
be2f54fac9 Update README.md 2023-07-08 18:21:20 +08:00
87b5e56378 Update requirements.txt 2023-07-08 18:10:33 +08:00
3a5764ed34 Update requirements.txt 2023-07-08 17:59:27 +08:00
91aee50ea7 Chuanhu 主题 2023-07-07 20:12:06 +08:00
e5ccedf491 名称修订 2023-07-07 20:08:26 +08:00
f620666a58 Merge branch 'improve_ui_master' of https://github.com/binary-husky/chatgpt_academic into improve_ui_master 2023-07-07 19:51:48 +08:00
594c63e5d6 主题修正 2023-07-07 19:51:09 +08:00
b082b5eb1b 将阿里云TOKEN移动到config中 2023-07-03 23:20:25 +08:00
9648d78453 重构异步代码,增强可读性 2023-07-03 22:44:10 +08:00
2dc8718041 语音模组第一个版本 2023-07-03 00:13:10 +08:00
a330d6636e error 2023-07-02 22:54:05 +08:00
322c4be145 同步音频输入 2023-07-02 14:42:12 +08:00
a3596ff60d audio 2023-07-02 01:05:20 +08:00
e11d8132f8 add green theme 2023-07-01 23:02:44 +08:00
36 changed files with 2203 additions and 556 deletions

View File

@ -1,5 +1,5 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: Create and publish a Docker image for ChatGLM support
name: build-with-chatglm
on:
push:

View File

@ -1,5 +1,5 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: Create and publish a Docker image for Latex support
name: build-with-latex
on:
push:

View File

@ -1,5 +1,5 @@
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
name: Create and publish a Docker image
name: build-without-local-llms
on:
push:

1
.gitignore vendored
View File

@ -150,3 +150,4 @@ request_llm/jittorllms
multi-language
request_llm/moss
media
flagged

View File

@ -1,6 +1,6 @@
> **Note**
>
> 2023.7.5: Gradio依赖进行了调整。请及时**更新代码**安装依赖时,请严格选择`requirements.txt`中**指定的版本**
> 2023.7.8: Gradio, Pydantic依赖调整已修改 `requirements.txt`。请及时**更新代码**安装依赖时,请严格选择`requirements.txt`中**指定的版本**
>
> `pip install -r requirements.txt`
@ -41,15 +41,17 @@ Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [函数
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [函数插件] PDF论文提取题目&摘要+翻译全文(多线程)
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
互联网信息聚合+GPT | [函数插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
⭐Arxiv论文精细翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
多线程函数插件支持 | 支持多线调用chatgpt一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
ChatGLM2微调模型 | 支持加载ChatGLM2微调模型提供ChatGLM2微调插件
更多LLM模型接入支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
更多新功能展示(图像生成等) …… | 见本文档结尾处 ……
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
</div>
@ -113,12 +115,12 @@ python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步
```
<details><summary>如果需要支持清华ChatGLM/复旦MOSS作为后端请点击展开此处</summary>
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS作为后端请点击展开此处</summary>
<p>
【可选步骤】如果需要支持清华ChatGLM/复旦MOSS作为后端需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端需要额外安装更多依赖前提条件熟悉Python + 用过Pytorch + 电脑配置够强):
```sh
# 【可选步骤I】支持清华ChatGLM。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版使用cuda需要卸载torch重新安装torch+cuda 2如因本机配置不够无法加载模型可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1以上默认安装的为torch+cpu版使用cuda需要卸载torch重新安装torch+cuda 2如因本机配置不够无法加载模型可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llm/requirements_chatglm.txt
# 【可选步骤II】支持复旦MOSS
@ -142,6 +144,8 @@ python main.py
### 安装方法II使用Docker
1. 仅ChatGPT推荐大多数人选择等价于docker-compose方案1
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
``` sh
git clone https://github.com/binary-husky/gpt_academic.git # 下载项目
@ -149,14 +153,15 @@ cd gpt_academic # 进入路径
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy” “API_KEY” 以及 “WEB_PORT” (例如50923) 等
docker build -t gpt-academic . # 安装
#(最后一步-选择1在Linux环境下用`--net=host`更方便快捷
#(最后一步-Linux操作系统用`--net=host`更方便快捷
docker run --rm -it --net=host gpt-academic
#(最后一步-选择2在macOS/windows环境下,只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
```
P.S. 如果需要依赖Latex的插件功能请见Wiki。另外您也可以直接使用docker-compose获取Latex功能修改docker-compose.yml保留方案4并删除其他方案
2. ChatGPT + ChatGLM + MOSS需要熟悉Docker
2. ChatGPT + ChatGLM2 + MOSS需要熟悉Docker
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# 修改docker-compose.yml保留方案2并删除其他方案。修改docker-compose.yml中方案2的配置参考其中注释即可
@ -282,6 +287,8 @@ Tip不指定文件直接点击 `载入对话历史存档` 可以查看历史h
### II版本:
- version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级)
- version 3.45: 支持自定义ChatGLM2微调模型
- version 3.44: 正式支持Azure优化界面易用性
- version 3.4: +arxiv论文翻译、latex论文批改功能
- version 3.3: +互联网信息综合功能
- version 3.2: 函数插件支持更多参数接口 (保存对话功能, 解读任意语言代码+同时询问任意的LLM组合)
@ -302,13 +309,18 @@ gpt_academic开发者QQ群-2610599535
- 某些浏览器翻译插件干扰此软件前端的运行
- 官方Gradio目前有很多兼容性Bug请务必使用`requirement.txt`安装Gradio
### III参考与学习
### III主题
1. `Chuanhu-Small-and-Beautiful` [网址](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV参考与学习
```
代码中参考了很多其他优秀项目中的设计,顺序不分先后:
# 清华ChatGLM-6B:
https://github.com/THUDM/ChatGLM-6B
# 清华ChatGLM2-6B:
https://github.com/THUDM/ChatGLM2-6B
# 清华JittorLLMs:
https://github.com/Jittor/JittorLLMs

View File

@ -139,7 +139,7 @@ def auto_update(raise_error=False):
else:
return
except:
msg = '自动更新程序:已禁用'
msg = '自动更新程序:已禁用。建议排查:代理网络配置。'
if raise_error:
from toolbox import trimmed_format_exc
msg += trimmed_format_exc()

View File

@ -8,7 +8,7 @@
"""
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下还需要填写组织格式如org-123456789abcdefghijklmno的请向下翻找 API_ORG 设置项
API_KEY = "sk-此处填API密钥" # 可同时填写多个API-KEY用英文逗号分割例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY用英文逗号分割例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
# [step 2]>> 改为True应用代理如果直接在海外服务器部署此处不修改
@ -74,6 +74,10 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
# ChatGLM(2) Finetune Model Path 如果使用ChatGLM2微调模型需要把"chatglmft"加入AVAIL_LLM_MODELS中
ChatGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
@ -85,6 +89,8 @@ CONCURRENT_COUNT = 100
# 是否在提交时自动清空输入框
AUTO_CLEAR_TXT = False
# 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"]
THEME = "Default"
# 加一个live2d装饰
ADD_WAIFU = False
@ -110,9 +116,8 @@ SLACK_CLAUDE_USER_TOKEN = ''
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
AZURE_API_KEY = "填入azure openai api的密钥"
AZURE_API_VERSION = "2023-05-15" # 一般不修改
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写该选项即将被弃用
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
# 使用Newbing
@ -120,3 +125,9 @@ NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
NEWBING_COOKIES = """
put your new bing cookies here
"""
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://help.aliyun.com/document_detail/450255.html
ENABLE_AUDIO = False
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK

View File

@ -352,6 +352,32 @@ def get_crazy_functions():
})
except:
print('Load function plugin failed')
try:
from crazy_functions.交互功能函数模板 import 交互功能模板函数
function_plugins.update({
"交互功能模板函数": {
"Color": "stop",
"AsButton": False,
"Function": HotReload(交互功能模板函数)
}
})
except:
print('Load function plugin failed')
# try:
# from crazy_functions.chatglm微调工具 import 微调数据集生成
# function_plugins.update({
# "黑盒模型学习: 微调数据集生成 (先上传数据集)": {
# "Color": "stop",
# "AsButton": False,
# "AdvancedArgs": True,
# "ArgsReminder": "针对数据集输入(如 绿帽子*深蓝色衬衫*黑色运动裤)给出指令,例如您可以将以下命令复制到下方: --llm_to_learn=azure-gpt-3.5 --prompt_prefix='根据下面的服装类型提示想象一个穿着者对这个人外貌、身处的环境、内心世界、过去经历进行描写。要求100字以内用第二人称。' --system_prompt=''",
# "Function": HotReload(微调数据集生成)
# }
# })
# except:
# print('Load function plugin failed')
try:
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
@ -366,7 +392,7 @@ def get_crazy_functions():
})
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
function_plugins.update({
"Arixv翻译输入arxivID[需Latex]": {
"Arixv论文精细翻译输入arxivID[需Latex]": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
@ -377,7 +403,7 @@ def get_crazy_functions():
}
})
function_plugins.update({
"本地论文翻译上传Latex压缩包[需Latex]": {
"本地Latex论文精细翻译上传Latex项目[需Latex]": {
"Color": "stop",
"AsButton": False,
"AdvancedArgs": True,
@ -390,6 +416,22 @@ def get_crazy_functions():
except:
print('Load function plugin failed')
try:
from toolbox import get_conf
ENABLE_AUDIO, = get_conf('ENABLE_AUDIO')
if ENABLE_AUDIO:
from crazy_functions.语音助手 import 语音助手
function_plugins.update({
"实时音频采集": {
"Color": "stop",
"AsButton": True,
"Function": HotReload(语音助手)
}
})
except:
print('Load function plugin failed')
# try:
# from crazy_functions.虚空终端 import 终端
# function_plugins.update({

View File

@ -30,7 +30,7 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import try_install_deps
try_install_deps(['zh_langchain==0.2.1'])
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'])
# < --------------------读取参数--------------- >
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")

View File

@ -0,0 +1,141 @@
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
import datetime, json
def fetch_items(list_of_items, batch_size):
for i in range(0, len(list_of_items), batch_size):
yield list_of_items[i:i + batch_size]
def string_to_options(arguments):
import argparse
import shlex
# Create an argparse.ArgumentParser instance
parser = argparse.ArgumentParser()
# Add command-line arguments
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
parser.add_argument("--batch", type=int, help="System prompt", default=50)
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
# Parse the arguments
args = parser.parse_args(shlex.split(arguments))
return args
@CatchException
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
dat = []
with open(txt, 'r', encoding='utf8') as f:
for line in f.readlines():
json_dat = json.loads(line)
dat.append(json_dat["content"])
llm_kwargs['llm_model'] = arguments.llm_to_learn
for batch in fetch_items(dat, arguments.batch):
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)],
inputs_show_user_array=[f"Show Nothing" for _ in (batch)],
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[[] for _ in (batch)],
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
max_workers=10 # OpenAI所允许的最大并行过载
)
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
for b, r in zip(batch, res[1::2]):
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
return
@CatchException
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
import subprocess
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
args = plugin_kwargs.get("advanced_arg", None)
if args is None:
chatbot.append(("没给定指令", "退出"))
yield from update_ui(chatbot=chatbot, history=history); return
else:
arguments = string_to_options(arguments=args)
pre_seq_len = arguments.pre_seq_len # 128
learning_rate = arguments.learning_rate # 2e-2
num_gpus = arguments.num_gpus # 1
json_dataset = arguments.json_dataset # 't_code.json'
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
--do_train \
--train_file AdvertiseGen/{json_dataset} \
--validation_file AdvertiseGen/{json_dataset} \
--preprocessing_num_workers 20 \
--prompt_column content \
--response_column summary \
--overwrite_cache \
--model_name_or_path THUDM/chatglm2-6b \
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
--overwrite_output_dir \
--max_source_length 256 \
--max_target_length 256 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--predict_with_generate \
--max_steps 100 \
--logging_steps 10 \
--save_steps 20 \
--learning_rate {learning_rate} \
--pre_seq_len {pre_seq_len} \
--quantization_bit 4"
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
try:
process.communicate(timeout=3600*24)
except subprocess.TimeoutExpired:
process.kill()
return

View File

@ -211,22 +211,36 @@ def test_Latex():
# # for cookies, cb, hist, msg in silence_stdout(编译Latex)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# cli_printer.print(cb) # print(cb)
def test_chatglm_finetune():
from crazy_functions.chatglm微调工具 import 微调数据集生成, 启动微调
txt = 'build/dev.json'
plugin_kwargs = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示想象一个穿着者对这个人外貌、身处的环境、内心世界、人设进行描写。要求100字以内用第二人称。' --system_prompt=''" }
# for cookies, cb, hist, msg in (微调数据集生成)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# cli_printer.print(cb)
plugin_kwargs = {"advanced_arg":
" --pre_seq_len=128 --learning_rate=2e-2 --num_gpus=1 --json_dataset='t_code.json' --ptuning_directory='/home/hmp/ChatGLM2-6B/ptuning' " }
for cookies, cb, hist, msg in (启动微调)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
cli_printer.print(cb)
# test_解析一个Python项目()
# test_Latex英文润色()
# test_Markdown中译英()
# test_批量翻译PDF文档()
# test_谷歌检索小助手()
# test_总结word文档()
# test_下载arxiv论文并翻译摘要()
# test_解析一个Cpp项目()
# test_联网回答问题()
# test_解析ipynb文件()
# test_数学动画生成manim()
# test_Langchain知识库()
# test_Langchain知识库读取()
if __name__ == "__main__":
