Compare commits
106 Commits
version3.4
...
improve_ui
| Author | SHA1 | Date | |
|---|---|---|---|
| 3fcee3762d | |||
| 1f014779e4 | |||
| 97879e73ef | |||
| 13d4cd3237 | |||
| 73e835885b | |||
| 2524c908fc | |||
| 0e71d81bb3 | |||
| a47864888f | |||
| 9b61ac807c | |||
| bc200dc555 | |||
| 2c18b84517 | |||
| fe7b651c56 | |||
| 9b8f160788 | |||
| 801d5e2fc2 | |||
| cecdd28e04 | |||
| d364df1cd6 | |||
| f51bc03686 | |||
| c010d50716 | |||
| acddb86f3a | |||
| 4fde0120ab | |||
| 592a354eef | |||
| bd66cf3d8b | |||
| e6e5174734 | |||
| 13ade82677 | |||
| ce9eb8d20a | |||
| dd47c0a284 | |||
| f725ab1b31 | |||
| 7ce4192c52 | |||
| c06aafb642 | |||
| b298c5416c | |||
| 94abf302cb | |||
| fcc5534e66 | |||
| 56c0e4d575 | |||
| 8a10db618e | |||
| 1fe66f0291 | |||
| ced977c443 | |||
| 6c2ffbae52 | |||
| be2f54fac9 | |||
| 87b5e56378 | |||
| 3a5764ed34 | |||
| 91aee50ea7 | |||
| e5ccedf491 | |||
| f620666a58 | |||
| 594c63e5d6 | |||
| 67d9051890 | |||
| be96232127 | |||
| 3b5bc7a784 | |||
| 5e92f437a1 | |||
| eabd9d312f | |||
| 0da6fe78ac | |||
| be990380a0 | |||
| 9c0bc48420 | |||
| 5c0d34793e | |||
| 37fc550652 | |||
| 2c1d6ac212 | |||
| 8c699c1b26 | |||
| c620fa9011 | |||
| f16fd60211 | |||
| 9674e59d26 | |||
| 643c5e125a | |||
| e5099e1daa | |||
| 3e621bbec1 | |||
| bb1d5a61c0 | |||
| fd3d0be2d8 | |||
| ae623258f3 | |||
| cda281f08b | |||
| 9f8e7a6efa | |||
| 57643dd2b6 | |||
| 6bc8a78cfe | |||
| d2700e97fb | |||
| c4dd81dc9a | |||
| e9b06d7cde | |||
| 6e6ea69611 | |||
| b082b5eb1b | |||
| 9648d78453 | |||
| 16c17eb077 | |||
| 2dc8718041 | |||
| a330d6636e | |||
| 322c4be145 | |||
| a3596ff60d | |||
| e11d8132f8 | |||
| 59877dd728 | |||
| 5f7ffef238 | |||
| 41c10f5688 | |||
| d7ac99f603 | |||
| 1616daae6a | |||
| a1092d8f92 | |||
| 34ca9f138f | |||
| df3f1aa3ca | |||
| bf805cf477 | |||
| ecb08e69be | |||
| 28c1e3f11b | |||
| 403667aec1 | |||
| 22f377e2fb | |||
| 37172906ef | |||
| 3b78e0538b | |||
| d8f9ac71d0 | |||
| aced272d3c | |||
| aff77a086d | |||
| 49253c4dc6 | |||
| 1a00093015 | |||
| 64f76e7401 | |||
| eb4c07997e | |||
| 99cf7205c3 | |||
| d684b4cdb3 | |||
| 4290821a50 |
2
.github/workflows/build-with-chatglm.yml
vendored
2
.github/workflows/build-with-chatglm.yml
vendored
@ -1,5 +1,5 @@
|
||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||
name: Create and publish a Docker image for ChatGLM support
|
||||
name: build-with-chatglm
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
2
.github/workflows/build-with-latex.yml
vendored
2
.github/workflows/build-with-latex.yml
vendored
@ -1,5 +1,5 @@
|
||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||
name: Create and publish a Docker image for Latex support
|
||||
name: build-with-latex
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
# https://docs.github.com/en/actions/publishing-packages/publishing-docker-images#publishing-images-to-github-packages
|
||||
name: Create and publish a Docker image
|
||||
name: build-without-local-llms
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -150,3 +150,4 @@ request_llm/jittorllms
|
||||
multi-language
|
||||
request_llm/moss
|
||||
media
|
||||
flagged
|
||||
|
||||
22
Dockerfile
22
Dockerfile
@ -1,28 +1,34 @@
|
||||
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
|
||||
# 如何构建: 先修改 `config.py`, 然后 docker build -t gpt-academic .
|
||||
# 如何运行: docker run --rm -it --net=host gpt-academic
|
||||
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型或者latex运行依赖,请参考 docker-compose.yml
|
||||
# 如何构建: 先修改 `config.py`, 然后 `docker build -t gpt-academic . `
|
||||
# 如何运行(Linux下): `docker run --rm -it --net=host gpt-academic `
|
||||
# 如何运行(其他操作系统,选择任意一个固定端口50923): `docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic `
|
||||
FROM python:3.11
|
||||
|
||||
|
||||
# 非必要步骤,更换pip源
|
||||
RUN echo '[global]' > /etc/pip.conf && \
|
||||
echo 'index-url = https://mirrors.aliyun.com/pypi/simple/' >> /etc/pip.conf && \
|
||||
echo 'trusted-host = mirrors.aliyun.com' >> /etc/pip.conf
|
||||
|
||||
|
||||
# 进入工作路径
|
||||
WORKDIR /gpt
|
||||
|
||||
|
||||
|
||||
|
||||
# 安装依赖
|
||||
# 安装大部分依赖,利用Docker缓存加速以后的构建
|
||||
COPY requirements.txt ./
|
||||
COPY ./docs/gradio-3.32.2-py3-none-any.whl ./docs/gradio-3.32.2-py3-none-any.whl
|
||||
RUN pip3 install -r requirements.txt
|
||||
# 装载项目文件
|
||||
|
||||
|
||||
# 装载项目文件,安装剩余依赖
|
||||
COPY . .
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
# 可选步骤,用于预热模块
|
||||
|
||||
# 非必要步骤,用于预热模块
|
||||
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
|
||||
|
||||
|
||||
# 启动
|
||||
CMD ["python3", "-u", "main.py"]
|
||||
|
||||
77
README.md
77
README.md
@ -1,24 +1,24 @@
|
||||
> **Note**
|
||||
>
|
||||
> 2023.5.27 对Gradio依赖进行了调整,Fork并解决了官方Gradio的若干Bugs。请及时**更新代码**并重新更新pip依赖。安装依赖时,请严格选择`requirements.txt`中**指定的版本**:
|
||||
>
|
||||
> `pip install -r requirements.txt`
|
||||
> 2023.7.8: Gradio, Pydantic依赖调整,已修改 `requirements.txt`。请及时**更新代码**,安装依赖时,请严格选择`requirements.txt`中**指定的版本**
|
||||
>
|
||||
> `pip install -r requirements.txt`
|
||||
|
||||
# <img src="docs/logo.png" width="40" > GPT 学术优化 (GPT Academic)
|
||||
|
||||
**如果喜欢这个项目,请给它一个Star;如果你发明了更好用的快捷键或函数插件,欢迎发pull requests**
|
||||
# <div align=center><img src="docs/logo.png" width="40" > GPT 学术优化 (GPT Academic)</div>
|
||||
|
||||
**如果喜欢这个项目,请给它一个Star;如果您发明了好用的快捷键或函数插件,欢迎发pull requests!**
|
||||
|
||||
If you like this project, please give it a Star. If you've come up with more useful academic shortcuts or functional plugins, feel free to open an issue or pull request. We also have a README in [English|](docs/README_EN.md)[日本語|](docs/README_JP.md)[한국어|](https://github.com/mldljyh/ko_gpt_academic)[Русский|](docs/README_RS.md)[Français](docs/README_FR.md) translated by this project itself.
|
||||
To translate this project to arbitary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
|
||||
|
||||
> **Note**
|
||||
>
|
||||
> 1.请注意只有**红颜色**标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR!
|
||||
> 1.请注意只有 **高亮(如红色)** 标识的函数插件(按钮)才支持读取文件,部分插件位于插件区的**下拉菜单**中。另外我们以**最高优先级**欢迎和处理任何新插件的PR。
|
||||
>
|
||||
> 2.本项目中每个文件的功能都在自译解[`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/chatgpt-academic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E6%8A%A5%E5%91%8A)详细说明。随着版本的迭代,您也可以随时自行点击相关函数插件,调用GPT重新生成项目的自我解析报告。常见问题汇总在[`wiki`](https://github.com/binary-husky/gpt_academic/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98)当中。[安装方法](#installation)。
|
||||
>
|
||||
> 3.本项目兼容并鼓励尝试国产大语言模型chatglm和RWKV, 盘古等等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,api2d-key3"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
|
||||
> 3.本项目兼容并鼓励尝试国产大语言模型ChatGLM和Moss等等。支持多个api-key共存,可在配置文件中填写如`API_KEY="openai-key1,openai-key2,api2d-key3"`。需要临时更换`API_KEY`时,在输入区输入临时的`API_KEY`然后回车键提交后即可生效。
|
||||
|
||||
|
||||
|
||||
@ -41,15 +41,17 @@ Markdown[中英互译](https://www.bilibili.com/video/BV1yo4y157jV/) | [函数
|
||||
chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
|
||||
[PDF论文全文翻译功能](https://www.bilibili.com/video/BV1KT411x7Wn) | [函数插件] PDF论文提取题目&摘要+翻译全文(多线程)
|
||||
[Arxiv小助手](https://www.bilibili.com/video/BV1LM4y1279X) | [函数插件] 输入arxiv文章url即可一键翻译摘要+下载PDF
|
||||
Latex论文一键校对 | [函数插件] 仿Grammarly对Latex文章进行语法、拼写纠错+输出对照PDF
|
||||
[谷歌学术统合小助手](https://www.bilibili.com/video/BV19L411U7ia) | [函数插件] 给定任意谷歌学术搜索页面URL,让gpt帮你[写relatedworks](https://www.bilibili.com/video/BV1GP411U7Az/)
|
||||
互联网信息聚合+GPT | [函数插件] 一键[让GPT先从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck),再回答问题,让信息永不过时
|
||||
⭐Arxiv论文精细翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),迄今为止最好的论文翻译工具⭐
|
||||
互联网信息聚合+GPT | [函数插件] 一键[让GPT从互联网获取信息](https://www.bilibili.com/video/BV1om4y127ck)回答问题,让信息永不过时
|
||||
⭐Arxiv论文精细翻译 | [函数插件] 一键[以超高质量翻译arxiv论文](https://www.bilibili.com/video/BV1dz4y1v77A/),目前最好的论文翻译工具
|
||||
公式/图片/表格显示 | 可以同时显示公式的[tex形式和渲染形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png),支持公式、代码高亮
|
||||
多线程函数插件支持 | 支持多线调用chatgpt,一键处理[海量文本](https://www.bilibili.com/video/BV1FT411H7c5/)或程序
|
||||
启动暗色gradio[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
||||
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM](https://github.com/THUDM/ChatGLM-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
|
||||
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama),[RWKV](https://github.com/BlinkDL/ChatRWKV)和[盘古α](https://openi.org.cn/pangu/)
|
||||
更多新功能展示(图像生成等) …… | 见本文档结尾处 ……
|
||||
启动暗色[主题](https://github.com/binary-husky/gpt_academic/issues/173) | 在浏览器url后面添加```/?__theme=dark```可以切换dark主题
|
||||
[多LLM模型](https://www.bilibili.com/video/BV1wT411p7yf)支持 | 同时被GPT3.5、GPT4、[清华ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[复旦MOSS](https://github.com/OpenLMLab/MOSS)同时伺候的感觉一定会很不错吧?