test_Latex()
# test_解析一个Python项目()
# test_Latex英文润色()
# test_Markdown中译英()
# test_批量翻译PDF文档()
# test_谷歌检索小助手()
# test_总结word文档()
# test_下载arxiv论文并翻译摘要()
# test_解析一个Cpp项目()
# test_联网回答问题()
# test_解析ipynb文件()
# test_数学动画生成manim()
# test_Langchain知识库()
# test_Langchain知识库读取()
# test_Latex()
test_chatglm_finetune()
input("程序完成,回车退出。")
print("退出。")

View File

@ -332,7 +332,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
# 吸收在42行以内的begin-end组合
text, mask = set_forbidden_text_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=42)
# 吸收匿名公式
text, mask = set_forbidden_text(text, mask, [ r"\$\$(.*?)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
text, mask = set_forbidden_text(text, mask, [ r"\$\$([^$]+)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
# 吸收其他杂项
text, mask = set_forbidden_text(text, mask, [ r"\\section\{(.*?)\}", r"\\section\*\{(.*?)\}", r"\\subsection\{(.*?)\}", r"\\subsubsection\{(.*?)\}" ])
text, mask = set_forbidden_text(text, mask, [ r"\\bibliography\{(.*?)\}", r"\\bibliographystyle\{(.*?)\}" ])

View File

@ -0,0 +1,89 @@
import time, threading, json
class AliyunASR():
def test_on_sentence_begin(self, message, *args):
# print("test_on_sentence_begin:{}".format(message))
pass
def test_on_sentence_end(self, message, *args):
# print("test_on_sentence_end:{}".format(message))
message = json.loads(message)
self.parsed_sentence = message['payload']['result']
self.event_on_entence_end.set()
print(self.parsed_sentence)
def test_on_start(self, message, *args):
# print("test_on_start:{}".format(message))
pass
def test_on_error(self, message, *args):
# print("on_error args=>{}".format(args))
pass
def test_on_close(self, *args):
# print("on_close: args=>{}".format(args))
pass
def test_on_result_chg(self, message, *args):
# print("test_on_chg:{}".format(message))
message = json.loads(message)
self.parsed_text = message['payload']['result']
self.event_on_result_chg.set()
def test_on_completed(self, message, *args):
# print("on_completed:args=>{} message=>{}".format(args, message))
pass
def audio_convertion_thread(self, uuid):
# 在一个异步线程中采集音频
import nls # pip install git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
import tempfile
from scipy import io
from toolbox import get_conf
from .audio_io import change_sample_rate
from .audio_io import RealtimeAudioDistribution
NEW_SAMPLERATE = 16000
rad = RealtimeAudioDistribution()
rad.clean_up()
temp_folder = tempfile.gettempdir()
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
URL="wss://nls-gateway.aliyuncs.com/ws/v1"
sr = nls.NlsSpeechTranscriber(
url=URL,
token=TOKEN,
appkey=APPKEY,
on_sentence_begin=self.test_on_sentence_begin,
on_sentence_end=self.test_on_sentence_end,
on_start=self.test_on_start,
on_result_changed=self.test_on_result_chg,
on_completed=self.test_on_completed,
on_error=self.test_on_error,
on_close=self.test_on_close,
callback_args=[uuid.hex]
)
r = sr.start(aformat="pcm",
enable_intermediate_result=True,
enable_punctuation_prediction=True,
enable_inverse_text_normalization=True)
while not self.stop:
# time.sleep(self.capture_interval)
audio = rad.read(uuid.hex)
if audio is not None:
# convert to pcm file
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
io.wavfile.write(temp_file, NEW_SAMPLERATE, dsdata)
# read pcm binary
with open(temp_file, "rb") as f: data = f.read()
# print('audio len:', len(audio), '\t ds len:', len(dsdata), '\t need n send:', len(data)//640)
slices = zip(*(iter(data),) * 640) # 640个字节为一组
for i in slices: sr.send_audio(bytes(i))
else:
time.sleep(0.1)
r = sr.stop()

View File

@ -0,0 +1,51 @@
import numpy as np
from scipy import interpolate
def Singleton(cls):
_instance = {}
def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]
return _singleton
@Singleton
class RealtimeAudioDistribution():
def __init__(self) -> None:
self.data = {}
self.max_len = 1024*1024
self.rate = 48000 # 只读,每秒采样数量
def clean_up(self):
self.data = {}
def feed(self, uuid, audio):
self.rate, audio_ = audio
# print('feed', len(audio_), audio_[-25:])
if uuid not in self.data:
self.data[uuid] = audio_
else:
new_arr = np.concatenate((self.data[uuid], audio_))
if len(new_arr) > self.max_len: new_arr = new_arr[-self.max_len:]
self.data[uuid] = new_arr
def read(self, uuid):
if uuid in self.data:
res = self.data.pop(uuid)
print('\r read-', len(res), '-', max(res), end='', flush=True)
else:
res = None
return res
def change_sample_rate(audio, old_sr, new_sr):
duration = audio.shape[0] / old_sr
time_old = np.linspace(0, duration, audio.shape[0])
time_new = np.linspace(0, duration, int(audio.shape[0] * new_sr / old_sr))
interpolator = interpolate.interp1d(time_old, audio.T)
new_audio = interpolator(time_new).T
return new_audio.astype(np.int16)

View File

@ -0,0 +1,63 @@
from toolbox import CatchException, update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
@CatchException
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
plugin_kwargs 插件模型的参数, 如温度和top_p等, 一般原样传递下去就行
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
history = [] # 清空历史,以免输入溢出
chatbot.append(("这是什么功能?", "交互功能函数模板。在执行完成之后, 可以将自身的状态存储到cookie中, 等待用户的再次调用。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
state = chatbot._cookies.get('plugin_state_0001', None) # 初始化插件状态
if state is None:
chatbot._cookies['lock_plugin'] = 'crazy_functions.交互功能函数模板->交互功能模板函数' # 赋予插件锁定 锁定插件回调路径,当下一次用户提交时,会直接转到该函数
chatbot._cookies['plugin_state_0001'] = 'wait_user_keyword' # 赋予插件状态
chatbot.append(("第一次调用:", "请输入关键词, 我将为您查找相关壁纸, 建议使用英文单词, 插件锁定中,请直接提交即可。"))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
if state == 'wait_user_keyword':
chatbot._cookies['lock_plugin'] = None # 解除插件锁定,避免遗忘导致死锁
chatbot._cookies['plugin_state_0001'] = None # 解除插件状态,避免遗忘导致死锁
# 解除插件锁定
chatbot.append((f"获取关键词:{txt}", ""))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
page_return = get_image_page_by_keyword(txt)
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=inputs, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="When you want to show an image, use markdown format. e.g. ![image_description](image_url). If there are no image url provided, answer 'no image url provided'"
)
chatbot[-1] = [chatbot[-1][0], gpt_say]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# ---------------------------------------------------------------------------------
def get_image_page_by_keyword(keyword):
import requests
from bs4 import BeautifulSoup
response = requests.get(f'https://wallhaven.cc/search?q={keyword}', timeout=2)
res = "image urls: \n"
for image_element in BeautifulSoup(response.content, 'html.parser').findAll("img"):
try:
res += image_element["data-src"]
res += "\n"
except:
pass
return res

View File

@ -12,7 +12,7 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
file_name = 'chatGPT对话历史' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
os.makedirs('./gpt_log/', exist_ok=True)
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
from theme import advanced_css
from theme.theme import advanced_css
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
for i, contents in enumerate(chatbot):
for j, content in enumerate(contents):

View File

@ -1,121 +1,107 @@
from toolbox import update_ui
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
from toolbox import CatchException, report_execption, write_results_to_file
import re
import unicodedata
fast_debug = False
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import read_and_clean_pdf_text
from .crazy_utils import input_clipping
def is_paragraph_break(match):
"""
根据给定的匹配结果来判断换行符是否表示段落分隔。
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
也可以根据之前的内容长度来判断段落是否已经足够长。
"""
prev_char, next_char = match.groups()
# 句子结束标志
sentence_endings = ".!?"
# 设定一个最小段落长度阈值
min_paragraph_length = 140
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
return "\n\n"
else:
return " "
def normalize_text(text):
"""
通过把连字ligatures等文本特殊符号转换为其基本形式来对文本进行归一化处理。
例如,将连字 "fi" 转换为 "f""i"
"""
# 对文本进行归一化处理,分解连字
normalized_text = unicodedata.normalize("NFKD", text)
# 替换其他特殊字符
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
return cleaned_text
def clean_text(raw_text):
"""
对从 PDF 提取出的原始文本进行清洗和格式化处理。
1. 对原始文本进行归一化处理。
2. 替换跨行的连词
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换
"""
# 对文本进行归一化处理
normalized_text = normalize_text(raw_text)
# 替换跨行的连词
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
# 根据前后相邻字符的特点,找到原文本中的换行符
newlines = re.compile(r'(\S)\n(\S)')
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
return final_text.strip()
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import time, glob, os, fitz
print('begin analysis on:', file_manifest)
for index, fp in enumerate(file_manifest):
with fitz.open(fp) as doc:
file_content = ""
for page in doc:
file_content += page.get_text()
file_content = clean_text(file_content)
print(file_content)
file_write_buffer = []
for file_name in file_manifest:
print('begin analysis on:', file_name)
############################## <第 0 步切割PDF> ##################################
# 递归地切割PDF文件每一块尽量是完整的一个section比如introductionexperiment等必要时再进行切割
# 的长度必须小于 2500 个 Token
file_content, page_one = read_and_clean_pdf_text(file_name) # 尝试按照章节切割PDF
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
TOKEN_LIMIT_PER_FRAGMENT = 2500
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
i_say_show_user = prefix + f'[{index + 1}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from request_llm.bridge_all import model_info
enc = model_info["gpt-3.5-turbo"]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
# 为了更好的效果我们剥离Introduction之后的部分如果有
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
############################## <第 1 步从摘要中提取高价值信息放到history中> ##################################
final_results = []
final_results.append(paper_meta)
if not fast_debug:
msg = '正常'
# ** gpt request **
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="总结文章。"
) # 带超时倒计时
############################## <第 2 步,迭代地历遍整个文章,提取精炼信息> ##################################
i_say_show_user = f'首先你在中文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
chatbot[-1] = (i_say_show_user, gpt_say)
history.append(i_say_show_user); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
if not fast_debug: time.sleep(2)
iteration_results = []
last_iteration_result = paper_meta # 初始值是摘要
MAX_WORD_TOTAL = 4096 * 0.7
n_fragment = len(paper_fragments)
if n_fragment >= 20: print('文章极长,不能达到预期效果')
for i in range(n_fragment):
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问 i_say_show_user=给用户看的提问
llm_kwargs, chatbot,
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
sys_prompt="Extract the main idea of this section with Chinese." # 提示
)
iteration_results.append(gpt_say)
last_iteration_result = gpt_say
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
chatbot.append((i_say, "[Local Message] waiting gpt response."))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if not fast_debug:
msg = '正常'
# ** gpt request **
############################## <第 3 步整理history提取总结> ##################################
final_results.extend(iteration_results)
final_results.append(f'Please conclude this paper discussed above。')
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
NUM_OF_WORD = 1000
i_say = """
1. Mark the title of the paper (with Chinese translation)
2. list all the authors' names (use English)
3. mark the first author's affiliation (output Chinese translation only)
4. mark the keywords of this article (use English)
5. link to the paper, Github code link (if available, fill in Github:None if not)
6. summarize according to the following four points.Be sure to use Chinese answers (proper nouns need to be marked in English)
- (1):What is the research background of this article?
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
- (3):What is the research methodology proposed in this paper?
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
Follow the format of the output that follows:
1. Title: xxx\n\n
2. Authors: xxx\n\n
3. Affiliation: xxx\n\n
4. Keywords: xxx\n\n
5. Urls: xxx or xxx , xxx \n\n
6. Summary: \n\n
- (1):xxx;\n
- (2):xxx;\n
- (3):xxx;\n
- (4):xxx.\n\n
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
do not have too much repetitive information, numerical values using the original numbers.