|
||||
ChatGLM2微调模型 | 支持加载ChatGLM2微调模型,提供ChatGLM2微调插件
|
||||
更多LLM模型接入,支持[huggingface部署](https://huggingface.co/spaces/qingxu98/gpt-academic) | 加入Newbing接口(新必应),引入清华[Jittorllms](https://github.com/Jittor/JittorLLMs)支持[LLaMA](https://github.com/facebookresearch/llama)和[盘古α](https://openi.org.cn/pangu/)
|
||||
更多新功能展示 (图像生成等) …… | 见本文档结尾处 ……
|
||||
|
||||
</div>
|
||||
|
||||
@ -85,9 +87,8 @@ chat分析报告生成 | [函数插件] 运行后自动生成总结汇报
|
||||
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
|
||||
</div>
|
||||
|
||||
---
|
||||
# Installation
|
||||
## 安装-方法1:直接运行 (Windows, Linux or MacOS)
|
||||
### 安装方法I:直接运行 (Windows, Linux or MacOS)
|
||||
|
||||
1. 下载项目
|
||||
```sh
|
||||
@ -114,12 +115,12 @@ python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步
|
||||
```
|
||||
|
||||
|
||||
<details><summary>如果需要支持清华ChatGLM/复旦MOSS作为后端,请点击展开此处</summary>
|
||||
<details><summary>如果需要支持清华ChatGLM2/复旦MOSS作为后端,请点击展开此处</summary>
|
||||
<p>
|
||||
|
||||
【可选步骤】如果需要支持清华ChatGLM/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
```sh
|
||||
# 【可选步骤I】支持清华ChatGLM。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
|
||||
# 【可选步骤II】支持复旦MOSS
|
||||
@ -140,9 +141,11 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-
|
||||
python main.py
|
||||
```
|
||||
|
||||
## 安装-方法2:使用Docker
|
||||
### 安装方法II:使用Docker
|
||||
|
||||
1. 仅ChatGPT(推荐大多数人选择,等价于docker-compose方案1)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
|
||||
|
||||
``` sh
|
||||
git clone https://github.com/binary-husky/gpt_academic.git # 下载项目
|
||||
@ -150,14 +153,15 @@ cd gpt_academic # 进入路径
|
||||
nano config.py # 用任意文本编辑器编辑config.py, 配置 “Proxy”, “API_KEY” 以及 “WEB_PORT” (例如50923) 等
|
||||
docker build -t gpt-academic . # 安装
|
||||
|
||||
#(最后一步-选择1)在Linux环境下,用`--net=host`更方便快捷
|
||||
#(最后一步-Linux操作系统)用`--net=host`更方便快捷
|
||||
docker run --rm -it --net=host gpt-academic
|
||||
#(最后一步-选择2)在macOS/windows环境下,只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
||||
#(最后一步-MacOS/Windows操作系统)只能用-p选项将容器上的端口(例如50923)暴露给主机上的端口
|
||||
docker run --rm -it -e WEB_PORT=50923 -p 50923:50923 gpt-academic
|
||||
```
|
||||
P.S. 如果需要依赖Latex的插件功能,请见Wiki。另外,您也可以直接使用docker-compose获取Latex功能(修改docker-compose.yml,保留方案4并删除其他方案)。
|
||||
|
||||
2. ChatGPT + ChatGLM + MOSS(需要熟悉Docker)
|
||||
2. ChatGPT + ChatGLM2 + MOSS(需要熟悉Docker)
|
||||
[](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
|
||||
|
||||
``` sh
|
||||
# 修改docker-compose.yml,保留方案2并删除其他方案。修改docker-compose.yml中方案2的配置,参考其中注释即可
|
||||
@ -171,7 +175,7 @@ docker-compose up
|
||||
```
|
||||
|
||||
|
||||
## 安装-方法3:其他部署姿势
|
||||
### 安装方法III:其他部署姿势
|
||||
1. 一键运行脚本。
|
||||
完全不熟悉python环境的Windows用户可以下载[Release](https://github.com/binary-husky/gpt_academic/releases)中发布的一键运行脚本安装无本地模型的版本。
|
||||
脚本的贡献来源是[oobabooga](https://github.com/oobabooga/one-click-installers)。
|
||||
@ -194,11 +198,9 @@ docker-compose up
|
||||
7. 如何在二级网址(如`http://localhost/subpath`)下运行。
|
||||
请访问[FastAPI运行说明](docs/WithFastapi.md)
|
||||
|
||||
---
|
||||
# Advanced Usage
|
||||
## 自定义新的便捷按钮 / 自定义函数插件
|
||||
|
||||
1. 自定义新的便捷按钮(学术快捷键)
|
||||
# Advanced Usage
|
||||
### I:自定义新的便捷按钮(学术快捷键)
|
||||
任意文本编辑器打开`core_functional.py`,添加条目如下,然后重启程序即可。(如果按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
|
||||
例如
|
||||
```
|
||||
@ -214,15 +216,15 @@ docker-compose up
|
||||
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
|
||||
</div>
|
||||
|
||||
2. 自定义函数插件
|
||||
### II:自定义函数插件
|
||||
|
||||
编写强大的函数插件来执行任何你想得到的和想不到的任务。
|
||||
本项目的插件编写、调试难度很低,只要您具备一定的python基础知识,就可以仿照我们提供的模板实现自己的插件功能。
|
||||
详情请参考[函数插件指南](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)。
|
||||
|
||||
---
|
||||
|
||||
# Latest Update
|
||||
## 新功能动态
|
||||
### I:新功能动态
|
||||
|
||||
1. 对话保存功能。在函数插件区调用 `保存当前的对话` 即可将当前对话保存为可读+可复原的html文件,
|
||||
另外在函数插件区(下拉菜单)调用 `载入对话历史存档` ,即可还原之前的会话。
|
||||
@ -283,8 +285,10 @@ Tip:不指定文件直接点击 `载入对话历史存档` 可以查看历史h
|
||||
|
||||
|
||||
|
||||
## 版本:
|
||||
### II:版本:
|
||||
- version 3.5(Todo): 使用自然语言调用本项目的所有函数插件(高优先级)
|
||||
- version 3.45: 支持自定义ChatGLM2微调模型
|
||||
- version 3.44: 正式支持Azure,优化界面易用性
|
||||
- version 3.4: +arxiv论文翻译、latex论文批改功能
|
||||
- version 3.3: +互联网信息综合功能
|
||||
- version 3.2: 函数插件支持更多参数接口 (保存对话功能, 解读任意语言代码+同时询问任意的LLM组合)
|
||||
@ -305,13 +309,18 @@ gpt_academic开发者QQ群-2:610599535
|
||||
- 某些浏览器翻译插件干扰此软件前端的运行
|
||||
- 官方Gradio目前有很多兼容性Bug,请务必使用`requirement.txt`安装Gradio
|
||||
|
||||
## 参考与学习
|
||||
### III:主题
|
||||
|
||||
1. `Chuanhu-Small-and-Beautiful` [网址](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
|
||||
|
||||
|
||||
### IV:参考与学习
|
||||
|
||||
```
|
||||
代码中参考了很多其他优秀项目中的设计,顺序不分先后:
|
||||
|
||||
# 清华ChatGLM-6B:
|
||||
https://github.com/THUDM/ChatGLM-6B
|
||||
# 清华ChatGLM2-6B:
|
||||
https://github.com/THUDM/ChatGLM2-6B
|
||||
|
||||
# 清华JittorLLMs:
|
||||
https://github.com/Jittor/JittorLLMs
|
||||
|
||||
@ -12,6 +12,8 @@ def check_proxy(proxies):
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:{country}"
|
||||
elif 'error' in data:
|
||||
result = f"代理配置 {proxies_https}, 代理所在地:未知,IP查询频率受限"
|
||||
else:
|
||||
result = f"代理配置 {proxies_https}, 代理数据解析失败:{data}"
|
||||
print(result)
|
||||
return result
|
||||
except:
|
||||
@ -137,7 +139,7 @@ def auto_update(raise_error=False):
|
||||
else:
|
||||
return
|
||||
except:
|
||||
msg = '自动更新程序:已禁用'
|
||||
msg = '自动更新程序:已禁用。建议排查:代理网络配置。'
|
||||
if raise_error:
|
||||
from toolbox import trimmed_format_exc
|
||||
msg += trimmed_format_exc()
|
||||
|
||||
104
config.py
104
config.py
@ -1,17 +1,27 @@
|
||||
# [step 1]>> 例如: API_KEY = "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" (此key无效)
|
||||
API_KEY = "sk-此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey1,fkxxxx-api2dkey2"
|
||||
"""
|
||||
以下所有配置也都支持利用环境变量覆写,环境变量配置格式见docker-compose.yml。
|
||||
读取优先级:环境变量 > config_private.py > config.py
|
||||
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
All the following configurations also support using environment variables to override,
|
||||
and the environment variable configuration format can be seen in docker-compose.yml.
|
||||
Configuration reading priority: environment variable > config_private.py > config.py
|
||||
"""
|
||||
|
||||
# [step 1]>> API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"。极少数情况下,还需要填写组织(格式如org-123456789abcdefghijklmno的),请向下翻,找 API_ORG 设置项
|
||||
API_KEY = "此处填API密钥" # 可同时填写多个API-KEY,用英文逗号分割,例如API_KEY = "sk-openaikey1,sk-openaikey2,fkxxxx-api2dkey3,azure-apikey4"
|
||||
|
||||
|
||||
# [step 2]>> 改为True应用代理,如果直接在海外服务器部署,此处不修改
|
||||
USE_PROXY = False
|
||||
if USE_PROXY:
|
||||
# 填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
|
||||
# 例如 "socks5h://localhost:11284"
|
||||
# [协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
|
||||
# [地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了(localhost意思是代理软件安装在本机上)
|
||||
# [端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
|
||||
|
||||
# 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5/http)、地址(localhost)和端口(11284)
|
||||
"""
|
||||
填写格式是 [协议]:// [地址] :[端口],填写之前不要忘记把USE_PROXY改成True,如果直接在海外服务器部署,此处不修改
|
||||
<配置教程&视频教程> https://github.com/binary-husky/gpt_academic/issues/1>
|
||||
[协议] 常见协议无非socks5h/http; 例如 v2**y 和 ss* 的默认本地协议是socks5h; 而cl**h 的默认本地协议是http
|
||||
[地址] 懂的都懂,不懂就填localhost或者127.0.0.1肯定错不了(localhost意思是代理软件安装在本机上)
|
||||
[端口] 在代理软件的设置里找。虽然不同的代理软件界面不一样,但端口号都应该在最显眼的位置上
|
||||
"""
|
||||
# 代理网络的地址,打开你的*学*网软件查看代理的协议(socks5h / http)、地址(localhost)和端口(11284)
|
||||
proxies = {
|
||||
# [协议]:// [地址] :[端口]
|
||||
"http": "socks5h://localhost:11284", # 再例如 "http": "http://127.0.0.1:7890",
|
||||
@ -20,64 +30,84 @@ if USE_PROXY:
|
||||
else:
|
||||
proxies = None
|
||||
|
||||
# [step 3]>> 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
# ------------------------------------ 以下配置可以优化体验, 但大部分场合下并不需要修改 ------------------------------------
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(常规情况下,不要修改!! 高危设置!通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式 API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 例如 API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions":"https://reverse-proxy-url/v1/chat/completions"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
|
||||
# 多线程函数插件中,默认允许多少路线程同时访问OpenAI。Free trial users的限制是每分钟3次,Pay-as-you-go users的限制是每分钟3500次
|
||||
# 一言以蔽之:免费(5刀)用户填3,OpenAI绑了信用卡的用户可以填 16 或者更高。提高限制请查询:https://platform.openai.com/docs/guides/rate-limits/overview
|
||||
DEFAULT_WORKER_NUM = 3
|
||||
|
||||
|
||||
# [step 4]>> 以下配置可以优化体验,但大部分场合下并不需要修改
|
||||
# 对话窗的高度
|
||||
CHATBOT_HEIGHT = 1115
|
||||
|
||||
|
||||
# 代码高亮
|
||||
CODE_HIGHLIGHT = True
|
||||
|
||||
|
||||
# 窗口布局
|
||||
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||
DARK_MODE = True # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||
LAYOUT = "LEFT-RIGHT" # "LEFT-RIGHT"(左右布局) # "TOP-DOWN"(上下布局)
|
||||
DARK_MODE = True # 暗色模式 / 亮色模式
|
||||
|
||||
|
||||
# 发送请求到OpenAI后,等待多久判定为超时
|
||||
TIMEOUT_SECONDS = 30
|
||||
|
||||
|
||||
# 网页的端口, -1代表随机端口
|
||||
WEB_PORT = -1
|
||||
|
||||
|
||||
# 如果OpenAI不响应(网络卡顿、代理失败、KEY失效),重试的次数限制
|
||||
MAX_RETRY = 2
|
||||
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 同时它必须被包含在AVAIL_LLM_MODELS切换列表中 )
|
||||
|
||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt35", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "newbing-free", "stack-claude"]
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
|
||||
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
||||
|
||||
# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
|
||||
ChatGLM_PTUNING_CHECKPOINT = "" # 例如"/home/hmp/ChatGLM2-6B/ptuning/output/6b-pt-128-1e-2/checkpoint-100"
|
||||
|
||||
|
||||
# 本地LLM模型如ChatGLM的执行方式 CPU/GPU
|
||||
LOCAL_MODEL_DEVICE = "cpu" # 可选 "cuda"
|
||||
|
||||
|
||||
# 设置gradio的并行线程数(不需要修改)
|
||||
CONCURRENT_COUNT = 100
|
||||
|
||||
|
||||
# 是否在提交时自动清空输入框
|
||||
AUTO_CLEAR_TXT = False
|
||||
|
||||
# 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"]
|
||||
THEME = "Default"
|
||||
|
||||
# 加一个live2d装饰
|
||||
ADD_WAIFU = False
|
||||
|
||||
|
||||
# 设置用户名和密码(不需要修改)(相关功能不稳定,与gradio版本和网络都相关,如果本地使用不建议加这个)
|
||||
# [("username", "password"), ("username2", "password2"), ...]
|
||||
AUTHENTICATION = []
|
||||
|
||||
# 重新URL重新定向,实现更换API_URL的作用(常规情况下,不要修改!!)
|
||||
# (高危设置!通过修改此设置,您将把您的API-KEY和对话隐私完全暴露给您设定的中间人!)
|
||||
# 格式 {"https://api.openai.com/v1/chat/completions": "在这里填写重定向的api.openai.com的URL"}
|
||||
# 例如 API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "https://ai.open.com/api/conversation"}
|
||||
API_URL_REDIRECT = {}
|
||||
|
||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
||||
CUSTOM_PATH = "/"
|
||||
|
||||
# 如果需要使用newbing,把newbing的长长的cookie放到这里
|
||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
||||
# 从现在起,如果您调用"newbing-free"模型,则无需填写NEWBING_COOKIES
|
||||
NEWBING_COOKIES = """
|
||||
your bing cookies here
|
||||
"""
|
||||
|
||||
# 极少数情况下,openai的官方KEY需要伴随组织编码(格式如org-xxxxxxxxxxxxxxxxxxxxxxxx)使用
|
||||
API_ORG = ""
|
||||
|
||||
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llm/README.md
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
@ -85,7 +115,19 @@ SLACK_CLAUDE_USER_TOKEN = ''
|
||||
|
||||
|
||||
# 如果需要使用AZURE 详情请见额外文档 docs\use_azure.md
|
||||
AZURE_ENDPOINT = "https://你的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "填入api版本"
|
||||
AZURE_ENGINE = "填入ENGINE"
|
||||
AZURE_ENDPOINT = "https://你亲手写的api名称.openai.azure.com/"
|
||||
AZURE_API_KEY = "填入azure openai api的密钥" # 建议直接在API_KEY处填写,该选项即将被弃用
|
||||
AZURE_ENGINE = "填入你亲手写的部署名" # 读 docs\use_azure.md
|
||||
|
||||
|
||||
# 使用Newbing
|
||||
NEWBING_STYLE = "creative" # ["creative", "balanced", "precise"]
|
||||
NEWBING_COOKIES = """
|
||||
put your new bing cookies here
|
||||
"""
|
||||
|
||||
|
||||
# 阿里云实时语音识别 配置难度较高 仅建议高手用户使用 参考 https://help.aliyun.com/document_detail/450255.html
|
||||
ENABLE_AUDIO = False
|
||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||
@ -63,6 +63,7 @@ def get_core_functions():
|
||||
"Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," +
|
||||
r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n",
|
||||
"Suffix": r"",
|
||||
"Visible": False,
|
||||
},
|
||||
"解释代码": {
|
||||
"Prefix": r"请解释以下代码:" + "\n```\n",
|
||||
@ -73,6 +74,5 @@ def get_core_functions():
|
||||
r"Note that, reference styles maybe more than one kind, you should transform each item correctly." +
|
||||
r"Items need to be transformed:",
|
||||
"Suffix": r"",
|
||||
"Visible": False,
|
||||
}
|
||||
}
|
||||
|
||||
@ -226,12 +226,20 @@ def get_crazy_functions():
|
||||
try:
|
||||
from crazy_functions.联网的ChatGPT import 连接网络回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(先输入问题,再点击按钮,需要访问谷歌)": {
|
||||
"连接网络回答问题(输入问题后点击该插件,需要访问谷歌)": {
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(连接网络回答问题)
|
||||
}
|
||||
})
|
||||
from crazy_functions.联网的ChatGPT_bing版 import 连接bing搜索回答问题
|
||||
function_plugins.update({
|
||||
"连接网络回答问题(中文Bing版,输入问题后点击该插件)": {
|
||||
"Color": "stop",
|
||||
"AsButton": False, # 加入下拉菜单中
|
||||
"Function": HotReload(连接bing搜索回答问题)
|
||||
}
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
@ -344,21 +352,58 @@ def get_crazy_functions():
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
try:
|
||||
from crazy_functions.交互功能函数模板 import 交互功能模板函数
|
||||
function_plugins.update({
|
||||
"交互功能模板函数": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"Function": HotReload(交互功能模板函数)
|
||||
}
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
# try:
|
||||
# from crazy_functions.chatglm微调工具 import 微调数据集生成
|
||||
# function_plugins.update({
|
||||
# "黑盒模型学习: 微调数据集生成 (先上传数据集)": {
|
||||
# "Color": "stop",
|
||||
# "AsButton": False,
|
||||
# "AdvancedArgs": True,
|
||||
# "ArgsReminder": "针对数据集输入(如 绿帽子*深蓝色衬衫*黑色运动裤)给出指令,例如您可以将以下命令复制到下方: --llm_to_learn=azure-gpt-3.5 --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、过去经历进行描写。要求:100字以内,用第二人称。' --system_prompt=''",
|
||||
# "Function": HotReload(微调数据集生成)
|
||||
# }
|
||||
# })
|
||||
# except:
|
||||
# print('Load function plugin failed')
|
||||
|
||||
try:
|
||||
from crazy_functions.Latex输出PDF结果 import Latex英文纠错加PDF对比
|
||||
function_plugins.update({
|
||||
"[功能尚不稳定] Latex英文纠错+LatexDiff高亮修正位置": {
|
||||
"Latex英文纠错+高亮修正位置 [需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
# "AdvancedArgs": True,
|
||||
# "ArgsReminder": "",
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder": "如果有必要, 请在此处追加更细致的矫错指令(使用英文)。",
|
||||
"Function": HotReload(Latex英文纠错加PDF对比)
|
||||
}
|
||||
})
|
||||
from crazy_functions.Latex输出PDF结果 import Latex翻译中文并重新编译PDF
|
||||
function_plugins.update({
|
||||
"Arixv翻译(输入arxivID) [需Latex]": {
|
||||
"Arixv论文精细翻译(输入arxivID)[需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
"ArgsReminder":
|
||||
"如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "+
|
||||
"例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " + 'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
}
|
||||
})
|
||||
function_plugins.update({
|
||||
"本地Latex论文精细翻译(上传Latex项目)[需Latex]": {
|
||||
"Color": "stop",
|
||||
"AsButton": False,
|
||||
"AdvancedArgs": True,
|
||||
@ -368,20 +413,25 @@ def get_crazy_functions():
|
||||
"Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
}
|
||||
})
|
||||
# function_plugins.update({
|
||||
# "本地论文翻译(上传Latex压缩包) [需Latex]": {
|
||||
# "Color": "stop",
|
||||
# "AsButton": False,
|
||||
# "AdvancedArgs": True,
|
||||
# "ArgsReminder":
|
||||
# "如果有必要, 请在此处给出自定义翻译命令, 解决部分词汇翻译不准确的问题。 "+
|
||||
# "例如当单词'agent'翻译不准确时, 请尝试把以下指令复制到高级参数区: " + 'If the term "agent" is used in this section, it should be translated to "智能体". ',
|
||||
# "Function": HotReload(Latex翻译中文并重新编译PDF)
|
||||
# }
|
||||
# })
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
|
||||
try:
|
||||
from toolbox import get_conf
|
||||
ENABLE_AUDIO, = get_conf('ENABLE_AUDIO')
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.语音助手 import 语音助手
|
||||
function_plugins.update({
|
||||
"实时音频采集": {
|
||||
"Color": "stop",
|
||||
"AsButton": True,
|
||||
"Function": HotReload(语音助手)
|
||||
}
|
||||
})
|
||||
except:
|
||||
print('Load function plugin failed')
|
||||
|
||||
# try:
|
||||
# from crazy_functions.虚空终端 import 终端
|
||||
# function_plugins.update({
|
||||
|
||||
@ -30,7 +30,7 @@ def 知识库问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
from .crazy_utils import try_install_deps
|
||||
try_install_deps(['zh_langchain==0.2.1'])
|
||||
try_install_deps(['zh_langchain==0.2.1', 'pypinyin'])
|
||||
|
||||
# < --------------------读取参数--------------- >
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
|
||||
@ -19,9 +19,9 @@ def switch_prompt(pfg, mode, more_requirement):
|
||||
- sys_prompt_array: A list of strings containing prompts for system prompts.
|
||||
"""
|
||||
n_split = len(pfg.sp_file_contents)
|
||||
if mode == 'proofread':
|
||||
if mode == 'proofread_en':
|
||||
inputs_array = [r"Below is a section from an academic paper, proofread this section." +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " +
|
||||
r"Do not modify any latex command such as \section, \cite, \begin, \item and equations. " + more_requirement +
|
||||
r"Answer me only with the revised text:" +
|
||||
f"\n\n{frag}" for frag in pfg.sp_file_contents]
|
||||
sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)]
|
||||
@ -70,6 +70,12 @@ def move_project(project_folder, arxiv_id=None):
|
||||
shutil.rmtree(new_workfolder)
|
||||
except:
|
||||
pass
|
||||
|
||||
# align subfolder if there is a folder wrapper
|
||||
items = glob.glob(pj(project_folder,'*'))
|
||||
if len(glob.glob(pj(project_folder,'*.tex'))) == 0 and len(items) == 1:
|
||||
if os.path.isdir(items[0]): project_folder = items[0]
|
||||
|
||||
shutil.copytree(src=project_folder, dst=new_workfolder)
|
||||
return new_workfolder
|
||||
|
||||
@ -141,7 +147,11 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
chatbot.append([ "函数插件功能?",
|
||||
"对整个Latex项目进行纠错, 用latex编译为PDF对修正处做高亮。函数插件贡献者: Binary-Husky。注意事项: 目前仅支持GPT3.5/GPT4,其他模型转化效果未知。目前对机器学习类文献转化效果最好,其他类型文献转化效果未知。仅在Windows系统进行了测试,其他操作系统表现未知。"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
# <-------------- more requirements ------------->
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
more_req = plugin_kwargs.get("advanced_arg", "")
|
||||
_switch_prompt_ = partial(switch_prompt, more_requirement=more_req)
|
||||
|
||||
# <-------------- check deps ------------->
|
||||
try:
|
||||
@ -180,13 +190,13 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
|
||||
|
||||
# <-------------- if merge_translate_zh is already generated, skip gpt req ------------->
|
||||
if not os.path.exists(project_folder + '/merge_proofread.tex'):
|
||||
if not os.path.exists(project_folder + '/merge_proofread_en.tex'):
|
||||
yield from Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin_kwargs,
|
||||
chatbot, history, system_prompt, mode='proofread_latex', switch_prompt=switch_prompt)
|
||||
chatbot, history, system_prompt, mode='proofread_en', switch_prompt=_switch_prompt_)
|
||||
|
||||
|
||||
# <-------------- compile PDF ------------->
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread',
|
||||
success = yield from 编译Latex(chatbot, history, main_file_original='merge', main_file_modified='merge_proofread_en',
|
||||
work_folder_original=project_folder, work_folder_modified=project_folder, work_folder=project_folder)
|
||||
|
||||
|
||||
@ -195,6 +205,7 @@ def Latex英文纠错加PDF对比(txt, llm_kwargs, plugin_kwargs, chatbot, histo
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
@ -278,6 +289,7 @@ def Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot,
|
||||
if success:
|
||||
chatbot.append((f"成功啦", '请查收结果(压缩包)...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
promote_file_to_downloadzone(file=zip_res, chatbot=chatbot)
|
||||
else:
|
||||
chatbot.append((f"失败了", '虽然PDF生成失败了, 但请查收结果(压缩包), 内含已经翻译的Tex文档, 也是可读的, 您可以到Github Issue区, 用该压缩包+对话历史存档进行反馈 ...'))