"""
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
file_write_buffer.extend(final_results)
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=history,
sys_prompt="总结文章。"
) # 带超时倒计时
inputs=i_say, inputs_show_user='开始最终总结',
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
)
final_results.append(gpt_say)
file_write_buffer.extend([i_say, gpt_say])
############################## <第 4 步设置一个token上限> ##################################
_, final_results = input_clipping("", final_results, max_token_limit=3200)
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
chatbot[-1] = (i_say, gpt_say)
history.append(i_say); history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res))
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(file_write_buffer, file_name=gen_time_str())
promote_file_to_downloadzone(res.split('\t')[-1], chatbot=chatbot)
yield from update_ui(chatbot=chatbot, history=final_results) # 刷新界面
@CatchException
@ -151,10 +137,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
return
# 搜索需要处理的文件清单
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
# [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
# 如果没找到任何文件
if len(file_manifest) == 0:

View File

@ -6,7 +6,7 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数,如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
@ -35,7 +35,7 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数,如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒

View File

@ -0,0 +1,188 @@
from toolbox import update_ui
from toolbox import CatchException, get_conf, markdown_convertion
from crazy_functions.crazy_utils import input_clipping
from request_llm.bridge_all import predict_no_ui_long_connection
import threading, time
import numpy as np
from .live_audio.aliyunASR import AliyunASR
import json
class WatchDog():
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
self.last_feed = None
self.timeout = timeout
self.bark_fn = bark_fn
self.interval = interval
self.msg = msg
def watch(self):
while True:
if time.time() - self.last_feed > self.timeout:
if len(self.msg) > 0: print(self.msg)
self.bark_fn()
break
time.sleep(self.interval)
def begin_watch(self):
self.last_feed = time.time()
th = threading.Thread(target=self.watch)
th.daemon = True
th.start()
def feed(self):
self.last_feed = time.time()
def chatbot2history(chatbot):
history = []
for c in chatbot:
for q in c:
if q not in ["[请讲话]", "[等待GPT响应]", "[正在等您说完问题]"]:
history.append(q.strip('<div class="markdown-body">').strip('</div>').strip('<p>').strip('</p>'))
return history
class AsyncGptTask():
def __init__(self) -> None:
self.observe_future = []
self.observe_future_chatbot_index = []
def gpt_thread_worker(self, i_say, llm_kwargs, history, sys_prompt, observe_window, index):
try:
MAX_TOKEN_ALLO = 2560
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
observe_window=observe_window[index], console_slience=True)
except ConnectionAbortedError as token_exceed_err:
print('至少一个线程任务Token溢出而失败', e)
except Exception as e:
print('至少一个线程任务意外失败', e)
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
self.observe_future.append([""])
self.observe_future_chatbot_index.append(chatbot_index)
cur_index = len(self.observe_future)-1
th_new = threading.Thread(target=self.gpt_thread_worker, args=(i_say, llm_kwargs, history, system_prompt, self.observe_future, cur_index))
th_new.daemon = True
th_new.start()
def update_chatbot(self, chatbot):
for of, ofci in zip(self.observe_future, self.observe_future_chatbot_index):
try:
chatbot[ofci] = list(chatbot[ofci])
chatbot[ofci][1] = markdown_convertion(of[0])
except:
self.observe_future = []
self.observe_future_chatbot_index = []
return chatbot
class InterviewAssistant(AliyunASR):
def __init__(self):
self.capture_interval = 0.5 # second
self.stop = False
self.parsed_text = ""
self.parsed_sentence = ""
self.buffered_sentence = ""
self.event_on_result_chg = threading.Event()
self.event_on_entence_end = threading.Event()
self.event_on_commit_question = threading.Event()
def __del__(self):
self.stop = True
def init(self, chatbot):
# 初始化音频采集线程
self.captured_audio = np.array([])
self.keep_latest_n_second = 10
self.commit_after_pause_n_second = 1.5
self.ready_audio_flagment = None
self.stop = False
self.plugin_wd = WatchDog(timeout=5, bark_fn=self.__del__, msg="程序终止")
self.aut = threading.Thread(target=self.audio_convertion_thread, args=(chatbot._cookies['uuid'],))
self.aut.daemon = True
self.aut.start()
# th2 = threading.Thread(target=self.audio2txt_thread, args=(chatbot._cookies['uuid'],))
# th2.daemon = True
# th2.start()
def no_audio_for_a_while(self):
if len(self.buffered_sentence) < 7: # 如果一句话小于7个字暂不提交
self.commit_wd.begin_watch()
else:
self.event_on_commit_question.set()
def begin(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
# main plugin function
self.init(chatbot)
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.plugin_wd.begin_watch()
self.agt = AsyncGptTask()
self.commit_wd = WatchDog(timeout=self.commit_after_pause_n_second, bark_fn=self.no_audio_for_a_while, interval=0.2)
self.commit_wd.begin_watch()
while True:
self.event_on_result_chg.wait(timeout=0.25) # run once every 0.25 second
chatbot = self.agt.update_chatbot(chatbot) # 将子线程的gpt结果写入chatbot
history = chatbot2history(chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.plugin_wd.feed()
if self.event_on_result_chg.is_set():
# update audio decode result
self.event_on_result_chg.clear()
chatbot[-1] = list(chatbot[-1])
chatbot[-1][0] = self.buffered_sentence + self.parsed_text
history = chatbot2history(chatbot)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
self.commit_wd.feed()
if self.event_on_entence_end.is_set():
# called when a sentence has ended
self.event_on_entence_end.clear()
self.parsed_text = self.parsed_sentence
self.buffered_sentence += self.parsed_sentence
if self.event_on_commit_question.is_set():
# called when a question should be commited
self.event_on_commit_question.clear()
if len(self.buffered_sentence) == 0: raise RuntimeError
self.commit_wd.begin_watch()
chatbot[-1] = list(chatbot[-1])
chatbot[-1] = [self.buffered_sentence, "[等待GPT响应]"]
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# add gpt task 创建子线程请求gpt避免线程阻塞
history = chatbot2history(chatbot)
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
self.buffered_sentence = ""
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
@CatchException
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# pip install -U openai-whisper
chatbot.append(["对话助手函数插件:使用时,双手离开鼠标键盘吧", "音频助手, 正在听您讲话(点击“停止”键可终止程序)..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import nls
from scipy import io
except:
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
if TOKEN == "" or APPKEY == "":
chatbot.append(["导入依赖失败", "没有阿里云语音识别APPKEY和TOKEN, 详情见https://help.aliyun.com/document_detail/450255.html"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
ia = InterviewAssistant()
yield from ia.begin(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)

View File

@ -6,7 +6,7 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数,如温度和top_p等一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒

View File

@ -6,7 +6,7 @@
version: '3'
services:
gpt_academic_nolocalllms:
image: ghcr.io/binary-husky/gpt_academic_nolocal:master
image: ghcr.io/binary-husky/gpt_academic_nolocal:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal)
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
@ -33,7 +33,7 @@ services:
version: '3'
services:
gpt_academic_with_chatglm:
image: ghcr.io/binary-husky/gpt_academic_chatglm_moss:master
image: ghcr.io/binary-husky/gpt_academic_chatglm_moss:master # (Auto Built by Dockerfile: docs/Dockerfile+ChatGLM)
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
@ -63,7 +63,7 @@ services:
version: '3'
services:
gpt_academic_with_rwkv:
image: fuqingxu/gpt_academic:jittorllms # [option 2] 如果需要运行ChatGLM本地模型
image: fuqingxu/gpt_academic:jittorllms
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
@ -111,7 +111,7 @@ services:
version: '3'
services:
gpt_academic_with_latex:
image: ghcr.io/binary-husky/gpt_academic_with_latex:master
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
environment:
# 请查阅 `config.py` 以查看所有的配置信息
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '

46
docs/use_audio.md Normal file
View File

@ -0,0 +1,46 @@
# 使用音频交互功能
## 1. 安装额外依赖
```
pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
```
如果因为中国特色网络问题导致上述命令无法执行:
1. git clone alibabacloud-nls-python-sdk这个项目或者直接前往Github对应网址下载压缩包.
命令行输入: `git clone https://github.com/aliyun/alibabacloud-nls-python-sdk.git`
1. 进入alibabacloud-nls-python-sdk目录命令行输入`python setup.py install`
## 2. 配置音频功能开关 和 阿里云APPKEYconfig.py/config_private.py/环境变量)
```
ENABLE_AUDIO = True
ALIYUN_TOKEN = "554a50fcd0bb476c8d07bb630e94d20c" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
ALIYUN_APPKEY = "RoPlZrM88DnAFkZK" # 例如 RoPlZrM88DnAFkZK
```
参考 https://help.aliyun.com/document_detail/450255.html
先有阿里云开发者账号,登录之后,需要开通 智能语音交互 的功能可以免费获得一个token然后在 全部项目 中创建一个项目可以获得一个appkey.
## 3.启动
启动gpt-academic `python main.py`
## 4.点击record from microphe授权音频采集
I 如果需要监听自己说话(不监听电脑音频),直接在浏览器中选择对应的麦即可
II 如果需要监听电脑音频(不监听自己说话),需要安装`VB-Audio VoiceMeeter`,打开声音控制面板(sound control panel)
- 1 `[把电脑的所有外放声音用VoiceMeeter截留]` 在输出区playback选项卡把VoiceMeeter Input虚拟设备set as default设为默认播放设备。
- 2 `[把截留的声音释放到gpt-academic]` 打开gpt-academic主界面授权音频采集后在浏览器地址栏或者类似的地方会出现一个麦克风图标打开后按照浏览器的提示选择VoiceMeeter虚拟麦克风。然后刷新页面重新授权音频采集。
- 3 `[把截留的声音同时释放到耳机或音响]` 完成第一步之后,您应处于听不到电脑声音的状态。为了在截获音频的同时,避免影响正常使用,请完成这最后一步配置。在声音控制面板(sound control panel)输入区recording选项卡把VoiceMeeter Output虚拟设备set as default。双击进入VoiceMeeter Output虚拟设备的设置。
- 3-1 进入VoiceMeeter Output虚拟设备子菜单打开listen选项卡。
- 3-2 勾选Listen to this device。
- 3-3 在playback through this device下拉菜单中选择你的正常耳机或音响。
III 两种音频监听模式切换时,需要刷新页面才有效。
## 5.点击函数插件区“实时音频采集” 或者其他音频交互功能

68
main.py
View File

@ -4,22 +4,23 @@ def main():
import gradio as gr
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖详情信息见requirements.txt"
from request_llm.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
ENABLE_AUDIO, AUTO_CLEAR_TXT = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT')
# 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
if not AUTHENTICATION: AUTHENTICATION = None
from check_proxy import get_current_version
from theme.theme import adjust_theme, advanced_css, theme_declaration
initial_prompt = "Serve me as a writing and programming assistant."
title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>"
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
# 问询记录, python 版本建议3.9+(越新越好)
import logging
import logging, uuid
os.makedirs("gpt_log", exist_ok=True)
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
@ -37,7 +38,6 @@ def main():
gr.Chatbot.postprocess = format_io
# 做一些外观色彩上的调整
from theme import adjust_theme, advanced_css
set_theme = adjust_theme()
# 代理与自动更新
@ -45,23 +45,23 @@ def main():
proxy_info = check_proxy(proxies)
gr_L1 = lambda: gr.Row().style()
gr_L2 = lambda scale: gr.Column(scale=scale)
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id)
if LAYOUT == "TOP-DOWN":
gr_L1 = lambda: DummyWith()
gr_L2 = lambda scale: gr.Row()
gr_L2 = lambda scale, elem_id: gr.Row()
CHATBOT_HEIGHT /= 2
cancel_handles = []
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
gr.HTML(title_html)
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
cookies = gr.State(load_chat_cookies())
with gr_L1():
with gr_L2(scale=2):
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}")
chatbot.style(height=CHATBOT_HEIGHT)
with gr_L2(scale=2, elem_id="gpt-chat"):
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
history = gr.State([])
with gr_L2(scale=1):
with gr.Accordion("输入区", open=True) as area_input_primary:
with gr_L2(scale=1, elem_id="gpt-panel"):
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
with gr.Row():
@ -70,17 +70,20 @@ def main():
resetBtn = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
stopBtn = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
clearBtn = gr.Button("清除", variant="secondary", visible=False); clearBtn.style(size="sm")
if ENABLE_AUDIO:
with gr.Row():
audio_mic = gr.Audio(source="microphone", type="numpy", streaming=True, show_label=False).style(container=False)
with gr.Row():
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}")
with gr.Accordion("基础功能区", open=True) as area_basic_fn:
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
with gr.Row():
for k in functional:
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
functional[k]["Button"] = gr.Button(k, variant=variant)
with gr.Accordion("函数插件区", open=True) as area_crazy_fn:
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
with gr.Row():
gr.Markdown("注意:以下“红颜色”标识的函数插件需从输入区读取路径作为参数.")
gr.Markdown("插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)")
with gr.Row():
for k in crazy_fns:
if not crazy_fns[k].get("AsButton", True): continue
@ -91,16 +94,16 @@ def main():
with gr.Accordion("更多函数插件", open=True):
dropdown_fn_list = [k for k in crazy_fns.keys() if not crazy_fns[k].get("AsButton", True)]
with gr.Row():
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="").style(container=False)
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="", show_label=False).style(container=False)
with gr.Row():
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
with gr.Row():
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary")
with gr.Row():
with gr.Accordion("点击展开“文件上传区”。上传本地文件可供红色函数插件调用。", open=False) as area_file_up:
with gr.Accordion("点击展开“文件上传区”。上传本地文件/压缩包供函数插件调用。", open=False) as area_file_up:
file_upload = gr.Files(label="任何文件, 但推荐上传压缩文件(zip, tar)", file_count="multiple")
with gr.Accordion("更换模型 & SysPrompt & 交互界面布局", open=(LAYOUT == "TOP-DOWN")):
with gr.Accordion("更换模型 & SysPrompt & 交互界面布局", open=(LAYOUT == "TOP-DOWN"), elem_id="interact-panel"):
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
@ -109,7 +112,7 @@ def main():
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
gr.Markdown(description)
with gr.Accordion("备选输入区", open=True, visible=False) as area_input_secondary:
with gr.Accordion("备选输入区", open=True, visible=False, elem_id="input-panel2") as area_input_secondary:
with gr.Row():
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", label="输入区2").style(container=False)
with gr.Row():
@ -176,16 +179,29 @@ def main():
return {chatbot: gr.update(label="当前模型:"+k)}
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
# 随变按钮的回调函数注册
def route(k, *args, **kwargs):
def route(request: gr.Request, k, *args, **kwargs):
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(request, *args, **kwargs)
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
cancel_handles.append(click_handle)
# 终止按钮的回调函数注册
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
if ENABLE_AUDIO:
from crazy_functions.live_audio.audio_io import RealtimeAudioDistribution
rad = RealtimeAudioDistribution()
def deal_audio(audio, cookies):
rad.feed(cookies['uuid'].hex, audio)
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
def init_cookie(cookies, chatbot):
# 为每一位访问的用户赋予一个独一无二的uuid编码
cookies.update({'uuid': uuid.uuid4()})
return cookies
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
demo.load(lambda: 0, inputs=None, outputs=None, _js='()=>{ChatBotHeight();}')
# gradio的inbrowser触发不太稳定回滚代码到原始的浏览器打开函数
def auto_opentab_delay():
import threading, webbrowser, time

View File

@ -16,9 +16,6 @@ from toolbox import get_conf, trimmed_format_exc
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
from .bridge_chatgpt import predict as chatgpt_ui
from .bridge_azure_test import predict_no_ui_long_connection as azure_noui
from .bridge_azure_test import predict as azure_ui
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui
@ -48,10 +45,11 @@ class LazyloadTiktoken(object):
return encoder.decode(*args, **kwargs)
# Endpoint 重定向
API_URL_REDIRECT, = get_conf("API_URL_REDIRECT")
API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "AZURE_ENDPOINT", "AZURE_ENGINE")
openai_endpoint = "https://api.openai.com/v1/chat/completions"
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
# 兼容旧版的配置
try:
API_URL, = get_conf("API_URL")
@ -122,9 +120,9 @@ model_info = {
# azure openai
"azure-gpt-3.5":{
"fn_with_ui": azure_ui,
"fn_without_ui": azure_noui,
"endpoint": get_conf("AZURE_ENDPOINT"),
"fn_with_ui": chatgpt_ui,
"fn_without_ui": chatgpt_noui,
"endpoint": azure_endpoint,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
@ -170,7 +168,8 @@ model_info = {
}
AVAIL_LLM_MODELS, = get_conf("AVAIL_LLM_MODELS")
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
from .bridge_jittorllms_rwkv import predict as rwkv_ui
@ -271,6 +270,24 @@ if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
})
except:
print(trimmed_format_exc())
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
try:
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
from .bridge_chatglmft import predict as chatglmft_ui
# claude
model_info.update({
"chatglmft": {
"fn_with_ui": chatglmft_ui,
"fn_without_ui": chatglmft_noui,
"endpoint": None,
"max_token": 4096,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
}
})
except:
print(trimmed_format_exc())
def LLM_CATCH_EXCEPTION(f):
"""
@ -374,6 +391,6 @@ def predict(inputs, llm_kwargs, *args, **kwargs):
additional_fn代表点击的哪个按钮按钮见functional.py
"""
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错检查config中的AVAIL_LLM_MODELS选项
yield from method(inputs, llm_kwargs, *args, **kwargs)

View File

@ -1,237 +0,0 @@
"""
该文件中主要包含三个函数
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
具备多线程调用能力的函数
2. predict_no_ui高级实验性功能模块调用不会实时显示在界面上参数简单可以多线程并行方便实现复杂的功能逻辑
3. predict_no_ui_long_connection在实验过程中发现调用predict_no_ui处理长文档时和openai的连接容易断掉这个函数用stream的方式解决这个问题同样支持多线程
"""
import logging
import traceback
import importlib
import openai
import time
import requests
import json
# 读取config.py文件中关于AZURE OPENAI API的信息
from toolbox import get_conf, update_ui, clip_history, trimmed_format_exc
TIMEOUT_SECONDS, MAX_RETRY, AZURE_ENGINE, AZURE_ENDPOINT, AZURE_API_VERSION, AZURE_API_KEY = \
get_conf('TIMEOUT_SECONDS', 'MAX_RETRY',"AZURE_ENGINE","AZURE_ENDPOINT", "AZURE_API_VERSION", "AZURE_API_KEY")
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至azure openai api流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
raw_input = inputs
logging.info(f'[raw_input] {raw_input}')
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream)
history.append(inputs); history.append("")
retry = 0
while True:
try:
openai.api_type = "azure"
openai.api_version = AZURE_API_VERSION
openai.api_base = AZURE_ENDPOINT
openai.api_key = AZURE_API_KEY
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
except openai.error.AuthenticationError:
tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = [chatbot[-1][0], tb_str]
yield from update_ui(chatbot=chatbot, history=history, msg="openai返回错误") # 刷新界面
return
except:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
gpt_replying_buffer = ""
is_head_of_the_stream = True
if stream:
stream_response = response
while True:
try:
chunk = next(stream_response)
except StopIteration:
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk)}")
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk) # 刷新界面
return
if is_head_of_the_stream and (r'"object":"error"' not in chunk):
# 数据流的第一帧不携带content
is_head_of_the_stream = False; continue
if chunk:
#print(chunk)
try:
if "delta" in chunk["choices"][0]:
if chunk["choices"][0]["finish_reason"] == "stop":
logging.info(f'[response] {gpt_replying_buffer}')
break
status_text = f"finish_reason: {chunk['choices'][0]['finish_reason']}"
gpt_replying_buffer = gpt_replying_buffer + chunk["choices"][0]["delta"]["content"]
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
except Exception as e:
traceback.print_exc()
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
chunk = get_full_error(chunk, stream_response)
error_msg = chunk
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
return
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至AZURE OPENAI API等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
retry = 0
while True:
try:
openai.api_type = "azure"
openai.api_version = AZURE_API_VERSION
openai.api_base = AZURE_ENDPOINT
openai.api_key = AZURE_API_KEY
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
except:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response
result = ''
while True:
try: chunk = next(stream_response)
except StopIteration:
break
except:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
if len(chunk)==0: continue
json_data = json.loads(str(chunk))['choices'][0]
delta = json_data["delta"]
if len(delta) == 0:
break
if "role" in delta:
continue
if "content" in delta:
result += delta["content"]
if not console_slience: print(delta["content"], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1: observe_window[0] += delta["content"]
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2000:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
else:
raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'content_filter':
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
return result
def generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream):
"""
整合所有信息选择LLM模型生成 azure openai api请求为发送请求做准备
"""
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
payload = {
"model": llm_kwargs['llm_model'],
"messages": messages,
"temperature": llm_kwargs['temperature'], # 1.0,
"top_p": llm_kwargs['top_p'], # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
"engine": AZURE_ENGINE
}
try:
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
except:
print('输入中可能存在乱码。')
return payload

View File

@ -0,0 +1,210 @@
from transformers import AutoModel, AutoTokenizer
import time
import os
import json
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
load_message = "ChatGLMFT尚未加载加载需要一段时间。注意取决于`config.py`的配置ChatGLMFT消耗大量的内存CPU或显存GPU也许会导致低配计算机卡死 ……"
def string_to_options(arguments):
import argparse
import shlex
# Create an argparse.ArgumentParser instance
parser = argparse.ArgumentParser()
# Add command-line arguments
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
parser.add_argument("--batch", type=int, help="System prompt", default=50)
# Parse the arguments
args = parser.parse_args(shlex.split(arguments))
return args
#################################################################################
class GetGLMFTHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.chatglmft_model = None
self.chatglmft_tokenizer = None
self.info = ""
self.success = True
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def check_dependency(self):
try:
import sentencepiece
self.info = "依赖检测通过"
self.success = True
except:
self.info = "缺少ChatGLMFT的依赖如果要使用ChatGLMFT除了基础的pip依赖以外您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
self.success = False
def ready(self):
return self.chatglmft_model is not None
def run(self):
# 子进程执行
# 第一次运行,加载参数
retry = 0
while True:
try:
if self.chatglmft_model is None:
from transformers import AutoConfig
import torch
# conf = 'request_llm/current_ptune_model.json'
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
# with open(conf, 'r', encoding='utf8') as f:
# model_args = json.loads(f.read())
ChatGLM_PTUNING_CHECKPOINT, = get_conf('ChatGLM_PTUNING_CHECKPOINT')
assert os.path.exists(ChatGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
conf = os.path.join(ChatGLM_PTUNING_CHECKPOINT, "config.json")
with open(conf, 'r', encoding='utf8') as f:
model_args = json.loads(f.read())
if 'model_name_or_path' not in model_args:
model_args['model_name_or_path'] = model_args['_name_or_path']
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
model_args['model_name_or_path'], trust_remote_code=True)
config = AutoConfig.from_pretrained(
model_args['model_name_or_path'], trust_remote_code=True)
config.pre_seq_len = model_args['pre_seq_len']
config.prefix_projection = model_args['prefix_projection']
print(f"Loading prefix_encoder weight from {ChatGLM_PTUNING_CHECKPOINT}")
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(ChatGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
if model_args['quantization_bit'] is not None:
print(f"Quantized to {model_args['quantization_bit']} bit")
model = model.quantize(model_args['quantization_bit'])
model = model.cuda()
if model_args['pre_seq_len'] is not None:
# P-tuning v2
model.transformer.prefix_encoder.float()
self.chatglmft_model = model.eval()
break
else:
break
except Exception as e:
retry += 1
if retry > 3:
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
raise RuntimeError("不能正常加载ChatGLMFT的参数")
while True:
# 进入任务等待状态
kwargs = self.child.recv()
# 收到消息,开始请求
try:
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
self.child.send(response)
# # 中途接收可能的终止指令(如果有的话)
# if self.child.poll():
# command = self.child.recv()
# if command == '[Terminate]': break
except:
from toolbox import trimmed_format_exc
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
# 请求处理结束,开始下一个循环
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# 主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res != '[Finish]':
yield res
else:
break
self.threadLock.release()
global glmft_handle
glmft_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
global glmft_handle
if glmft_handle is None:
glmft_handle = GetGLMFTHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
if not glmft_handle.success:
error = glmft_handle.info
glmft_handle = None
raise RuntimeError(error)
# chatglmft 没有 sys_prompt 接口因此把prompt加入 history
history_feedin = []
history_feedin.append(["What can I do?", sys_prompt])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1: observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
global glmft_handle
if glmft_handle is None:
glmft_handle = GetGLMFTHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not glmft_handle.success:
glmft_handle = None
return
if additional_fn is not None:
import core_functional
importlib.reload(core_functional) # 热更新prompt
core_functional = core_functional.get_core_functions()
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
# 处理历史信息
history_feedin = []
history_feedin.append(["What can I do?", system_prompt] )
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收chatglmft的回复
response = "[Local Message]: 等待ChatGLMFT响应中 ..."