|
||||
yield from update_ui(chatbot=chatbot, history=history); time.sleep(1) # 刷新界面
|
||||
|
||||
141
crazy_functions/chatglm微调工具.py
Normal file
141
crazy_functions/chatglm微调工具.py
Normal file
@ -0,0 +1,141 @@
|
||||
from toolbox import CatchException, update_ui, promote_file_to_downloadzone
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
import datetime, json
|
||||
|
||||
def fetch_items(list_of_items, batch_size):
|
||||
for i in range(0, len(list_of_items), batch_size):
|
||||
yield list_of_items[i:i + batch_size]
|
||||
|
||||
def string_to_options(arguments):
|
||||
import argparse
|
||||
import shlex
|
||||
|
||||
# Create an argparse.ArgumentParser instance
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# Add command-line arguments
|
||||
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||||
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||||
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||||
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||||
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50)
|
||||
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2)
|
||||
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1)
|
||||
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="")
|
||||
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="")
|
||||
|
||||
|
||||
|
||||
# Parse the arguments
|
||||
args = parser.parse_args(shlex.split(arguments))
|
||||
|
||||
return args
|
||||
|
||||
@CatchException
|
||||
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
args = plugin_kwargs.get("advanced_arg", None)
|
||||
if args is None:
|
||||
chatbot.append(("没给定指令", "退出"))
|
||||
yield from update_ui(chatbot=chatbot, history=history); return
|
||||
else:
|
||||
arguments = string_to_options(arguments=args)
|
||||
|
||||
dat = []
|
||||
with open(txt, 'r', encoding='utf8') as f:
|
||||
for line in f.readlines():
|
||||
json_dat = json.loads(line)
|
||||
dat.append(json_dat["content"])
|
||||
|
||||
llm_kwargs['llm_model'] = arguments.llm_to_learn
|
||||
for batch in fetch_items(dat, arguments.batch):
|
||||
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)],
|
||||
inputs_show_user_array=[f"Show Nothing" for _ in (batch)],
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history_array=[[] for _ in (batch)],
|
||||
sys_prompt_array=[arguments.system_prompt for _ in (batch)],
|
||||
max_workers=10 # OpenAI所允许的最大并行过载
|
||||
)
|
||||
|
||||
with open(txt+'.generated.json', 'a+', encoding='utf8') as f:
|
||||
for b, r in zip(batch, res[1::2]):
|
||||
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n')
|
||||
|
||||
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot)
|
||||
return
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
import subprocess
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成"))
|
||||
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
|
||||
args = plugin_kwargs.get("advanced_arg", None)
|
||||
if args is None:
|
||||
chatbot.append(("没给定指令", "退出"))
|
||||
yield from update_ui(chatbot=chatbot, history=history); return
|
||||
else:
|
||||
arguments = string_to_options(arguments=args)
|
||||
|
||||
|
||||
|
||||
pre_seq_len = arguments.pre_seq_len # 128
|
||||
learning_rate = arguments.learning_rate # 2e-2
|
||||
num_gpus = arguments.num_gpus # 1
|
||||
json_dataset = arguments.json_dataset # 't_code.json'
|
||||
ptuning_directory = arguments.ptuning_directory # '/home/hmp/ChatGLM2-6B/ptuning'
|
||||
|
||||
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \
|
||||
--do_train \
|
||||
--train_file AdvertiseGen/{json_dataset} \
|
||||
--validation_file AdvertiseGen/{json_dataset} \
|
||||
--preprocessing_num_workers 20 \
|
||||
--prompt_column content \
|
||||
--response_column summary \
|
||||
--overwrite_cache \
|
||||
--model_name_or_path THUDM/chatglm2-6b \
|
||||
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \
|
||||
--overwrite_output_dir \
|
||||
--max_source_length 256 \
|
||||
--max_target_length 256 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 16 \
|
||||
--predict_with_generate \
|
||||
--max_steps 100 \
|
||||
--logging_steps 10 \
|
||||
--save_steps 20 \
|
||||
--learning_rate {learning_rate} \
|
||||
--pre_seq_len {pre_seq_len} \
|
||||
--quantization_bit 4"
|
||||
|
||||
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory)
|
||||
try:
|
||||
process.communicate(timeout=3600*24)
|
||||
except subprocess.TimeoutExpired:
|
||||
process.kill()
|
||||
return
|
||||
@ -190,11 +190,12 @@ def test_Latex():
|
||||
# txt = r"C:\Users\x\arxiv_cache\2211.16068\workfolder" # ACE
|
||||
# txt = r"https://arxiv.org/abs/2002.09253"
|
||||
# txt = r"https://arxiv.org/abs/2306.07831"
|
||||
txt = r"https://arxiv.org/abs/2212.10156"
|
||||
# txt = r"https://arxiv.org/abs/2212.10156"
|
||||
# txt = r"https://arxiv.org/abs/2211.11559"
|
||||
# txt = r"https://arxiv.org/abs/2303.08774"
|
||||
# txt = r"https://arxiv.org/abs/2303.12712"
|
||||
# txt = r"C:\Users\fuqingxu\arxiv_cache\2303.12712\workfolder"
|
||||
txt = r"2306.17157" # 这个paper有个input命令文件名大小写错误!
|
||||
|
||||
|
||||
for cookies, cb, hist, msg in (Latex翻译中文并重新编译PDF)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
@ -210,22 +211,36 @@ def test_Latex():
|
||||
# # for cookies, cb, hist, msg in silence_stdout(编译Latex)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# cli_printer.print(cb) # print(cb)
|
||||
|
||||
def test_chatglm_finetune():
|
||||
from crazy_functions.chatglm微调工具 import 微调数据集生成, 启动微调
|
||||
txt = 'build/dev.json'
|
||||
plugin_kwargs = {"advanced_arg":"--llm_to_learn=gpt-3.5-turbo --prompt_prefix='根据下面的服装类型提示,想象一个穿着者,对这个人外貌、身处的环境、内心世界、人设进行描写。要求:100字以内,用第二人称。' --system_prompt=''" }
|
||||
|
||||
# for cookies, cb, hist, msg in (微调数据集生成)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# cli_printer.print(cb)
|
||||
|
||||
plugin_kwargs = {"advanced_arg":
|
||||
" --pre_seq_len=128 --learning_rate=2e-2 --num_gpus=1 --json_dataset='t_code.json' --ptuning_directory='/home/hmp/ChatGLM2-6B/ptuning' " }
|
||||
|
||||
for cookies, cb, hist, msg in (启动微调)(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
cli_printer.print(cb)
|
||||
|
||||
|
||||
# test_解析一个Python项目()
|
||||
# test_Latex英文润色()
|
||||
# test_Markdown中译英()
|
||||
# test_批量翻译PDF文档()
|
||||
# test_谷歌检索小助手()
|
||||
# test_总结word文档()
|
||||
# test_下载arxiv论文并翻译摘要()
|
||||
# test_解析一个Cpp项目()
|
||||
# test_联网回答问题()
|
||||
# test_解析ipynb文件()
|
||||
# test_数学动画生成manim()
|
||||
# test_Langchain知识库()
|
||||
# test_Langchain知识库读取()
|
||||
if __name__ == "__main__":
|
||||
test_Latex()
|
||||
# test_解析一个Python项目()
|
||||
# test_Latex英文润色()
|
||||
# test_Markdown中译英()
|
||||
# test_批量翻译PDF文档()
|
||||
# test_谷歌检索小助手()
|
||||
# test_总结word文档()
|
||||
# test_下载arxiv论文并翻译摘要()
|
||||
# test_解析一个Cpp项目()
|
||||
# test_联网回答问题()
|
||||
# test_解析ipynb文件()
|
||||
# test_数学动画生成manim()
|
||||
# test_Langchain知识库()
|
||||
# test_Langchain知识库读取()
|
||||
# test_Latex()
|
||||
test_chatglm_finetune()
|
||||
input("程序完成,回车退出。")
|
||||
print("退出。")
|
||||
@ -130,6 +130,11 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 如果最后成功了,则删除报错信息
|
||||
return final_result
|
||||
|
||||
def can_multi_process(llm):
|
||||
if llm.startswith('gpt-'): return True
|
||||
if llm.startswith('api2d-'): return True
|
||||
if llm.startswith('azure-'): return True
|
||||
return False
|
||||
|
||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
inputs_array, inputs_show_user_array, llm_kwargs,
|
||||
@ -175,7 +180,7 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
except: max_workers = 8
|
||||
if max_workers <= 0: max_workers = 3
|
||||
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
|
||||
if not (llm_kwargs['llm_model'].startswith('gpt-') or llm_kwargs['llm_model'].startswith('api2d-')):
|
||||
if not can_multi_process(llm_kwargs['llm_model']):
|
||||
max_workers = 1
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||
|
||||
@ -27,6 +27,24 @@ def set_forbidden_text(text, mask, pattern, flags=0):
|
||||
mask[res.span()[0]:res.span()[1]] = PRESERVE
|
||||
return text, mask
|
||||
|
||||
def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True):
|
||||
"""
|
||||
Move area out of preserve area (make text editable for GPT)
|
||||
count the number of the braces so as to catch compelete text area.
|
||||
e.g.
|
||||
\begin{abstract} blablablablablabla. \end{abstract}
|
||||
"""
|
||||
if isinstance(pattern, list): pattern = '|'.join(pattern)
|
||||
pattern_compile = re.compile(pattern, flags)
|
||||
for res in pattern_compile.finditer(text):
|
||||
if not forbid_wrapper:
|
||||
mask[res.span()[0]:res.span()[1]] = TRANSFORM
|
||||
else:
|
||||
mask[res.regs[0][0]: res.regs[1][0]] = PRESERVE # '\\begin{abstract}'
|
||||
mask[res.regs[1][0]: res.regs[1][1]] = TRANSFORM # abstract
|
||||
mask[res.regs[1][1]: res.regs[0][1]] = PRESERVE # abstract
|
||||
return text, mask
|
||||
|
||||
def set_forbidden_text_careful_brace(text, mask, pattern, flags=0):
|
||||
"""
|
||||
Add a preserve text area in this paper (text become untouchable for GPT).
|
||||
@ -171,6 +189,18 @@ def rm_comments(main_file):
|
||||
main_file = re.sub(r'(?<!\\)%.*', '', main_file) # 使用正则表达式查找半行注释, 并替换为空字符串
|
||||
return main_file
|
||||
|
||||
def find_tex_file_ignore_case(fp):
|
||||
dir_name = os.path.dirname(fp)
|
||||
base_name = os.path.basename(fp)
|
||||
if not base_name.endswith('.tex'): base_name+='.tex'
|
||||
if os.path.exists(pj(dir_name, base_name)): return pj(dir_name, base_name)
|
||||
# go case in-sensitive
|
||||
import glob
|
||||
for f in glob.glob(dir_name+'/*.tex'):
|
||||
base_name_s = os.path.basename(fp)
|
||||
if base_name_s.lower() == base_name.lower(): return f
|
||||
return None
|
||||
|
||||
def merge_tex_files_(project_foler, main_file, mode):
|
||||
"""
|
||||
Merge Tex project recrusively
|
||||
@ -179,14 +209,11 @@ def merge_tex_files_(project_foler, main_file, mode):
|
||||
for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]):
|
||||
f = s.group(1)
|
||||
fp = os.path.join(project_foler, f)
|
||||
if os.path.exists(fp):
|
||||
# e.g., \input{srcs/07_appendix.tex}
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as fx:
|
||||
c = fx.read()
|
||||
else:
|
||||
# e.g., \input{srcs/07_appendix}
|
||||
with open(fp+'.tex', 'r', encoding='utf-8', errors='replace') as fx:
|
||||
c = fx.read()
|
||||
fp = find_tex_file_ignore_case(fp)
|
||||
if fp:
|
||||
with open(fp, 'r', encoding='utf-8', errors='replace') as fx: c = fx.read()
|
||||
else:
|
||||
raise RuntimeError(f'找不到{fp},Tex源文件缺失!')