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
response = "[Local Message]: ChatGLMFT响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)

View File

@ -22,8 +22,8 @@ import importlib
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
@ -101,6 +101,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
else: raise RuntimeError("意外Json结构"+delta)
if json_data['finish_reason'] == 'content_filter':
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("正常结束但显示Token不足导致输出不完整请削减单次输入的文本量。")
return result
@ -247,6 +249,7 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
"Authorization": f"Bearer {api_key}"
}
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
if llm_kwargs['llm_model'].startswith('azure-'): headers.update({"api-key": api_key})
conversation_cnt = len(history) // 2

View File

@ -1,4 +1,5 @@
./docs/gradio-3.32.2-py3-none-any.whl
pydantic==1.10.11
tiktoken>=0.3.3
requests[socks]
transformers
@ -15,4 +16,4 @@ pymupdf
openai
numpy
arxiv
rich
rich

47
theme/common.js Normal file
View File

@ -0,0 +1,47 @@
function ChatBotHeight() {
function update_height(){
var { panel_height_target, chatbot_height, chatbot } = get_elements();
if (panel_height_target!=chatbot_height)
{
var pixelString = panel_height_target.toString() + 'px';
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
}
}
function update_height_slow(){
var { panel_height_target, chatbot_height, chatbot } = get_elements();
if (panel_height_target!=chatbot_height)
{
new_panel_height = (panel_height_target - chatbot_height)*0.5 + chatbot_height;
if (Math.abs(new_panel_height - panel_height_target) < 10){
new_panel_height = panel_height_target;
}
// console.log(chatbot_height, panel_height_target, new_panel_height);
var pixelString = new_panel_height.toString() + 'px';
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
}
}
update_height();
setInterval(function() {
update_height_slow()
}, 50); // 每100毫秒执行一次
}
function get_elements() {
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
if (!chatbot) {
chatbot = document.querySelector('#gpt-chatbot');
}
const panel1 = document.querySelector('#input-panel');
const panel2 = document.querySelector('#basic-panel');
const panel3 = document.querySelector('#plugin-panel');
const panel4 = document.querySelector('#interact-panel');
const panel5 = document.querySelector('#input-panel2');
const panel_active = document.querySelector('#state-panel');
var panel_height_target = (20-panel_active.offsetHeight) + panel1.offsetHeight + panel2.offsetHeight + panel3.offsetHeight + panel4.offsetHeight + panel5.offsetHeight + 21;
var panel_height_target = parseInt(panel_height_target);
var chatbot_height = chatbot.style.height;
var chatbot_height = parseInt(chatbot_height);
return { panel_height_target, chatbot_height, chatbot };
}

View File

@ -1,108 +1,3 @@
import gradio as gr
from toolbox import get_conf
CODE_HIGHLIGHT, ADD_WAIFU = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU')
# gradio可用颜色列表
# gr.themes.utils.colors.slate (石板色)
# gr.themes.utils.colors.gray (灰色)
# gr.themes.utils.colors.zinc (锌色)
# gr.themes.utils.colors.neutral (中性色)
# gr.themes.utils.colors.stone (石头色)
# gr.themes.utils.colors.red (红色)
# gr.themes.utils.colors.orange (橙色)
# gr.themes.utils.colors.amber (琥珀色)
# gr.themes.utils.colors.yellow (黄色)
# gr.themes.utils.colors.lime (酸橙色)
# gr.themes.utils.colors.green (绿色)
# gr.themes.utils.colors.emerald (祖母绿)
# gr.themes.utils.colors.teal (青蓝色)
# gr.themes.utils.colors.cyan (青色)
# gr.themes.utils.colors.sky (天蓝色)
# gr.themes.utils.colors.blue (蓝色)
# gr.themes.utils.colors.indigo (靛蓝色)
# gr.themes.utils.colors.violet (紫罗兰色)
# gr.themes.utils.colors.purple (紫色)
# gr.themes.utils.colors.fuchsia (洋红色)
# gr.themes.utils.colors.pink (粉红色)
# gr.themes.utils.colors.rose (玫瑰色)
def adjust_theme():
try:
color_er = gr.themes.utils.colors.fuchsia
set_theme = gr.themes.Default(
primary_hue=gr.themes.utils.colors.orange,
neutral_hue=gr.themes.utils.colors.gray,
font=["sans-serif", "Microsoft YaHei", "ui-sans-serif", "system-ui",
"sans-serif", gr.themes.utils.fonts.GoogleFont("Source Sans Pro")],
font_mono=["ui-monospace", "Consolas", "monospace", gr.themes.utils.fonts.GoogleFont("IBM Plex Mono")])
set_theme.set(
# Colors
input_background_fill_dark="*neutral_800",
# Transition
button_transition="none",
# Shadows
button_shadow="*shadow_drop",
button_shadow_hover="*shadow_drop_lg",
button_shadow_active="*shadow_inset",
input_shadow="0 0 0 *shadow_spread transparent, *shadow_inset",
input_shadow_focus="0 0 0 *shadow_spread *secondary_50, *shadow_inset",
input_shadow_focus_dark="0 0 0 *shadow_spread *neutral_700, *shadow_inset",
checkbox_label_shadow="*shadow_drop",
block_shadow="*shadow_drop",
form_gap_width="1px",
# Button borders
input_border_width="1px",
input_background_fill="white",
# Gradients
stat_background_fill="linear-gradient(to right, *primary_400, *primary_200)",
stat_background_fill_dark="linear-gradient(to right, *primary_400, *primary_600)",
error_background_fill=f"linear-gradient(to right, {color_er.c100}, *background_fill_secondary)",
error_background_fill_dark="*background_fill_primary",
checkbox_label_background_fill="linear-gradient(to top, *neutral_50, white)",
checkbox_label_background_fill_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
checkbox_label_background_fill_hover="linear-gradient(to top, *neutral_100, white)",
checkbox_label_background_fill_hover_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
button_primary_background_fill="linear-gradient(to bottom right, *primary_100, *primary_300)",
button_primary_background_fill_dark="linear-gradient(to bottom right, *primary_500, *primary_600)",
button_primary_background_fill_hover="linear-gradient(to bottom right, *primary_100, *primary_200)",
button_primary_background_fill_hover_dark="linear-gradient(to bottom right, *primary_500, *primary_500)",
button_primary_border_color_dark="*primary_500",
button_secondary_background_fill="linear-gradient(to bottom right, *neutral_100, *neutral_200)",
button_secondary_background_fill_dark="linear-gradient(to bottom right, *neutral_600, *neutral_700)",
button_secondary_background_fill_hover="linear-gradient(to bottom right, *neutral_100, *neutral_100)",
button_secondary_background_fill_hover_dark="linear-gradient(to bottom right, *neutral_600, *neutral_600)",
button_cancel_background_fill=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c200})",
button_cancel_background_fill_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c700})",
button_cancel_background_fill_hover=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c100})",
button_cancel_background_fill_hover_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c600})",
button_cancel_border_color=color_er.c200,
button_cancel_border_color_dark=color_er.c600,
button_cancel_text_color=color_er.c600,
button_cancel_text_color_dark="white",
)
# 添加一个萌萌的看板娘
if ADD_WAIFU:
js = """
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
<script src="file=docs/waifu_plugin/autoload.js"></script>
"""
gradio_original_template_fn = gr.routes.templates.TemplateResponse
def gradio_new_template_fn(*args, **kwargs):
res = gradio_original_template_fn(*args, **kwargs)
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
except:
set_theme = None
print('gradio版本较旧, 不能自定义字体和颜色')
return set_theme
advanced_css = """
.markdown-body table {
margin: 1em 0;
border-collapse: collapse;
@ -187,10 +82,15 @@ advanced_css = """
margin: 1em 2em 1em 0.5em;
}
"""
/* .mic-wrap.svelte-1thnwz {
if CODE_HIGHLIGHT:
advanced_css += """
} */
.block.svelte-mppz8v > .mic-wrap.svelte-1thnwz{
justify-content: center;
display: flex;
padding: 0;
}
.codehilite .hll { background-color: #6e7681 }
.codehilite .c { color: #8b949e; font-style: italic } /* Comment */
@ -350,4 +250,3 @@ if CODE_HIGHLIGHT:
.dark .codehilite .vm { color: #82AAFF } /* Name.Variable.Magic */
.dark .codehilite .il { color: #F78C6C } /* Literal.Number.Integer.Long */
"""

87
theme/default.py Normal file
View File

@ -0,0 +1,87 @@
import gradio as gr
from toolbox import get_conf
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
def adjust_theme():
try:
color_er = gr.themes.utils.colors.fuchsia
set_theme = gr.themes.Default(
primary_hue=gr.themes.utils.colors.orange,
neutral_hue=gr.themes.utils.colors.gray,
font=["sans-serif", "Microsoft YaHei", "ui-sans-serif", "system-ui",
"sans-serif", gr.themes.utils.fonts.GoogleFont("Source Sans Pro")],
font_mono=["ui-monospace", "Consolas", "monospace", gr.themes.utils.fonts.GoogleFont("IBM Plex Mono")])
set_theme.set(
# Colors
input_background_fill_dark="*neutral_800",
# Transition
button_transition="none",
# Shadows
button_shadow="*shadow_drop",
button_shadow_hover="*shadow_drop_lg",
button_shadow_active="*shadow_inset",
input_shadow="0 0 0 *shadow_spread transparent, *shadow_inset",
input_shadow_focus="0 0 0 *shadow_spread *secondary_50, *shadow_inset",
input_shadow_focus_dark="0 0 0 *shadow_spread *neutral_700, *shadow_inset",
checkbox_label_shadow="*shadow_drop",
block_shadow="*shadow_drop",
form_gap_width="1px",
# Button borders
input_border_width="1px",
input_background_fill="white",
# Gradients
stat_background_fill="linear-gradient(to right, *primary_400, *primary_200)",
stat_background_fill_dark="linear-gradient(to right, *primary_400, *primary_600)",
error_background_fill=f"linear-gradient(to right, {color_er.c100}, *background_fill_secondary)",
error_background_fill_dark="*background_fill_primary",
checkbox_label_background_fill="linear-gradient(to top, *neutral_50, white)",
checkbox_label_background_fill_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
checkbox_label_background_fill_hover="linear-gradient(to top, *neutral_100, white)",
checkbox_label_background_fill_hover_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
button_primary_background_fill="linear-gradient(to bottom right, *primary_100, *primary_300)",
button_primary_background_fill_dark="linear-gradient(to bottom right, *primary_500, *primary_600)",
button_primary_background_fill_hover="linear-gradient(to bottom right, *primary_100, *primary_200)",
button_primary_background_fill_hover_dark="linear-gradient(to bottom right, *primary_500, *primary_500)",
button_primary_border_color_dark="*primary_500",
button_secondary_background_fill="linear-gradient(to bottom right, *neutral_100, *neutral_200)",
button_secondary_background_fill_dark="linear-gradient(to bottom right, *neutral_600, *neutral_700)",
button_secondary_background_fill_hover="linear-gradient(to bottom right, *neutral_100, *neutral_100)",
button_secondary_background_fill_hover_dark="linear-gradient(to bottom right, *neutral_600, *neutral_600)",
button_cancel_background_fill=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c200})",
button_cancel_background_fill_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c700})",
button_cancel_background_fill_hover=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c100})",
button_cancel_background_fill_hover_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c600})",
button_cancel_border_color=color_er.c200,
button_cancel_border_color_dark=color_er.c600,
button_cancel_text_color=color_er.c600,
button_cancel_text_color_dark="white",
)
if LAYOUT=="TOP-DOWN":
js = ""
else:
with open('theme/common.js', 'r', encoding='utf8') as f:
js = f"<script>{f.read()}</script>"
# 添加一个萌萌的看板娘
if ADD_WAIFU:
js += """
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
<script src="file=docs/waifu_plugin/autoload.js"></script>
"""
gradio_original_template_fn = gr.routes.templates.TemplateResponse
def gradio_new_template_fn(*args, **kwargs):
res = gradio_original_template_fn(*args, **kwargs)
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
except:
set_theme = None
print('gradio版本较旧, 不能自定义字体和颜色')
return set_theme
with open("theme/default.css", "r", encoding="utf-8") as f:
advanced_css = f.read()

806
theme/green.css Normal file
View File

@ -0,0 +1,806 @@
:root {
--chatbot-color-light: #000000;
--chatbot-color-dark: #FFFFFF;
--chatbot-background-color-light: #F3F3F3;
--chatbot-background-color-dark: #121111;
--message-user-background-color-light: #95EC69;
--message-user-background-color-dark: #26B561;
--message-bot-background-color-light: #FFFFFF;
--message-bot-background-color-dark: #2C2C2C;
}
mspace {
display: block;
}
@media only screen and (max-width: 767px) {
#column_1 {
display: none !important;
}
}
@keyframes highlight {
0%, 100% {
border: 2px solid transparent;
}
50% {
border-color: yellow;
}
}
#highlight_update {
animation-name: highlight;
animation-duration: 0.75s;
animation-iteration-count: 3;
}
.table-wrap.svelte-13hsdno.svelte-13hsdno.svelte-13hsdno {
border: 0px solid var(--border-color-primary) !important;
}
#examples_col {
z-index: 2;
position: absolute;
bottom: 0;
left: 0;
width: 100%;
margin-bottom: 30% !important;
}
#hide_examples {
z-index: 0;
}
#debug_mes {
position: absolute;
display: flex;
bottom: 0;
left: 0;
z-index: 1; /* 设置更高的 z-index 值 */
margin-bottom: -4px !important;
align-self: flex-end;
}
#chat_box {
display: flex;
flex-direction: column;
overflow-y: visible !important;
z-index: 3;
flex-grow: 1; /* 自动填充剩余空间 */
position: absolute;
bottom: 0;
left: 0;
width: 100%;
margin-bottom: 30px !important;
border: 1px solid var(--border-color-primary);
}
.toast-body {
z-index: 5 !important;
}
.chat_input {
}
.sm_btn {
position: relative;
bottom: 5px;
height: 10%;
border-radius: 20px!important;
min-width: min(10%,100%) !important;
overflow: hidden;
}
.sm_select {
position: relative !important;
z-index: 5 !important;
bottom: 5px;
min-width: min(20%,100%) !important;
border-radius: 20px!important;
}
.sm_checkbox {
position: relative !important;
z-index: 5 !important;
bottom: 5px;
padding: 0 !important;
}
.sm_select .wrap-inner.svelte-aqlk7e.svelte-aqlk7e.svelte-aqlk7e {
padding: 0 !important;
}
.sm_select .block.svelte-mppz8v {
width: 10% !important;
}
/* usage_display */
.insert_block {
position: relative;
bottom: 2px;
min-width: min(55px,100%) !important;
}
.submit_btn {
flex-direction: column-reverse;
overflow-y: auto !important;
position: absolute;
bottom: 0;
right: 10px;
margin-bottom: 10px !important;
min-width: min(50px,100%) !important;
}
textarea {
resize: none;
height: 100%; /* 填充父元素的高度 */
}
#main_chatbot {
height: 75vh !important;
max-height: 75vh !important;
/* overflow: auto !important; */
z-index: 2;
transform: translateZ(0) !important;
backface-visibility: hidden !important;
will-change: transform !important;
}
#prompt_result{
height: 60vh !important;
max-height: 60vh !important;
}
#app_title {
font-weight: var(--prose-header-text-weight);
font-size: var(--text-xxl);
line-height: 1.3;
text-align: left;
margin-top: 6px;
white-space: nowrap;
}
#description {
text-align: center;
margin: 32px 0 4px 0;
}
/* gradio的页脚信息 */
footer {
/* display: none !important; */
margin-top: .2em !important;
font-size: 85%;
}
#footer {
text-align: center;
}
#footer div {
display: inline-block;
}
#footer .versions{
font-size: 85%;
opacity: 0.60;
}
/* user_info */
#float_display {
position: absolute;
max-height: 30px;
}
/* user_info */
#user_info {
white-space: nowrap;
position: absolute; left: 8em; top: .2em;
z-index: var(--layer-2);
box-shadow: var(--block-shadow);
border: none; border-radius: var(--block-label-radius);
background: var(--color-accent);
padding: var(--block-label-padding);
font-size: var(--block-label-text-size); line-height: var(--line-sm);
width: auto; min-height: 30px !important;
opacity: 1;
transition: opacity 0.3s ease-in-out;
}
textarea.svelte-1pie7s6 {
background: #e7e6e6 !important;
width: 96% !important;
}
.dark textarea.svelte-1pie7s6 {
background: var(--input-background-fill) !important;
width: 96% !important;
}
.dark input[type=number].svelte-1cl284s {
background: #393939 !important;
border: var(--input-border-width) solid var(--input-border-color) !important;
}
.dark input[type="range"] {
background: #393939 !important;
}
#user_info .wrap {
opacity: 0;
}
#user_info p {
color: white;
font-weight: var(--block-label-text-weight);
}
#user_info.hideK {
opacity: 0;
transition: opacity 1s ease-in-out;
}
[class *= "message"] {
gap: 7px !important;
border-radius: var(--radius-xl) !important
}
/* debug_mes */
#debug_mes {
min-height: 2em;
align-items: flex-end;
justify-content: flex-end;
}
#debug_mes p {
font-size: .85em;
font-family: ui-monospace, "SF Mono", "SFMono-Regular", "Menlo", "Consolas", "Liberation Mono", "Microsoft Yahei UI", "Microsoft Yahei", monospace;
/* Windows下中文的monospace会fallback为新宋体实在太丑这里折中使用微软雅黑 */
color: #000000;
}
.dark #debug_mes p {
color: #ee65ed;
}
#debug_mes {
transition: all 0.6s;
}
#main_chatbot {
transition: height 0.3s ease;
}
/* .wrap.svelte-18telvq.svelte-18telvq {
padding: var(--block-padding) !important;
height: 100% !important;
max-height: 95% !important;
overflow-y: auto !important;
}*/
.app.svelte-1mya07g.svelte-1mya07g {
max-width: 100%;
position: relative;
padding: var(--size-4);
width: 100%;
height: 100%;
}
.gradio-container-3-32-2 h1 {
font-weight: 700 !important;
font-size: 28px !important;
}
.gradio-container-3-32-2 h2 {
font-weight: 600 !important;
font-size: 24px !important;
}
.gradio-container-3-32-2 h3 {
font-weight: 500 !important;
font-size: 20px !important;
}
.gradio-container-3-32-2 h4 {
font-weight: 400 !important;
font-size: 16px !important;
}
.gradio-container-3-32-2 h5 {
font-weight: 300 !important;
font-size: 14px !important;
}
.gradio-container-3-32-2 h6 {
font-weight: 200 !important;
font-size: 12px !important;
}
#usage_display p, #usage_display span {
margin: 0;
font-size: .85em;
color: var(--body-text-color-subdued);
}
.progress-bar {
background-color: var(--input-background-fill);;
margin: .5em 0 !important;
height: 20px;
border-radius: 10px;
overflow: hidden;
}
.progress {
background-color: var(--block-title-background-fill);
height: 100%;
border-radius: 10px;
text-align: right;
transition: width 0.5s ease-in-out;
}
.progress-text {
/* color: white; */
color: var(--color-accent) !important;
font-size: 1em !important;
font-weight: bold;
padding-right: 10px;
line-height: 20px;
}
.apSwitch {
top: 2px;
display: inline-block;
height: 24px;
position: relative;
width: 48px;
border-radius: 12px;
}
.apSwitch input {
display: none !important;
}
.apSlider {
background-color: var(--neutral-200);
bottom: 0;
cursor: pointer;
left: 0;
position: absolute;
right: 0;
top: 0;
transition: .4s;
font-size: 18px;
border-radius: 7px;
}
.apSlider::before {
bottom: -1.5px;
left: 1px;
position: absolute;
transition: .4s;
content: "🌞";
}
hr.append-display {
margin: 8px 0;
border: none;
height: 1px;
border-top-width: 0;
background-image: linear-gradient(to right, rgba(50,50,50, 0.1), rgba(150, 150, 150, 0.8), rgba(50,50,50, 0.1));
}
.source-a {
font-size: 0.8em;
max-width: 100%;
margin: 0;
display: flex;
flex-direction: row;
flex-wrap: wrap;
align-items: center;
/* background-color: #dddddd88; */
border-radius: 1.5rem;
padding: 0.2em;
}
.source-a a {
display: inline-block;
background-color: #aaaaaa50;
border-radius: 1rem;
padding: 0.5em;
text-align: center;
text-overflow: ellipsis;
overflow: hidden;
min-width: 20%;
white-space: nowrap;
margin: 0.2rem 0.1rem;
text-decoration: none !important;
flex: 1;
transition: flex 0.5s;
}
.source-a a:hover {
background-color: #aaaaaa20;
flex: 2;
}
input:checked + .apSlider {
background-color: var(--primary-600);
}
input:checked + .apSlider::before {
transform: translateX(23px);
content:"🌚";
}
/* Override Slider Styles (for webkit browsers like Safari and Chrome)
* 好希望这份提案能早日实现 https://github.com/w3c/csswg-drafts/issues/4410
* 进度滑块在各个平台还是太不统一了
*/
input[type="range"] {
-webkit-appearance: none;
height: 4px;
background: var(--input-background-fill);
border-radius: 5px;
background-image: linear-gradient(var(--primary-500),var(--primary-500));
background-size: 0% 100%;
background-repeat: no-repeat;
}
input[type="range"]::-webkit-slider-thumb {
-webkit-appearance: none;
height: 20px;
width: 20px;
border-radius: 50%;
border: solid 0.5px #ddd;
background-color: white;
cursor: ew-resize;
box-shadow: var(--input-shadow);
transition: background-color .1s ease;
}
input[type="range"]::-webkit-slider-thumb:hover {
background: var(--neutral-50);
}
input[type=range]::-webkit-slider-runnable-track {
-webkit-appearance: none;
box-shadow: none;
border: none;
background: transparent;
}
.submit_btn, #cancel_btn {
height: 42px !important;
}
.submit_btn::before {
content: url("data:image/svg+xml, %3Csvg width='21px' height='20px' viewBox='0 0 21 20' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E %3Cg id='page' stroke='none' stroke-width='1' fill='none' fill-rule='evenodd'%3E %3Cg id='send' transform='translate(0.435849, 0.088463)' fill='%23FFFFFF' fill-rule='nonzero'%3E %3Cpath d='M0.579148261,0.0428666046 C0.301105539,-0.0961547561 -0.036517765,0.122307382 0.0032026237,0.420210298 L1.4927172,18.1553639 C1.5125774,18.4334066 1.79062012,18.5922882 2.04880264,18.4929872 L8.24518329,15.8913017 L11.6412765,19.7441794 C11.8597387,19.9825018 12.2370824,19.8832008 12.3165231,19.5852979 L13.9450591,13.4882182 L19.7839562,11.0255541 C20.0619989,10.8865327 20.0818591,10.4694687 19.7839562,10.3105871 L0.579148261,0.0428666046 Z M11.6138902,17.0883151 L9.85385903,14.7195502 L0.718169621,0.618812241 L12.69945,12.9346347 L11.6138902,17.0883151 Z' id='shape'%3E%3C/path%3E %3C/g%3E %3C/g%3E %3C/svg%3E");
height: 21px;
}
#cancel_btn::before {
content: url("data:image/svg+xml,%3Csvg width='21px' height='21px' viewBox='0 0 21 21' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E %3Cg id='pg' stroke='none' stroke-width='1' fill='none' fill-rule='evenodd'%3E %3Cpath d='M10.2072007,20.088463 C11.5727865,20.088463 12.8594566,19.8259823 14.067211,19.3010209 C15.2749653,18.7760595 16.3386126,18.0538087 17.2581528,17.1342685 C18.177693,16.2147282 18.8982283,15.1527965 19.4197586,13.9484733 C19.9412889,12.7441501 20.202054,11.4557644 20.202054,10.0833163 C20.202054,8.71773046 19.9395733,7.43106036 19.4146119,6.22330603 C18.8896505,5.01555169 18.1673997,3.95018885 17.2478595,3.0272175 C16.3283192,2.10424615 15.2646719,1.3837109 14.0569176,0.865611739 C12.8491633,0.34751258 11.5624932,0.088463 10.1969073,0.088463 C8.83132146,0.088463 7.54636692,0.34751258 6.34204371,0.865611739 C5.1377205,1.3837109 4.07407321,2.10424615 3.15110186,3.0272175 C2.22813051,3.95018885 1.5058797,5.01555169 0.984349419,6.22330603 C0.46281914,7.43106036 0.202054,8.71773046 0.202054,10.0833163 C0.202054,11.4557644 0.4645347,12.7441501 0.9894961,13.9484733 C1.5144575,15.1527965 2.23670831,16.2147282 3.15624854,17.1342685 C4.07578877,18.0538087 5.1377205,18.7760595 6.34204371,19.3010209 C7.54636692,19.8259823 8.83475258,20.088463 10.2072007,20.088463 Z M10.2072007,18.2562448 C9.07493099,18.2562448 8.01471483,18.0452309 7.0265522,17.6232031 C6.03838956,17.2011753 5.17031614,16.6161693 4.42233192,15.8681851 C3.6743477,15.1202009 3.09105726,14.2521274 2.67246059,13.2639648 C2.25386392,12.2758022 2.04456558,11.215586 2.04456558,10.0833163 C2.04456558,8.95104663 2.25386392,7.89083047 2.67246059,6.90266784 C3.09105726,5.9145052 3.6743477,5.04643178 4.42233192,4.29844756 C5.17031614,3.55046334 6.036674,2.9671729 7.02140552,2.54857623 C8.00613703,2.12997956 9.06463763,1.92068122 10.1969073,1.92068122 C11.329177,1.92068122 12.3911087,2.12997956 13.3827025,2.54857623 C14.3742962,2.9671729 15.2440852,3.55046334 15.9920694,4.29844756 C16.7400537,5.04643178 17.3233441,5.9145052 17.7419408,6.90266784 C18.1605374,7.89083047 18.3698358,8.95104663 18.3698358,10.0833163 C18.3698358,11.215586 18.1605374,12.2758022 17.7419408,13.2639648 C17.3233441,14.2521274 16.7400537,15.1202009 15.9920694,15.8681851 C15.2440852,16.6161693 14.3760118,17.2011753 13.3878492,17.6232031 C12.3996865,18.0452309 11.3394704,18.2562448 10.2072007,18.2562448 Z M7.65444721,13.6242324 L12.7496608,13.6242324 C13.0584616,13.6242324 13.3003556,13.5384544 13.4753427,13.3668984 C13.6503299,13.1953424 13.7378234,12.9585951 13.7378234,12.6566565 L13.7378234,7.49968276 C13.7378234,7.19774418 13.6503299,6.96099688 13.4753427,6.78944087 C13.3003556,6.61788486 13.0584616,6.53210685 12.7496608,6.53210685 L7.65444721,6.53210685 C7.33878414,6.53210685 7.09345904,6.61788486 6.91847191,6.78944087 C6.74348478,6.96099688 6.65599121,7.19774418 6.65599121,7.49968276 L6.65599121,12.6566565 C6.65599121,12.9585951 6.74348478,13.1953424 6.91847191,13.3668984 C7.09345904,13.5384544 7.33878414,13.6242324 7.65444721,13.6242324 Z' id='shape' fill='%23FF3B30' fill-rule='nonzero'%3E%3C/path%3E %3C/g%3E %3C/svg%3E");