|
||||
c = merge_tex_files_(project_foler, c, mode)
|
||||
main_file = main_file[:s.span()[0]] + c + main_file[s.span()[1]:]
|
||||
return main_file
|
||||
@ -305,7 +332,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
# 吸收在42行以内的begin-end组合
|
||||
text, mask = set_forbidden_text_begin_end(text, mask, r"\\begin\{([a-z\*]*)\}(.*?)\\end\{\1\}", re.DOTALL, limit_n_lines=42)
|
||||
# 吸收匿名公式
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\$\$(.*?)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\$\$([^$]+)\$\$", r"\\\[.*?\\\]" ], re.DOTALL)
|
||||
# 吸收其他杂项
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\\section\{(.*?)\}", r"\\section\*\{(.*?)\}", r"\\subsection\{(.*?)\}", r"\\subsubsection\{(.*?)\}" ])
|
||||
text, mask = set_forbidden_text(text, mask, [ r"\\bibliography\{(.*?)\}", r"\\bibliographystyle\{(.*?)\}" ])
|
||||
@ -326,6 +353,7 @@ def split_subprocess(txt, project_folder, return_dict, opts):
|
||||
# reverse 操作必须放在最后
|
||||
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\caption\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
|
||||
text, mask = reverse_forbidden_text_careful_brace(text, mask, r"\\abstract\{(.*?)\}", re.DOTALL, forbid_wrapper=True)
|
||||
text, mask = reverse_forbidden_text(text, mask, r"\\begin\{abstract\}(.*?)\\end\{abstract\}", re.DOTALL, forbid_wrapper=True)
|
||||
root = convert_to_linklist(text, mask)
|
||||
|
||||
# 修复括号
|
||||
@ -430,7 +458,7 @@ class LatexPaperSplit():
|
||||
"""
|
||||
def __init__(self) -> None:
|
||||
self.nodes = None
|
||||
self.msg = "{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
||||
self.msg = "*{\\scriptsize\\textbf{警告:该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成," + \
|
||||
"版权归原文作者所有。翻译内容可靠性无保障,请仔细鉴别并以原文为准。" + \
|
||||
"项目Github地址 \\url{https://github.com/binary-husky/gpt_academic/}。"
|
||||
# 请您不要删除或修改这行警告,除非您是论文的原作者(如果您是论文原作者,欢迎加REAME中的QQ联系开发者)
|
||||
@ -532,11 +560,11 @@ class LatexPaperFileGroup():
|
||||
f.write(res)
|
||||
return manifest
|
||||
|
||||
def write_html(sp_file_contents, sp_file_result, chatbot):
|
||||
def write_html(sp_file_contents, sp_file_result, chatbot, project_folder):
|
||||
|
||||
# write html
|
||||
try:
|
||||
import copy
|
||||
import shutil
|
||||
from .crazy_utils import construct_html
|
||||
from toolbox import gen_time_str
|
||||
ch = construct_html()
|
||||
@ -554,6 +582,7 @@ def write_html(sp_file_contents, sp_file_result, chatbot):
|
||||
ch.add_row(a=orig, b=trans)
|
||||
create_report_file_name = f"{gen_time_str()}.trans.html"
|
||||
ch.save_file(create_report_file_name)
|
||||
shutil.copyfile(pj('./gpt_log/', create_report_file_name), pj(project_folder, create_report_file_name))
|
||||
promote_file_to_downloadzone(file=f'./gpt_log/{create_report_file_name}', chatbot=chatbot)
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
@ -634,7 +663,7 @@ def Latex精细分解与转化(file_manifest, project_folder, llm_kwargs, plugin
|
||||
pfg.get_token_num = None
|
||||
objdump(pfg, file=pj(project_folder,'temp.pkl'))
|
||||
|
||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot)
|
||||
write_html(pfg.sp_file_contents, pfg.sp_file_result, chatbot=chatbot, project_folder=project_folder)
|
||||
|
||||
# <-------- 写出文件 ---------->
|
||||
msg = f"当前大语言模型: {llm_kwargs['llm_model']},当前语言模型温度设定: {llm_kwargs['temperature']}。"
|
||||
@ -671,10 +700,9 @@ def remove_buggy_lines(file_path, log_path, tex_name, tex_name_pure, n_fix, work
|
||||
print("Fatal error occurred, but we cannot identify error, please download zip, read latex log, and compile manually.")
|
||||
return False, -1, [-1]
|
||||
|
||||
|
||||
def compile_latex_with_timeout(command, timeout=60):
|
||||
def compile_latex_with_timeout(command, cwd, timeout=60):
|
||||
import subprocess
|
||||
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd)
|
||||
try:
|
||||
stdout, stderr = process.communicate(timeout=timeout)
|
||||
except subprocess.TimeoutExpired:
|
||||
@ -698,24 +726,24 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
|
||||
# https://stackoverflow.com/questions/738755/dont-make-me-manually-abort-a-latex-compile-when-theres-an-error
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译原始PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译转化后的PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
|
||||
if ok and os.path.exists(pj(work_folder_modified, f'{main_file_modified}.pdf')):
|
||||
# 只有第二步成功,才能继续下面的步骤
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译BibTex ...', chatbot, history) # 刷新Gradio前端界面
|
||||
if not os.path.exists(pj(work_folder_original, f'{main_file_original}.bbl')):
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'bibtex {main_file_original}.aux', work_folder_original)
|
||||
if not os.path.exists(pj(work_folder_modified, f'{main_file_modified}.bbl')):
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'bibtex {main_file_modified}.aux', work_folder_modified)
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 编译文献交叉引用 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder_original); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder_modified); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_original}.tex', work_folder_original)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error {main_file_modified}.tex', work_folder_modified)
|
||||
|
||||
if mode!='translate_zh':
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 使用latexdiff生成论文转化前后对比 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
@ -723,13 +751,11 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
ok = compile_latex_with_timeout(f'latexdiff --encoding=utf8 --append-safecmd=subfile {work_folder_original}/{main_file_original}.tex {work_folder_modified}/{main_file_modified}.tex --flatten > {work_folder}/merge_diff.tex')
|
||||
|
||||
yield from update_ui_lastest_msg(f'尝试第 {n_fix}/{max_try} 次编译, 正在编译对比PDF ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'bibtex merge_diff.aux'); os.chdir(current_dir)
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
|
||||
os.chdir(work_folder); ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex'); os.chdir(current_dir)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(f'bibtex merge_diff.aux', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
ok = compile_latex_with_timeout(f'pdflatex -interaction=batchmode -file-line-error merge_diff.tex', work_folder)
|
||||
|
||||
# <--------------------->
|
||||
os.chdir(current_dir)
|
||||
|
||||
# <---------- 检查结果 ----------->
|
||||
results_ = ""
|
||||
@ -741,13 +767,15 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
results_ += f"对比PDF编译是否成功: {diff_pdf_success};"
|
||||
yield from update_ui_lastest_msg(f'第{n_fix}编译结束:<br/>{results_}...', chatbot, history) # 刷新Gradio前端界面
|
||||
|
||||
if diff_pdf_success:
|
||||
result_pdf = pj(work_folder_modified, f'merge_diff.pdf') # get pdf path
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
if modified_pdf_success:
|
||||
yield from update_ui_lastest_msg(f'转化PDF编译已经成功, 即将退出 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
os.chdir(current_dir)
|
||||
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf')
|
||||
result_pdf = pj(work_folder_modified, f'{main_file_modified}.pdf') # get pdf path
|
||||
if os.path.exists(pj(work_folder, '..', 'translation')):
|
||||
shutil.copyfile(result_pdf, pj(work_folder, '..', 'translation', 'translate_zh.pdf'))
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot)
|
||||
promote_file_to_downloadzone(result_pdf, rename_file=None, chatbot=chatbot) # promote file to web UI
|
||||
return True # 成功啦
|
||||
else:
|
||||
if n_fix>=max_try: break
|
||||
@ -763,7 +791,6 @@ def 编译Latex(chatbot, history, main_file_original, main_file_modified, work_f
|
||||
yield from update_ui_lastest_msg(f'由于最为关键的转化PDF编译失败, 将根据报错信息修正tex源文件并重试, 当前报错的latex代码处于第{buggy_lines}行 ...', chatbot, history) # 刷新Gradio前端界面
|
||||
if not can_retry: break
|
||||
|
||||
os.chdir(current_dir)
|
||||
return False # 失败啦
|
||||
|
||||
|
||||
|
||||
89
crazy_functions/live_audio/aliyunASR.py
Normal file
89
crazy_functions/live_audio/aliyunASR.py
Normal file
@ -0,0 +1,89 @@
|
||||
import time, threading, json
|
||||
|
||||
|
||||
class AliyunASR():
|
||||
|
||||
def test_on_sentence_begin(self, message, *args):
|
||||
# print("test_on_sentence_begin:{}".format(message))
|
||||
pass
|
||||
|
||||
def test_on_sentence_end(self, message, *args):
|
||||
# print("test_on_sentence_end:{}".format(message))
|
||||
message = json.loads(message)
|
||||
self.parsed_sentence = message['payload']['result']
|
||||
self.event_on_entence_end.set()
|
||||
print(self.parsed_sentence)
|
||||
|
||||
def test_on_start(self, message, *args):
|
||||
# print("test_on_start:{}".format(message))
|
||||
pass
|
||||
|
||||
def test_on_error(self, message, *args):
|
||||
# print("on_error args=>{}".format(args))
|
||||
pass
|
||||
|
||||
def test_on_close(self, *args):
|
||||
# print("on_close: args=>{}".format(args))
|
||||
pass
|
||||
|
||||
def test_on_result_chg(self, message, *args):
|
||||
# print("test_on_chg:{}".format(message))
|
||||
message = json.loads(message)
|
||||
self.parsed_text = message['payload']['result']
|
||||
self.event_on_result_chg.set()
|
||||
|
||||
def test_on_completed(self, message, *args):
|
||||
# print("on_completed:args=>{} message=>{}".format(args, message))
|
||||
pass
|
||||
|
||||
|
||||
def audio_convertion_thread(self, uuid):
|
||||
# 在一个异步线程中采集音频
|
||||
import nls # pip install git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
import tempfile
|
||||
from scipy import io
|
||||
from toolbox import get_conf
|
||||
from .audio_io import change_sample_rate
|
||||
from .audio_io import RealtimeAudioDistribution
|
||||
NEW_SAMPLERATE = 16000
|
||||
rad = RealtimeAudioDistribution()
|
||||
rad.clean_up()
|
||||
temp_folder = tempfile.gettempdir()
|
||||
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
|
||||
|
||||
URL="wss://nls-gateway.aliyuncs.com/ws/v1"
|
||||
sr = nls.NlsSpeechTranscriber(
|
||||
url=URL,
|
||||
token=TOKEN,
|
||||
appkey=APPKEY,
|
||||
on_sentence_begin=self.test_on_sentence_begin,
|
||||
on_sentence_end=self.test_on_sentence_end,
|
||||
on_start=self.test_on_start,
|
||||
on_result_changed=self.test_on_result_chg,
|
||||
on_completed=self.test_on_completed,
|
||||
on_error=self.test_on_error,
|
||||
on_close=self.test_on_close,
|
||||
callback_args=[uuid.hex]
|
||||
)
|
||||
|
||||
r = sr.start(aformat="pcm",
|
||||
enable_intermediate_result=True,
|
||||
enable_punctuation_prediction=True,
|
||||
enable_inverse_text_normalization=True)
|
||||
|
||||
while not self.stop:
|
||||
# time.sleep(self.capture_interval)
|
||||
audio = rad.read(uuid.hex)
|
||||
if audio is not None:
|
||||
# convert to pcm file
|
||||
temp_file = f'{temp_folder}/{uuid.hex}.pcm' #
|
||||
dsdata = change_sample_rate(audio, rad.rate, NEW_SAMPLERATE) # 48000 --> 16000
|
||||
io.wavfile.write(temp_file, NEW_SAMPLERATE, dsdata)
|
||||
# read pcm binary
|
||||
with open(temp_file, "rb") as f: data = f.read()
|
||||
# print('audio len:', len(audio), '\t ds len:', len(dsdata), '\t need n send:', len(data)//640)
|
||||
slices = zip(*(iter(data),) * 640) # 640个字节为一组
|
||||
for i in slices: sr.send_audio(bytes(i))
|
||||
else:
|
||||
time.sleep(0.1)
|
||||
r = sr.stop()
|
||||
51
crazy_functions/live_audio/audio_io.py
Normal file
51
crazy_functions/live_audio/audio_io.py
Normal file
@ -0,0 +1,51 @@
|
||||
import numpy as np
|
||||
from scipy import interpolate
|
||||
|
||||
def Singleton(cls):
|
||||
_instance = {}
|
||||
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
|
||||
return _singleton
|
||||
|
||||
|
||||
@Singleton
|
||||
class RealtimeAudioDistribution():
|
||||
def __init__(self) -> None:
|
||||
self.data = {}
|
||||
self.max_len = 1024*1024
|
||||
self.rate = 48000 # 只读,每秒采样数量
|
||||
|
||||
def clean_up(self):
|
||||