height: 21px;
}
/* list */
ol:not(.options), ul:not(.options) {
padding-inline-start: 2em !important;
}
/* 亮色(默认) */
#main_chatbot {
background-color: var(--chatbot-background-color-light) !important;
color: var(--chatbot-color-light) !important;
}
/* 暗色 */
.dark #main_chatbot {
background-color: var(--block-background-fill) !important;
color: var(--chatbot-color-dark) !important;
}
/* 屏幕宽度大于等于500px的设备 */
/* update on 2023.4.8: 高度的细致调整已写入JavaScript */
@media screen and (min-width: 500px) {
#main_chatbot {
height: calc(100vh - 200px);
}
#main_chatbot .wrap {
max-height: calc(100vh - 200px - var(--line-sm)*1rem - 2*var(--block-label-margin) );
}
}
/* 屏幕宽度小于500px的设备 */
@media screen and (max-width: 499px) {
#main_chatbot {
height: calc(100vh - 140px);
}
#main_chatbot .wrap {
max-height: calc(100vh - 140px - var(--line-sm)*1rem - 2*var(--block-label-margin) );
}
[data-testid = "bot"] {
max-width: 95% !important;
}
#app_title h1{
letter-spacing: -1px; font-size: 22px;
}
}
#main_chatbot .wrap {
overflow-x: hidden
}
/* 对话气泡 */
.message {
border-radius: var(--radius-xl) !important;
border: none;
padding: var(--spacing-xl) !important;
font-size: 15px !important;
line-height: var(--line-md) !important;
min-height: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
min-width: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
}
[data-testid = "bot"] {
max-width: 85%;
border-bottom-left-radius: 0 !important;
}
[data-testid = "user"] {
max-width: 85%;
width: auto !important;
border-bottom-right-radius: 0 !important;
}
.message p {
margin-top: 0.6em !important;
margin-bottom: 0.6em !important;
}
.message p:first-child { margin-top: 0 !important; }
.message p:last-of-type { margin-bottom: 0 !important; }
.message .md-message {
display: block;
padding: 0 !important;
}
.message .raw-message {
display: block;
padding: 0 !important;
white-space: pre-wrap;
}
.raw-message.hideM, .md-message.hideM {
display: none;
}
/* custom buttons */
.chuanhu-btn {
border-radius: 5px;
/* background-color: #E6E6E6 !important; */
color: rgba(120, 120, 120, 0.64) !important;
padding: 4px !important;
position: absolute;
right: -22px;
cursor: pointer !important;
transition: color .2s ease, background-color .2s ease;
}
.chuanhu-btn:hover {
background-color: rgba(167, 167, 167, 0.25) !important;
color: unset !important;
}
.chuanhu-btn:active {
background-color: rgba(167, 167, 167, 0.5) !important;
}
.chuanhu-btn:focus {
outline: none;
}
.copy-bot-btn {
/* top: 18px; */
bottom: 0;
}
.toggle-md-btn {
/* top: 0; */
bottom: 20px;
}
.copy-code-btn {
position: relative;
float: right;
font-size: 1em;
cursor: pointer;
}
.message-wrap>div img{
border-radius: 10px !important;
}
/* history message */
.wrap>.history-message {
padding: 10px !important;
}
.history-message {
/* padding: 0 !important; */
opacity: 80%;
display: flex;
flex-direction: column;
}
.history-message>.history-message {
padding: 0 !important;
}
.history-message>.message-wrap {
padding: 0 !important;
margin-bottom: 16px;
}
.history-message>.message {
margin-bottom: 16px;
}
.wrap>.history-message::after {
content: "";
display: block;
height: 2px;
background-color: var(--body-text-color-subdued);
margin-bottom: 10px;
margin-top: -10px;
clear: both;
}
.wrap>.history-message>:last-child::after {
content: "仅供查看";
display: block;
text-align: center;
color: var(--body-text-color-subdued);
font-size: 0.8em;
}
/* 表格 */
table {
margin: 1em 0;
border-collapse: collapse;
empty-cells: show;
}
td,th {
border: 1.2px solid var(--border-color-primary) !important;
padding: 0.2em;
}
thead {
background-color: rgba(175,184,193,0.2);
}
thead th {
padding: .5em .2em;
}
/* 行内代码 */
.message :not(pre) code {
display: inline;
white-space: break-spaces;
border-radius: 6px;
margin: 0 2px 0 2px;
padding: .2em .4em .1em .4em;
background-color: rgba(175,184,193,0.2);
}
/* 代码块 */
.message pre code {
display: block;
overflow: auto;
white-space: pre;
background-color: hsla(0, 0%, 7%, 70%)!important;
border-radius: 10px;
padding: 1.2em 1em 0em .5em;
margin: 0.6em 2em 1em 0.2em;
color: #FFF;
box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
}
.dark .message pre code {
background-color: hsla(0, 0%, 20%, 300%)!important;
}
.message pre {
padding: 0 !important;
}
.message pre code div.highlight {
background-color: unset !important;
}
button.copy-button {
display: none;
}
/* 代码高亮样式 */
.codehilite .hll { background-color: #6e7681 }
.codehilite .c { color: #8b949e; font-style: italic } /* Comment */
.codehilite .err { color: #f85149 } /* Error */
.codehilite .esc { color: #c9d1d9 } /* Escape */
.codehilite .g { color: #c9d1d9 } /* Generic */
.codehilite .k { color: #ff7b72 } /* Keyword */
.codehilite .l { color: #a5d6ff } /* Literal */
.codehilite .n { color: #c9d1d9 } /* Name */
.codehilite .o { color: #ff7b72; font-weight: bold } /* Operator */
.codehilite .x { color: #c9d1d9 } /* Other */
.codehilite .p { color: #c9d1d9 } /* Punctuation */
.codehilite .ch { color: #8b949e; font-style: italic } /* Comment.Hashbang */
.codehilite .cm { color: #8b949e; font-style: italic } /* Comment.Multiline */
.codehilite .cp { color: #8b949e; font-weight: bold; font-style: italic } /* Comment.Preproc */
.codehilite .cpf { color: #8b949e; font-style: italic } /* Comment.PreprocFile */
.codehilite .c1 { color: #8b949e; font-style: italic } /* Comment.Single */
.codehilite .cs { color: #8b949e; font-weight: bold; font-style: italic } /* Comment.Special */
.codehilite .gd { color: #ffa198; background-color: #490202 } /* Generic.Deleted */
.codehilite .ge { color: #c9d1d9; font-style: italic } /* Generic.Emph */
.codehilite .gr { color: #ffa198 } /* Generic.Error */
.codehilite .gh { color: #79c0ff; font-weight: bold } /* Generic.Heading */
.codehilite .gi { color: #56d364; background-color: #0f5323 } /* Generic.Inserted */
.codehilite .go { color: #8b949e } /* Generic.Output */
.codehilite .gp { color: #8b949e } /* Generic.Prompt */
.codehilite .gs { color: #c9d1d9; font-weight: bold } /* Generic.Strong */
.codehilite .gu { color: #79c0ff } /* Generic.Subheading */
.codehilite .gt { color: #ff7b72 } /* Generic.Traceback */
.codehilite .g-Underline { color: #c9d1d9; text-decoration: underline } /* Generic.Underline */
.codehilite .kc { color: #79c0ff } /* Keyword.Constant */
.codehilite .kd { color: #ff7b72 } /* Keyword.Declaration */
.codehilite .kn { color: #ff7b72 } /* Keyword.Namespace */
.codehilite .kp { color: #79c0ff } /* Keyword.Pseudo */
.codehilite .kr { color: #ff7b72 } /* Keyword.Reserved */
.codehilite .kt { color: #ff7b72 } /* Keyword.Type */
.codehilite .ld { color: #79c0ff } /* Literal.Date */
.codehilite .m { color: #a5d6ff } /* Literal.Number */
.codehilite .s { color: #a5d6ff } /* Literal.String */
.codehilite .na { color: #c9d1d9 } /* Name.Attribute */
.codehilite .nb { color: #c9d1d9 } /* Name.Builtin */
.codehilite .nc { color: #f0883e; font-weight: bold } /* Name.Class */
.codehilite .no { color: #79c0ff; font-weight: bold } /* Name.Constant */
.codehilite .nd { color: #d2a8ff; font-weight: bold } /* Name.Decorator */
.codehilite .ni { color: #ffa657 } /* Name.Entity */
.codehilite .ne { color: #f0883e; font-weight: bold } /* Name.Exception */
.codehilite .nf { color: #d2a8ff; font-weight: bold } /* Name.Function */
.codehilite .nl { color: #79c0ff; font-weight: bold } /* Name.Label */
.codehilite .nn { color: #ff7b72 } /* Name.Namespace */
.codehilite .nx { color: #c9d1d9 } /* Name.Other */
.codehilite .py { color: #79c0ff } /* Name.Property */
.codehilite .nt { color: #7ee787 } /* Name.Tag */
.codehilite .nv { color: #79c0ff } /* Name.Variable */
.codehilite .ow { color: #ff7b72; font-weight: bold } /* Operator.Word */
.codehilite .pm { color: #c9d1d9 } /* Punctuation.Marker */
.codehilite .w { color: #6e7681 } /* Text.Whitespace */
.codehilite .mb { color: #a5d6ff } /* Literal.Number.Bin */
.codehilite .mf { color: #a5d6ff } /* Literal.Number.Float */
.codehilite .mh { color: #a5d6ff } /* Literal.Number.Hex */
.codehilite .mi { color: #a5d6ff } /* Literal.Number.Integer */
.codehilite .mo { color: #a5d6ff } /* Literal.Number.Oct */
.codehilite .sa { color: #79c0ff } /* Literal.String.Affix */
.codehilite .sb { color: #a5d6ff } /* Literal.String.Backtick */
.codehilite .sc { color: #a5d6ff } /* Literal.String.Char */
.codehilite .dl { color: #79c0ff } /* Literal.String.Delimiter */
.codehilite .sd { color: #a5d6ff } /* Literal.String.Doc */
.codehilite .s2 { color: #a5d6ff } /* Literal.String.Double */
.codehilite .se { color: #79c0ff } /* Literal.String.Escape */
.codehilite .sh { color: #79c0ff } /* Literal.String.Heredoc */
.codehilite .si { color: #a5d6ff } /* Literal.String.Interpol */
.codehilite .sx { color: #a5d6ff } /* Literal.String.Other */
.codehilite .sr { color: #79c0ff } /* Literal.String.Regex */
.codehilite .s1 { color: #a5d6ff } /* Literal.String.Single */
.codehilite .ss { color: #a5d6ff } /* Literal.String.Symbol */
.codehilite .bp { color: #c9d1d9 } /* Name.Builtin.Pseudo */
.codehilite .fm { color: #d2a8ff; font-weight: bold } /* Name.Function.Magic */
.codehilite .vc { color: #79c0ff } /* Name.Variable.Class */
.codehilite .vg { color: #79c0ff } /* Name.Variable.Global */
.codehilite .vi { color: #79c0ff } /* Name.Variable.Instance */
.codehilite .vm { color: #79c0ff } /* Name.Variable.Magic */
.codehilite .il { color: #a5d6ff } /* Literal.Number.Integer.Long */
.dark .codehilite .hll { background-color: #2C3B41 }
.dark .codehilite .c { color: #79d618; font-style: italic } /* Comment */
.dark .codehilite .err { color: #FF5370 } /* Error */
.dark .codehilite .esc { color: #89DDFF } /* Escape */
.dark .codehilite .g { color: #EEFFFF } /* Generic */
.dark .codehilite .k { color: #BB80B3 } /* Keyword */
.dark .codehilite .l { color: #C3E88D } /* Literal */
.dark .codehilite .n { color: #EEFFFF } /* Name */
.dark .codehilite .o { color: #89DDFF } /* Operator */
.dark .codehilite .p { color: #89DDFF } /* Punctuation */
.dark .codehilite .ch { color: #79d618; font-style: italic } /* Comment.Hashbang */
.dark .codehilite .cm { color: #79d618; font-style: italic } /* Comment.Multiline */
.dark .codehilite .cp { color: #79d618; font-style: italic } /* Comment.Preproc */
.dark .codehilite .cpf { color: #79d618; font-style: italic } /* Comment.PreprocFile */
.dark .codehilite .c1 { color: #79d618; font-style: italic } /* Comment.Single */
.dark .codehilite .cs { color: #79d618; font-style: italic } /* Comment.Special */
.dark .codehilite .gd { color: #FF5370 } /* Generic.Deleted */
.dark .codehilite .ge { color: #89DDFF } /* Generic.Emph */
.dark .codehilite .gr { color: #FF5370 } /* Generic.Error */
.dark .codehilite .gh { color: #C3E88D } /* Generic.Heading */
.dark .codehilite .gi { color: #C3E88D } /* Generic.Inserted */
.dark .codehilite .go { color: #79d618 } /* Generic.Output */
.dark .codehilite .gp { color: #FFCB6B } /* Generic.Prompt */
.dark .codehilite .gs { color: #FF5370 } /* Generic.Strong */
.dark .codehilite .gu { color: #89DDFF } /* Generic.Subheading */
.dark .codehilite .gt { color: #FF5370 } /* Generic.Traceback */