self.data = {}
|
||||
|
||||
def feed(self, uuid, audio):
|
||||
self.rate, audio_ = audio
|
||||
# print('feed', len(audio_), audio_[-25:])
|
||||
if uuid not in self.data:
|
||||
self.data[uuid] = audio_
|
||||
else:
|
||||
new_arr = np.concatenate((self.data[uuid], audio_))
|
||||
if len(new_arr) > self.max_len: new_arr = new_arr[-self.max_len:]
|
||||
self.data[uuid] = new_arr
|
||||
|
||||
def read(self, uuid):
|
||||
if uuid in self.data:
|
||||
res = self.data.pop(uuid)
|
||||
print('\r read-', len(res), '-', max(res), end='', flush=True)
|
||||
else:
|
||||
res = None
|
||||
return res
|
||||
|
||||
def change_sample_rate(audio, old_sr, new_sr):
|
||||
duration = audio.shape[0] / old_sr
|
||||
|
||||
time_old = np.linspace(0, duration, audio.shape[0])
|
||||
time_new = np.linspace(0, duration, int(audio.shape[0] * new_sr / old_sr))
|
||||
|
||||
interpolator = interpolate.interp1d(time_old, audio.T)
|
||||
new_audio = interpolator(time_new).T
|
||||
return new_audio.astype(np.int16)
|
||||
63
crazy_functions/交互功能函数模板.py
Normal file
63
crazy_functions/交互功能函数模板.py
Normal file
@ -0,0 +1,63 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
|
||||
@CatchException
|
||||
def 交互功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数, 如温度和top_p等, 一般原样传递下去就行
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append(("这是什么功能?", "交互功能函数模板。在执行完成之后, 可以将自身的状态存储到cookie中, 等待用户的再次调用。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
state = chatbot._cookies.get('plugin_state_0001', None) # 初始化插件状态
|
||||
|
||||
if state is None:
|
||||
chatbot._cookies['lock_plugin'] = 'crazy_functions.交互功能函数模板->交互功能模板函数' # 赋予插件锁定 锁定插件回调路径,当下一次用户提交时,会直接转到该函数
|
||||
chatbot._cookies['plugin_state_0001'] = 'wait_user_keyword' # 赋予插件状态
|
||||
|
||||
chatbot.append(("第一次调用:", "请输入关键词, 我将为您查找相关壁纸, 建议使用英文单词, 插件锁定中,请直接提交即可。"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
if state == 'wait_user_keyword':
|
||||
chatbot._cookies['lock_plugin'] = None # 解除插件锁定,避免遗忘导致死锁
|
||||
chatbot._cookies['plugin_state_0001'] = None # 解除插件状态,避免遗忘导致死锁
|
||||
|
||||
# 解除插件锁定
|
||||
chatbot.append((f"获取关键词:{txt}", ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
page_return = get_image_page_by_keyword(txt)
|
||||
inputs=inputs_show_user=f"Extract all image urls in this html page, pick the first 5 images and show them with markdown format: \n\n {page_return}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=inputs, inputs_show_user=inputs_show_user,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
||||
sys_prompt="When you want to show an image, use markdown format. e.g. . If there are no image url provided, answer 'no image url provided'"
|
||||
)
|
||||
chatbot[-1] = [chatbot[-1][0], gpt_say]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------------
|
||||
|
||||
def get_image_page_by_keyword(keyword):
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
response = requests.get(f'https://wallhaven.cc/search?q={keyword}', timeout=2)
|
||||
res = "image urls: \n"
|
||||
for image_element in BeautifulSoup(response.content, 'html.parser').findAll("img"):
|
||||
try:
|
||||
res += image_element["data-src"]
|
||||
res += "\n"
|
||||
except:
|
||||
pass
|
||||
return res
|
||||
@ -27,8 +27,10 @@ def gen_image(llm_kwargs, prompt, resolution="256x256"):
|
||||
}
|
||||
response = requests.post(url, headers=headers, json=data, proxies=proxies)
|
||||
print(response.content)
|
||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||
|
||||
try:
|
||||
image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
|
||||
except:
|
||||
raise RuntimeError(response.content.decode())
|
||||
# 文件保存到本地
|
||||
r = requests.get(image_url, proxies=proxies)
|
||||
file_path = 'gpt_log/image_gen/'
|
||||
|
||||
@ -12,7 +12,7 @@ def write_chat_to_file(chatbot, history=None, file_name=None):
|
||||
file_name = 'chatGPT对话历史' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.html'
|
||||
os.makedirs('./gpt_log/', exist_ok=True)
|
||||
with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
|
||||
from theme import advanced_css
|
||||
from theme.theme import advanced_css
|
||||
f.write(f'<!DOCTYPE html><head><meta charset="utf-8"><title>对话历史</title><style>{advanced_css}</style></head>')
|
||||
for i, contents in enumerate(chatbot):
|
||||
for j, content in enumerate(contents):
|
||||
|
||||
@ -14,17 +14,19 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
||||
doc = Document(fp)
|
||||
file_content = "\n".join([para.text for para in doc.paragraphs])
|
||||
else:
|
||||
import win32com.client
|
||||
word = win32com.client.Dispatch("Word.Application")
|
||||
word.visible = False
|
||||
# 打开文件
|
||||
print('fp', os.getcwd())
|
||||
doc = word.Documents.Open(os.getcwd() + '/' + fp)
|
||||
# file_content = doc.Content.Text
|
||||
doc = word.ActiveDocument
|
||||
file_content = doc.Range().Text
|
||||
doc.Close()
|
||||
word.Quit()
|
||||
try:
|
||||
import win32com.client
|
||||
word = win32com.client.Dispatch("Word.Application")
|
||||
word.visible = False
|
||||
# 打开文件
|
||||
doc = word.Documents.Open(os.getcwd() + '/' + fp)
|
||||
# file_content = doc.Content.Text
|
||||
doc = word.ActiveDocument
|
||||
file_content = doc.Range().Text
|
||||
doc.Close()
|
||||
word.Quit()
|
||||
except:
|
||||
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
||||
|
||||
print(file_content)
|
||||
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
||||
|
||||
@ -1,121 +1,107 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import update_ui, promote_file_to_downloadzone, gen_time_str
|
||||
from toolbox import CatchException, report_execption, write_results_to_file
|
||||
import re
|
||||
import unicodedata
|
||||
fast_debug = False
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
from .crazy_utils import input_clipping
|
||||
|
||||
def is_paragraph_break(match):
|
||||
"""
|
||||
根据给定的匹配结果来判断换行符是否表示段落分隔。
|
||||
如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
|
||||
也可以根据之前的内容长度来判断段落是否已经足够长。
|
||||
"""
|
||||
prev_char, next_char = match.groups()
|
||||
|
||||
# 句子结束标志
|
||||
sentence_endings = ".!?"
|
||||
|
||||
# 设定一个最小段落长度阈值
|
||||
min_paragraph_length = 140
|
||||
|
||||
if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
|
||||
return "\n\n"
|
||||
else:
|
||||
return " "
|
||||
|
||||
def normalize_text(text):
|
||||
"""
|
||||
通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。
|
||||
例如,将连字 "fi" 转换为 "f" 和 "i"。
|
||||
"""
|
||||
# 对文本进行归一化处理,分解连字
|
||||
normalized_text = unicodedata.normalize("NFKD", text)
|
||||
|
||||
# 替换其他特殊字符
|
||||
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
|
||||
|
||||
return cleaned_text
|
||||
|
||||
def clean_text(raw_text):
|
||||
"""
|
||||
对从 PDF 提取出的原始文本进行清洗和格式化处理。
|
||||
1. 对原始文本进行归一化处理。
|
||||
2. 替换跨行的连词
|
||||
3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换
|
||||
"""
|
||||
# 对文本进行归一化处理
|
||||
normalized_text = normalize_text(raw_text)
|
||||
|
||||
# 替换跨行的连词
|
||||
text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text)
|
||||
|
||||
# 根据前后相邻字符的特点,找到原文本中的换行符
|
||||
newlines = re.compile(r'(\S)\n(\S)')
|
||||
|
||||
# 根据 heuristic 规则,用空格或段落分隔符替换原换行符
|
||||
final_text = re.sub(newlines, lambda m: m.group(1) + is_paragraph_break(m) + m.group(2), text)
|
||||
|
||||
return final_text.strip()
|
||||
|
||||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
import time, glob, os, fitz
|
||||
print('begin analysis on:', file_manifest)
|
||||
for index, fp in enumerate(file_manifest):
|
||||
with fitz.open(fp) as doc:
|
||||
file_content = ""
|
||||
for page in doc:
|
||||
file_content += page.get_text()
|
||||
file_content = clean_text(file_content)
|
||||
print(file_content)
|
||||
file_write_buffer = []
|
||||
for file_name in file_manifest:
|
||||
print('begin analysis on:', file_name)
|
||||
############################## <第 0 步,切割PDF> ##################################
|
||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||
# 的长度必须小于 2500 个 Token
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
prefix = "接下来请你逐文件分析下面的论文文件,概括其内容" if index==0 else ""
|
||||
i_say = prefix + f'请对下面的文章片段用中文做一个概述,文件名是{os.path.relpath(fp, project_folder)},文章内容是 ```{file_content}```'
|
||||
i_say_show_user = prefix + f'[{index}/{len(file_manifest)}] 请对下面的文章片段做一个概述: {os.path.abspath(fp)}'
|
||||
chatbot.append((i_say_show_user, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from request_llm.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
||||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||||
|
||||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||||
final_results = []
|
||||
final_results.append(paper_meta)
|
||||
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say_show_user,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=[],
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
|
||||
############################## <第 2 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||||
i_say_show_user = f'首先你在中文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||||
|
||||
chatbot[-1] = (i_say_show_user, gpt_say)
|
||||
history.append(i_say_show_user); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
if not fast_debug: time.sleep(2)
|
||||
iteration_results = []
|
||||
last_iteration_result = paper_meta # 初始值是摘要
|
||||
MAX_WORD_TOTAL = 4096 * 0.7
|
||||
n_fragment = len(paper_fragments)
|
||||
if n_fragment >= 20: print('文章极长,不能达到预期效果')
|
||||
for i in range(n_fragment):
|
||||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i]}"
|
||||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} Chinese characters: {paper_fragments[i][:200]}"
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||||
llm_kwargs, chatbot,
|
||||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||||
sys_prompt="Extract the main idea of this section with Chinese." # 提示
|
||||
)
|
||||
iteration_results.append(gpt_say)
|
||||
last_iteration_result = gpt_say
|
||||
|
||||
all_file = ', '.join([os.path.relpath(fp, project_folder) for index, fp in enumerate(file_manifest)])
|
||||
i_say = f'根据以上你自己的分析,对全文进行概括,用学术性语言写一段中文摘要,然后再写一段英文摘要(包括{all_file})。'
|
||||
chatbot.append((i_say, "[Local Message] waiting gpt response."))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
if not fast_debug:
|
||||
msg = '正常'
|
||||
# ** gpt request **
|
||||
############################## <第 3 步,整理history,提取总结> ##################################
|
||||
final_results.extend(iteration_results)
|
||||
final_results.append(f'Please conclude this paper discussed above。')
|
||||
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
|
||||
NUM_OF_WORD = 1000
|
||||
i_say = """
|
||||
1. Mark the title of the paper (with Chinese translation)
|
||||
2. list all the authors' names (use English)
|
||||
3. mark the first author's affiliation (output Chinese translation only)
|
||||
4. mark the keywords of this article (use English)
|
||||
5. link to the paper, Github code link (if available, fill in Github:None if not)
|
||||
6. summarize according to the following four points.Be sure to use Chinese answers (proper nouns need to be marked in English)
|
||||
- (1):What is the research background of this article?
|
||||
- (2):What are the past methods? What are the problems with them? Is the approach well motivated?
|
||||
- (3):What is the research methodology proposed in this paper?
|
||||
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals?
|
||||
Follow the format of the output that follows:
|
||||
1. Title: xxx\n\n
|
||||
2. Authors: xxx\n\n
|
||||
3. Affiliation: xxx\n\n
|
||||
4. Keywords: xxx\n\n
|
||||
5. Urls: xxx or xxx , xxx \n\n
|
||||
6. Summary: \n\n
|
||||
- (1):xxx;\n
|
||||
- (2):xxx;\n
|
||||
- (3):xxx;\n
|
||||
- (4):xxx.\n\n
|
||||
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible,
|
||||
do not have too much repetitive information, numerical values using the original numbers.
|
||||
"""
|
||||
# This prompt is from https://github.com/kaixindelele/ChatPaper/blob/main/chat_paper.py
|
||||
file_write_buffer.extend(final_results)
|
||||
i_say, final_results = input_clipping(i_say, final_results, max_token_limit=2000)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say,
|
||||
inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt="总结文章。"
|
||||
) # 带超时倒计时
|
||||
inputs=i_say, inputs_show_user='开始最终总结',
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=final_results,
|
||||
sys_prompt= f"Extract the main idea of this paper with less than {NUM_OF_WORD} Chinese characters"
|
||||
)
|
||||
final_results.append(gpt_say)
|
||||
file_write_buffer.extend([i_say, gpt_say])
|
||||
############################## <第 4 步,设置一个token上限> ##################################
|
||||
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
||||
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
||||
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say); history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_results_to_file(history)
|
||||
chatbot.append(("完成了吗?", res))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|
||||
res = write_results_to_file(file_write_buffer, file_name=gen_time_str())
|
||||
promote_file_to_downloadzone(res.split('\t')[-1], chatbot=chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=final_results) # 刷新界面
|
||||
|
||||
|
||||
@CatchException
|
||||
@ -151,10 +137,7 @@ def 批量总结PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, syst
|
||||
return
|
||||
|
||||
# 搜索需要处理的文件清单
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)] # + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.cpp', recursive=True)] + \
|
||||
# [f for f in glob.glob(f'{project_folder}/**/*.c', recursive=True)]
|
||||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||||
|
||||
# 如果没找到任何文件
|
||||
if len(file_manifest) == 0:
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
from toolbox import CatchException, report_execption, write_results_to_file
|
||||
from toolbox import update_ui
|
||||
from toolbox import update_ui, promote_file_to_downloadzone
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
from .crazy_utils import read_and_clean_pdf_text
|
||||
@ -147,23 +147,14 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
print('writing html result failed:', trimmed_format_exc())
|
||||
|
||||
# 准备文件的下载
|
||||
import shutil
|
||||
for pdf_path in generated_conclusion_files:
|
||||
# 重命名文件
|
||||
rename_file = f'./gpt_log/翻译-{os.path.basename(pdf_path)}'
|
||||
if os.path.exists(rename_file):
|
||||
os.remove(rename_file)
|
||||
shutil.copyfile(pdf_path, rename_file)
|
||||
if os.path.exists(pdf_path):
|
||||
os.remove(pdf_path)
|
||||
rename_file = f'翻译-{os.path.basename(pdf_path)}'
|
||||
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
|
||||
for html_path in generated_html_files:
|
||||
# 重命名文件
|
||||
rename_file = f'./gpt_log/翻译-{os.path.basename(html_path)}'
|
||||
if os.path.exists(rename_file):
|
||||
os.remove(rename_file)
|
||||
shutil.copyfile(html_path, rename_file)
|
||||
if os.path.exists(html_path):
|
||||
os.remove(html_path)
|
||||
rename_file = f'翻译-{os.path.basename(html_path)}'
|
||||
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
|
||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
@ -13,7 +13,9 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||||
# 的长度必须小于 2500 个 Token
|
||||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||||
|
||||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||||
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
|
||||
102
crazy_functions/联网的ChatGPT_bing版.py
Normal file
102
crazy_functions/联网的ChatGPT_bing版.py
Normal file
@ -0,0 +1,102 @@
|
||||
from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from request_llm.bridge_all import model_info
|
||||
|
||||
|
||||
def bing_search(query, proxies=None):
|
||||
query = query
|
||||
url = f"https://cn.bing.com/search?q={query}"
|
||||
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'}
|
||||
response = requests.get(url, headers=headers, proxies=proxies)
|
||||
soup = BeautifulSoup(response.content, 'html.parser')
|
||||
results = []
|
||||
for g in soup.find_all('li', class_='b_algo'):
|
||||
anchors = g.find_all('a')
|
||||
if anchors:
|
||||
link = anchors[0]['href']
|
||||
if not link.startswith('http'):
|
||||
continue
|
||||
title = g.find('h2').text
|
||||
item = {'title': title, 'link': link}
|
||||
results.append(item)
|
||||
|
||||
for r in results:
|
||||
print(r['link'])
|
||||
return results
|
||||
|
||||
|
||||
def scrape_text(url, proxies) -> str:
|
||||
"""Scrape text from a webpage
|
||||
|
||||
Args:
|
||||
url (str): The URL to scrape text from
|
||||
|
||||
Returns:
|
||||
str: The scraped text
|
||||
"""
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36',
|
||||
'Content-Type': 'text/plain',
|
||||
}
|
||||
try:
|
||||
response = requests.get(url, headers=headers, proxies=proxies, timeout=8)
|
||||
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding
|
||||
except:
|
||||
return "无法连接到该网页"
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
text = soup.get_text()
|
||||
lines = (line.strip() for line in text.splitlines())
|
||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||
text = "\n".join(chunk for chunk in chunks if chunk)
|
||||
return text
|
||||
|
||||
@CatchException
|
||||
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
web_port 当前软件运行的端口号
|
||||
"""
|
||||
history = [] # 清空历史,以免输入溢出
|
||||
chatbot.append((f"请结合互联网信息回答以下问题:{txt}",
|
||||
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!"))
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
urls = bing_search(txt, proxies)
|
||||
history = []
|
||||
|
||||
# ------------- < 第2步:依次访问网页 > -------------
|
||||
max_search_result = 8 # 最多收纳多少个网页的结果
|
||||
for index, url in enumerate(urls[:max_search_result]):
|
||||
res = scrape_text(url['link'], proxies)
|
||||
history.extend([f"第{index}份搜索结果:", res])
|
||||
chatbot.append([f"第{index}份搜索结果:", res[:500]+"......"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 由于请求gpt需要一段时间,我们先及时地做一次界面更新
|
||||
|
||||
# ------------- < 第3步:ChatGPT综合 > -------------
|
||||
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}"
|
||||
i_say, history = input_clipping( # 裁剪输入,从最长的条目开始裁剪,防止爆token
|
||||
inputs=i_say,
|
||||
history=history,
|
||||
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4
|
||||
)
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=i_say, inputs_show_user=i_say,
|
||||
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
|
||||
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。"
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
|
||||
@ -6,7 +6,7 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
@ -35,7 +35,7 @@ def 同时问询_指定模型(txt, llm_kwargs, plugin_kwargs, chatbot, history,
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
|
||||
188
crazy_functions/语音助手.py
Normal file
188
crazy_functions/语音助手.py
Normal file
@ -0,0 +1,188 @@
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, get_conf, markdown_convertion
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
import threading, time
|
||||
import numpy as np
|
||||
from .live_audio.aliyunASR import AliyunASR
|
||||
import json
|
||||
|
||||
class WatchDog():
|
||||
def __init__(self, timeout, bark_fn, interval=3, msg="") -> None:
|
||||
self.last_feed = None
|
||||
self.timeout = timeout
|
||||
self.bark_fn = bark_fn
|
||||
self.interval = interval
|
||||
self.msg = msg
|
||||
|
||||
def watch(self):
|
||||
while True:
|
||||
if time.time() - self.last_feed > self.timeout:
|
||||
if len(self.msg) > 0: print(self.msg)
|
||||
self.bark_fn()
|
||||
break
|
||||
time.sleep(self.interval)
|
||||
|
||||
def begin_watch(self):
|
||||
self.last_feed = time.time()
|
||||
th = threading.Thread(target=self.watch)
|
||||
th.daemon = True
|
||||
th.start()
|
||||
|
||||
def feed(self):
|
||||
self.last_feed = time.time()
|
||||
|
||||
def chatbot2history(chatbot):
|
||||
history = []
|
||||
for c in chatbot:
|
||||
for q in c:
|
||||
if q not in ["[请讲话]", "[等待GPT响应]", "[正在等您说完问题]"]:
|
||||
history.append(q.strip('<div class="markdown-body">').strip('</div>').strip('<p>').strip('</p>'))
|
||||
return history
|
||||
|
||||
class AsyncGptTask():
|
||||
def __init__(self) -> None:
|
||||
self.observe_future = []
|
||||
self.observe_future_chatbot_index = []
|
||||
|
||||
def gpt_thread_worker(self, i_say, llm_kwargs, history, sys_prompt, observe_window, index):
|
||||
try:
|
||||
MAX_TOKEN_ALLO = 2560
|
||||
i_say, history = input_clipping(i_say, history, max_token_limit=MAX_TOKEN_ALLO)
|
||||
gpt_say_partial = predict_no_ui_long_connection(inputs=i_say, llm_kwargs=llm_kwargs, history=history, sys_prompt=sys_prompt,
|
||||
observe_window=observe_window[index], console_slience=True)
|
||||
except ConnectionAbortedError as token_exceed_err:
|
||||
print('至少一个线程任务Token溢出而失败', e)
|
||||
except Exception as e:
|
||||
print('至少一个线程任务意外失败', e)
|
||||
|
||||
def add_async_gpt_task(self, i_say, chatbot_index, llm_kwargs, history, system_prompt):
|
||||
self.observe_future.append([""])
|
||||
self.observe_future_chatbot_index.append(chatbot_index)
|
||||
cur_index = len(self.observe_future)-1
|
||||
th_new = threading.Thread(target=self.gpt_thread_worker, args=(i_say, llm_kwargs, history, system_prompt, self.observe_future, cur_index))
|
||||
th_new.daemon = True
|
||||
th_new.start()
|
||||
|
||||
def update_chatbot(self, chatbot):
|
||||
for of, ofci in zip(self.observe_future, self.observe_future_chatbot_index):
|
||||
try:
|
||||
chatbot[ofci] = list(chatbot[ofci])
|
||||
chatbot[ofci][1] = markdown_convertion(of[0])
|
||||
except:
|
||||
self.observe_future = []
|
||||
self.observe_future_chatbot_index = []
|
||||
return chatbot
|
||||
|
||||
class InterviewAssistant(AliyunASR):
|
||||
def __init__(self):
|
||||
self.capture_interval = 0.5 # second
|
||||
self.stop = False
|
||||
self.parsed_text = ""
|
||||
self.parsed_sentence = ""
|
||||
self.buffered_sentence = ""
|
||||
self.event_on_result_chg = threading.Event()
|
||||
self.event_on_entence_end = threading.Event()
|
||||
self.event_on_commit_question = threading.Event()
|
||||
|
||||
def __del__(self):
|
||||
self.stop = True
|
||||
|
||||
def init(self, chatbot):
|
||||
# 初始化音频采集线程
|
||||
self.captured_audio = np.array([])
|
||||
self.keep_latest_n_second = 10
|
||||
self.commit_after_pause_n_second = 1.5
|
||||
self.ready_audio_flagment = None
|
||||
self.stop = False
|
||||
self.plugin_wd = WatchDog(timeout=5, bark_fn=self.__del__, msg="程序终止")
|
||||
self.aut = threading.Thread(target=self.audio_convertion_thread, args=(chatbot._cookies['uuid'],))
|
||||
self.aut.daemon = True
|
||||
self.aut.start()
|
||||
# th2 = threading.Thread(target=self.audio2txt_thread, args=(chatbot._cookies['uuid'],))
|
||||
# th2.daemon = True
|
||||
# th2.start()
|
||||
|
||||
def no_audio_for_a_while(self):
|
||||
if len(self.buffered_sentence) < 7: # 如果一句话小于7个字,暂不提交
|
||||
self.commit_wd.begin_watch()
|
||||
else:
|
||||
self.event_on_commit_question.set()
|
||||
|
||||
def begin(self, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||||
# main plugin function
|
||||
self.init(chatbot)
|
||||
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.plugin_wd.begin_watch()
|
||||
self.agt = AsyncGptTask()
|
||||
self.commit_wd = WatchDog(timeout=self.commit_after_pause_n_second, bark_fn=self.no_audio_for_a_while, interval=0.2)