.dark .codehilite .kc { color: #89DDFF } /* Keyword.Constant */
.dark .codehilite .kd { color: #BB80B3 } /* Keyword.Declaration */
.dark .codehilite .kn { color: #89DDFF; font-style: italic } /* Keyword.Namespace */
.dark .codehilite .kp { color: #89DDFF } /* Keyword.Pseudo */
.dark .codehilite .kr { color: #BB80B3 } /* Keyword.Reserved */
.dark .codehilite .kt { color: #BB80B3 } /* Keyword.Type */
.dark .codehilite .ld { color: #C3E88D } /* Literal.Date */
.dark .codehilite .m { color: #F78C6C } /* Literal.Number */
.dark .codehilite .s { color: #C3E88D } /* Literal.String */
.dark .codehilite .na { color: #BB80B3 } /* Name.Attribute */
.dark .codehilite .nb { color: #82AAFF } /* Name.Builtin */
.dark .codehilite .nc { color: #FFCB6B } /* Name.Class */
.dark .codehilite .no { color: #EEFFFF } /* Name.Constant */
.dark .codehilite .nd { color: #82AAFF } /* Name.Decorator */
.dark .codehilite .ni { color: #89DDFF } /* Name.Entity */
.dark .codehilite .ne { color: #FFCB6B } /* Name.Exception */
.dark .codehilite .nf { color: #82AAFF } /* Name.Function */
.dark .codehilite .nl { color: #82AAFF } /* Name.Label */
.dark .codehilite .nn { color: #FFCB6B } /* Name.Namespace */
.dark .codehilite .nx { color: #EEFFFF } /* Name.Other */
.dark .codehilite .py { color: #FFCB6B } /* Name.Property */
.dark .codehilite .nt { color: #FF5370 } /* Name.Tag */
.dark .codehilite .nv { color: #89DDFF } /* Name.Variable */
.dark .codehilite .ow { color: #89DDFF; font-style: italic } /* Operator.Word */
.dark .codehilite .pm { color: #89DDFF } /* Punctuation.Marker */
.dark .codehilite .w { color: #EEFFFF } /* Text.Whitespace */
.dark .codehilite .mb { color: #F78C6C } /* Literal.Number.Bin */
.dark .codehilite .mf { color: #F78C6C } /* Literal.Number.Float */
.dark .codehilite .mh { color: #F78C6C } /* Literal.Number.Hex */
.dark .codehilite .mi { color: #F78C6C } /* Literal.Number.Integer */
.dark .codehilite .mo { color: #F78C6C } /* Literal.Number.Oct */
.dark .codehilite .sa { color: #BB80B3 } /* Literal.String.Affix */
.dark .codehilite .sb { color: #C3E88D } /* Literal.String.Backtick */
.dark .codehilite .sc { color: #C3E88D } /* Literal.String.Char */
.dark .codehilite .dl { color: #EEFFFF } /* Literal.String.Delimiter */
.dark .codehilite .sd { color: #79d618; font-style: italic } /* Literal.String.Doc */
.dark .codehilite .s2 { color: #C3E88D } /* Literal.String.Double */
.dark .codehilite .se { color: #EEFFFF } /* Literal.String.Escape */
.dark .codehilite .sh { color: #C3E88D } /* Literal.String.Heredoc */
.dark .codehilite .si { color: #89DDFF } /* Literal.String.Interpol */
.dark .codehilite .sx { color: #C3E88D } /* Literal.String.Other */
.dark .codehilite .sr { color: #89DDFF } /* Literal.String.Regex */
.dark .codehilite .s1 { color: #C3E88D } /* Literal.String.Single */
.dark .codehilite .ss { color: #89DDFF } /* Literal.String.Symbol */
.dark .codehilite .bp { color: #89DDFF } /* Name.Builtin.Pseudo */
.dark .codehilite .fm { color: #82AAFF } /* Name.Function.Magic */
.dark .codehilite .vc { color: #89DDFF } /* Name.Variable.Class */
.dark .codehilite .vg { color: #89DDFF } /* Name.Variable.Global */
.dark .codehilite .vi { color: #89DDFF } /* Name.Variable.Instance */
.dark .codehilite .vm { color: #82AAFF } /* Name.Variable.Magic */
.dark .codehilite .il { color: #F78C6C } /* Literal.Number.Integer.Long */

104
theme/green.py Normal file
View File

@ -0,0 +1,104 @@
import gradio as gr
from toolbox import get_conf
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
def adjust_theme():
try:
set_theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c50="#EBFAF2",
c100="#CFF3E1",
c200="#A8EAC8",
c300="#77DEA9",
c400="#3FD086",
c500="#02C160",
c600="#06AE56",
c700="#05974E",
c800="#057F45",
c900="#04673D",
c950="#2E5541",
name="small_and_beautiful",
),
secondary_hue=gr.themes.Color(
c50="#576b95",
c100="#576b95",
c200="#576b95",
c300="#576b95",
c400="#576b95",
c500="#576b95",
c600="#576b95",
c700="#576b95",
c800="#576b95",
c900="#576b95",
c950="#576b95",
),
neutral_hue=gr.themes.Color(
name="gray",
c50="#f6f7f8",
# c100="#f3f4f6",
c100="#F2F2F2",
c200="#e5e7eb",
c300="#d1d5db",
c400="#B2B2B2",
c500="#808080",
c600="#636363",
c700="#515151",
c800="#393939",
# c900="#272727",
c900="#2B2B2B",
c950="#171717",
),
radius_size=gr.themes.sizes.radius_sm,
).set(
button_primary_background_fill="*primary_500",
button_primary_background_fill_dark="*primary_600",
button_primary_background_fill_hover="*primary_400",
button_primary_border_color="*primary_500",
button_primary_border_color_dark="*primary_600",
button_primary_text_color="wihte",
button_primary_text_color_dark="white",
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_50",
button_secondary_background_fill_dark="*neutral_900",
button_secondary_text_color="*neutral_800",
button_secondary_text_color_dark="white",
background_fill_primary="#F7F7F7",
background_fill_primary_dark="#1F1F1F",
block_title_text_color="*primary_500",
block_title_background_fill_dark="*primary_900",
block_label_background_fill_dark="*primary_900",
input_background_fill="#F6F6F6",
chatbot_code_background_color="*neutral_950",
chatbot_code_background_color_dark="*neutral_950",
)
js = ''
if LAYOUT=="TOP-DOWN":
js = ""
else:
with open('theme/common.js', 'r', encoding='utf8') as f:
js = f"<script>{f.read()}</script>"
# 添加一个萌萌的看板娘
if ADD_WAIFU:
js += """
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
<script src="file=docs/waifu_plugin/autoload.js"></script>
"""
gradio_original_template_fn = gr.routes.templates.TemplateResponse
def gradio_new_template_fn(*args, **kwargs):
res = gradio_original_template_fn(*args, **kwargs)
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
except:
set_theme = None
print('gradio版本较旧, 不能自定义字体和颜色')
return set_theme
with open("theme/green.css", "r", encoding="utf-8") as f:
advanced_css = f.read()

12
theme/theme.py Normal file
View File

@ -0,0 +1,12 @@
import gradio as gr
from toolbox import get_conf
THEME, = get_conf('THEME')
if THEME == 'Chuanhu-Small-and-Beautiful':
from .green import adjust_theme, advanced_css
theme_declaration = "<h2 align=\"center\" class=\"small\">[Chuanhu-Small-and-Beautiful主题]</h2>"
else:
from .default import adjust_theme, advanced_css
theme_declaration = ""

View File

@ -4,6 +4,7 @@ import time
import inspect
import re
import os
import gradio
from latex2mathml.converter import convert as tex2mathml
from functools import wraps, lru_cache
pj = os.path.join
@ -40,7 +41,7 @@ def ArgsGeneralWrapper(f):
"""
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。
"""
def decorated(cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args):
def decorated(request: gradio.Request, cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args):
txt_passon = txt
if txt == "" and txt2 != "": txt_passon = txt2
# 引入一个有cookie的chatbot
@ -54,13 +55,21 @@ def ArgsGeneralWrapper(f):
'top_p':top_p,
'max_length': max_length,
'temperature':temperature,
'client_ip': request.client.host,
}
plugin_kwargs = {
"advanced_arg": plugin_advanced_arg,
}
chatbot_with_cookie = ChatBotWithCookies(cookies)
chatbot_with_cookie.write_list(chatbot)
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
if cookies.get('lock_plugin', None) is None:
# 正常状态
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
else:
# 处理个别特殊插件的锁定状态
module, fn_name = cookies['lock_plugin'].split('->')
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
yield from f_hot_reload(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
return decorated
@ -68,8 +77,21 @@ def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
"""
刷新用户界面
"""
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时可用clear将其清空然后用for+append循环重新赋值。"
yield chatbot.get_cookies(), chatbot, history, msg
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时, 可用clear将其清空, 然后用for+append循环重新赋值。"
cookies = chatbot.get_cookies()
# 解决插件锁定时的界面显示问题
if cookies.get('lock_plugin', None):
label = cookies.get('llm_model', "") + " | " + "正在锁定插件" + cookies.get('lock_plugin', None)
chatbot_gr = gradio.update(value=chatbot, label=label)
if cookies.get('label', "") != label: cookies['label'] = label # 记住当前的label
elif cookies.get('label', None):
chatbot_gr = gradio.update(value=chatbot, label=cookies.get('llm_model', ""))
cookies['label'] = None # 清空label
else:
chatbot_gr = chatbot
yield cookies, chatbot_gr, history, msg
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
"""
@ -192,7 +214,7 @@ def write_results_to_file(history, file_name=None):
# remove everything that cannot be handled by utf8
f.write(content.encode('utf-8', 'ignore').decode())
f.write('\n\n')
res = '以上材料已经被写入' + os.path.abspath(f'./gpt_log/{file_name}')
res = '以上材料已经被写入:\t' + os.path.abspath(f'./gpt_log/{file_name}')
print(res)
return res
@ -445,8 +467,11 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
import shutil
if rename_file is None: rename_file = f'{gen_time_str()}-{os.path.basename(file)}'
new_path = os.path.join(f'./gpt_log/', rename_file)
# 如果已经存在,先删除
if os.path.exists(new_path) and not os.path.samefile(new_path, file): os.remove(new_path)
# 把文件复制过去
if not os.path.exists(new_path): shutil.copyfile(file, new_path)
# 将文件添加到chatbot cookie中避免多用户干扰
if chatbot:
if 'file_to_promote' in chatbot._cookies: current = chatbot._cookies['file_to_promote']
else: current = []
@ -505,16 +530,24 @@ def on_report_generated(cookies, files, chatbot):
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
return cookies, report_files, chatbot
def load_chat_cookies():
API_KEY, LLM_MODEL, AZURE_API_KEY = get_conf('API_KEY', 'LLM_MODEL', 'AZURE_API_KEY')
if is_any_api_key(AZURE_API_KEY):
if is_any_api_key(API_KEY): API_KEY = API_KEY + ',' + AZURE_API_KEY
else: API_KEY = AZURE_API_KEY
return {'api_key': API_KEY, 'llm_model': LLM_MODEL}
def is_openai_api_key(key):
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
return bool(API_MATCH_ORIGINAL)
def is_azure_api_key(key):
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE)
return bool(API_MATCH_AZURE)
def is_api2d_key(key):
if key.startswith('fk') and len(key) == 41:
return True
else:
return False
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
return bool(API_MATCH_API2D)
def is_any_api_key(key):
if ',' in key:
@ -523,10 +556,10 @@ def is_any_api_key(key):
if is_any_api_key(k): return True
return False
else:
return is_openai_api_key(key) or is_api2d_key(key)
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
def what_keys(keys):
avail_key_list = {'OpenAI Key':0, "API2D Key":0}
avail_key_list = {'OpenAI Key':0, "Azure Key":0, "API2D Key":0}
key_list = keys.split(',')
for k in key_list:
@ -537,7 +570,11 @@ def what_keys(keys):
if is_api2d_key(k):
avail_key_list['API2D Key'] += 1
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']}API2D Key {avail_key_list['API2D Key']}"
for k in key_list:
if is_azure_api_key(k):
avail_key_list['Azure Key'] += 1
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个, Azure Key {avail_key_list['Azure Key']} 个, API2D Key {avail_key_list['API2D Key']}"
def select_api_key(keys, llm_model):
import random
@ -552,8 +589,12 @@ def select_api_key(keys, llm_model):
for k in key_list:
if is_api2d_key(k): avail_key_list.append(k)
if llm_model.startswith('azure-'):
for k in key_list:
if is_azure_api_key(k): avail_key_list.append(k)
if len(avail_key_list) == 0:
raise RuntimeError(f"您提供的api-key不满足要求不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源")
raise RuntimeError(f"您提供的api-key不满足要求不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源右下角更换模型菜单中可切换openai,azure和api2d请求源")
api_key = random.choice(avail_key_list) # 随机负载均衡
return api_key

View File

@ -1,5 +1,5 @@
{
"version": 3.43,
"version": 3.45,
"show_feature": true,
"new_feature": "修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件"
"new_feature": "支持加载自定义的ChatGLM2微调模型 <-> [改善UI] 动态ChatBot窗口高度 <-> 修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件"
}