|
||||
self.commit_wd.begin_watch()
|
||||
|
||||
while True:
|
||||
self.event_on_result_chg.wait(timeout=0.25) # run once every 0.25 second
|
||||
chatbot = self.agt.update_chatbot(chatbot) # 将子线程的gpt结果写入chatbot
|
||||
history = chatbot2history(chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.plugin_wd.feed()
|
||||
|
||||
if self.event_on_result_chg.is_set():
|
||||
# update audio decode result
|
||||
self.event_on_result_chg.clear()
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1][0] = self.buffered_sentence + self.parsed_text
|
||||
history = chatbot2history(chatbot)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
self.commit_wd.feed()
|
||||
|
||||
if self.event_on_entence_end.is_set():
|
||||
# called when a sentence has ended
|
||||
self.event_on_entence_end.clear()
|
||||
self.parsed_text = self.parsed_sentence
|
||||
self.buffered_sentence += self.parsed_sentence
|
||||
|
||||
if self.event_on_commit_question.is_set():
|
||||
# called when a question should be commited
|
||||
self.event_on_commit_question.clear()
|
||||
if len(self.buffered_sentence) == 0: raise RuntimeError
|
||||
|
||||
self.commit_wd.begin_watch()
|
||||
chatbot[-1] = list(chatbot[-1])
|
||||
chatbot[-1] = [self.buffered_sentence, "[等待GPT响应]"]
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
# add gpt task 创建子线程请求gpt,避免线程阻塞
|
||||
history = chatbot2history(chatbot)
|
||||
self.agt.add_async_gpt_task(self.buffered_sentence, len(chatbot)-1, llm_kwargs, history, system_prompt)
|
||||
|
||||
self.buffered_sentence = ""
|
||||
chatbot.append(["[请讲话]", "[正在等您说完问题]"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
|
||||
|
||||
|
||||
@CatchException
|
||||
def 语音助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
# pip install -U openai-whisper
|
||||
chatbot.append(["对话助手函数插件:使用时,双手离开鼠标键盘吧", "音频助手, 正在听您讲话(点击“停止”键可终止程序)..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||
try:
|
||||
import nls
|
||||
from scipy import io
|
||||
except:
|
||||
chatbot.append(["导入依赖失败", "使用该模块需要额外依赖, 安装方法:```pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git```"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
TOKEN, APPKEY = get_conf('ALIYUN_TOKEN', 'ALIYUN_APPKEY')
|
||||
if TOKEN == "" or APPKEY == "":
|
||||
chatbot.append(["导入依赖失败", "没有阿里云语音识别APPKEY和TOKEN, 详情见https://help.aliyun.com/document_detail/450255.html"])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
return
|
||||
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
ia = InterviewAssistant()
|
||||
yield from ia.begin(llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||||
|
||||
28
crazy_functions/辅助回答.py
Normal file
28
crazy_functions/辅助回答.py
Normal file
@ -0,0 +1,28 @@
|
||||
# encoding: utf-8
|
||||
# @Time : 2023/4/19
|
||||
# @Author : Spike
|
||||
# @Descr :
|
||||
from toolbox import update_ui
|
||||
from toolbox import CatchException, report_execption, write_results_to_file
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
|
||||
|
||||
@CatchException
|
||||
def 猜你想问(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||||
if txt:
|
||||
show_say = txt
|
||||
prompt = txt+'\n回答完问题后,再列出用户可能提出的三个问题。'
|
||||
else:
|
||||
prompt = history[-1]+"\n分析上述回答,再列出用户可能提出的三个问题。"
|
||||
show_say = '分析上述回答,再列出用户可能提出的三个问题。'
|
||||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||
inputs=prompt,
|
||||
inputs_show_user=show_say,
|
||||
llm_kwargs=llm_kwargs,
|
||||
chatbot=chatbot,
|
||||
history=history,
|
||||
sys_prompt=system_prompt
|
||||
)
|
||||
chatbot[-1] = (show_say, gpt_say)
|
||||
history.extend([show_say, gpt_say])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
@ -6,7 +6,7 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
"""
|
||||
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
|
||||
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
|
||||
plugin_kwargs 插件模型的参数,暂时没有用武之地
|
||||
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
|
||||
chatbot 聊天显示框的句柄,用于显示给用户
|
||||
history 聊天历史,前情提要
|
||||
system_prompt 给gpt的静默提醒
|
||||
@ -26,4 +26,4 @@ def 高阶功能模板函数(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
)
|
||||
chatbot[-1] = (i_say, gpt_say)
|
||||
history.append(i_say);history.append(gpt_say)
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
|
||||
@ -6,7 +6,7 @@
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_nolocalllms:
|
||||
image: ghcr.io/binary-husky/gpt_academic_nolocal:master
|
||||
image: ghcr.io/binary-husky/gpt_academic_nolocal:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal)
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
@ -33,7 +33,7 @@ services:
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_with_chatglm:
|
||||
image: ghcr.io/binary-husky/gpt_academic_chatglm_moss:master
|
||||
image: ghcr.io/binary-husky/gpt_academic_chatglm_moss:master # (Auto Built by Dockerfile: docs/Dockerfile+ChatGLM)
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
@ -63,7 +63,7 @@ services:
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_with_rwkv:
|
||||
image: fuqingxu/gpt_academic:jittorllms # [option 2] 如果需要运行ChatGLM本地模型
|
||||
image: fuqingxu/gpt_academic:jittorllms
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
@ -111,7 +111,7 @@ services:
|
||||
version: '3'
|
||||
services:
|
||||
gpt_academic_with_latex:
|
||||
image: ghcr.io/binary-husky/gpt_academic_with_latex:master
|
||||
image: ghcr.io/binary-husky/gpt_academic_with_latex:master # (Auto Built by Dockerfile: docs/GithubAction+NoLocal+Latex)
|
||||
environment:
|
||||
# 请查阅 `config.py` 以查看所有的配置信息
|
||||
API_KEY: ' sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx '
|
||||
|
||||
@ -1667,5 +1667,294 @@
|
||||
"段音频的主要内容": "The main content of the segment audio is",
|
||||
"z$ 分别是空间直角坐标系中的三个坐标": "z$, respectively, are the three coordinates in the spatial rectangular coordinate system",
|
||||
"这个是怎么识别的呢我也不清楚": "I'm not sure how this is recognized",
|
||||
"从现在起": "From now on"
|
||||
"从现在起": "From now on",
|
||||
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
|
||||
"联网的ChatGPT_bing版": "OnlineChatGPT_BingEdition",
|
||||
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
|
||||
"Langchain知识库": "LangchainKnowledgeBase",
|
||||
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
|
||||
"Latex输出PDF结果": "OutputPDFFromLatex",
|
||||
"Latex翻译中文并重新编译PDF": "TranslateChineseToEnglishInLatexAndRecompilePDF",
|
||||
"sprint亮靛": "SprintIndigo",
|
||||
"寻找Latex主文件": "FindLatexMainFile",
|
||||
"专业词汇声明": "ProfessionalTerminologyDeclaration",
|
||||
"Latex精细分解与转化": "DecomposeAndConvertLatex",
|
||||
"编译Latex": "CompileLatex",
|
||||
"如果您是论文原作者": "If you are the original author of the paper",
|
||||
"正在编译对比PDF": "Compiling the comparison PDF",
|
||||
"将 \\include 命令转换为 \\input 命令": "Converting the \\include command to the \\input command",
|
||||
"取评分最高者返回": "Returning the highest-rated one",
|
||||
"不要修改!! 高危设置!通过修改此设置": "Do not modify!! High-risk setting! By modifying this setting",
|
||||
"Tex源文件缺失!": "Tex source file is missing!",
|
||||
"6.25 加入判定latex模板的代码": "Added code to determine the latex template on June 25",
|
||||
"正在精细切分latex文件": "Finely splitting the latex file",
|
||||
"获取response失败": "Failed to get response",
|
||||
"手动指定语言": "Manually specify the language",
|
||||
"输入arxivID": "Enter arxivID",
|
||||
"对输入的word文档进行摘要生成": "Generate a summary of the input word document",
|
||||
"将指定目录下的PDF文件从英文翻译成中文": "Translate PDF files from English to Chinese in the specified directory",
|
||||
"如果分析错误": "If the analysis is incorrect",
|
||||
"尝试第": "Try the",
|
||||
"用户填3": "User fills in 3",
|
||||
"请在此处追加更细致的矫错指令": "Please append more detailed correction instructions here",
|
||||
"为了防止大语言模型的意外谬误产生扩散影响": "To prevent the accidental spread of errors in large language models",
|
||||
"前面是中文冒号": "The colon before is in Chinese",
|
||||
"内含已经翻译的Tex文档": "Contains a Tex document that has been translated",
|
||||
"成功啦": "Success!",
|
||||
"刷新页面即可以退出UpdateKnowledgeArchive模式": "Refresh the page to exit UpdateKnowledgeArchive mode",
|
||||
"或者不在环境变量PATH中": "Or not in the environment variable PATH",
|
||||
"--读取文件": "--Read the file",
|
||||
"才能继续下面的步骤": "To continue with the next steps",
|
||||
"代理数据解析失败": "Proxy data parsing failed",
|
||||
"详见项目主README.md": "See the main README.md of the project for details",
|
||||
"临时存储用于调试": "Temporarily stored for debugging",
|
||||
"屏蔽空行和太短的句子": "Filter out empty lines and sentences that are too short",
|
||||
"gpt 多线程请求": "GPT multi-threaded request",
|
||||
"编译已经开始": "Compilation has started",
|
||||
"无法找到一个主Tex文件": "Cannot find a main Tex file",
|
||||
"修复括号": "Fix parentheses",
|
||||
"请您不要删除或修改这行警告": "Please do not delete or modify this warning",
|
||||
"请登录OpenAI查看详情 https": "Please log in to OpenAI to view details at https",
|
||||
"调用函数": "Call a function",
|
||||
"请查看终端的输出或耐心等待": "Please check the output in the terminal or wait patiently",
|
||||
"LatexEnglishCorrection+高亮修正位置": "Latex English correction + highlight correction position",
|
||||
"行": "line",
|
||||
"Newbing 请求失败": "Newbing request failed",
|
||||
"转化PDF编译是否成功": "Check if the conversion to PDF and compilation were successful",
|
||||
"建议更换代理协议": "Recommend changing the proxy protocol",
|
||||
"========================================= 插件主程序1 =====================================================": "========================================= Plugin Main Program 1 =====================================================",
|
||||
"终端": "terminal",
|
||||
"请先上传文件素材": "Please upload file materials first",
|
||||
"前面是中文逗号": "There is a Chinese comma in front",
|
||||
"请尝试把以下指令复制到高级参数区": "Please try copying the following instructions to the advanced parameters section",
|
||||
"翻译-": "Translation -",
|
||||
"请耐心等待": "Please be patient",
|
||||
"将前后断行符脱离": "Remove line breaks before and after",
|
||||
"json等": "JSON, etc.",
|
||||
"生成中文PDF": "Generate Chinese PDF",
|
||||
"用红色标注处保留区": "Use red color to highlight the reserved area",
|
||||
"对比PDF编译是否成功": "Compare if the PDF compilation was successful",
|
||||
"回答完问题后": "After answering the question",
|
||||
"其他操作系统表现未知": "Unknown performance on other operating systems",
|
||||
"-构建知识库": "Build knowledge base",
|
||||
"还原原文": "Restore original text",
|
||||
"或者重启之后再度尝试": "Or try again after restarting",
|
||||
"免费": "Free",
|
||||
"仅在Windows系统进行了测试": "Tested only on Windows system",
|
||||
"欢迎加REAME中的QQ联系开发者": "Feel free to contact the developer via QQ in REAME",
|
||||
"当前知识库内的有效文件": "Valid files in the current knowledge base",
|
||||
"您可以到Github Issue区": "You can go to the Github Issue area",
|
||||
"刷新Gradio前端界面": "Refresh the Gradio frontend interface",
|
||||
"吸收title与作者以上的部分": "Include the title and the above part of the author",
|
||||
"给出一些判定模板文档的词作为扣分项": "Provide some words in the template document as deduction items",
|
||||
"--读取参数": "-- Read parameters",
|
||||
"然后进行问答": "And then perform question-answering",
|
||||
"根据自然语言执行插件命令": "Execute plugin commands based on natural language",
|
||||
"*{\\scriptsize\\textbf{警告": "*{\\scriptsize\\textbf{Warning",
|
||||
"但请查收结果": "But please check the results",
|
||||
"翻译内容可靠性无保障": "No guarantee of translation accuracy",
|
||||
"寻找主文件": "Find the main file",
|
||||
"消耗时间的函数": "Time-consuming function",
|
||||
"当前语言模型温度设定": "Current language model temperature setting",
|
||||
"这需要一段时间计算": "This requires some time to calculate",
|
||||
"为啥chatgpt会把cite里面的逗号换成中文逗号呀": "Why does ChatGPT change commas inside 'cite' to Chinese commas?",
|
||||
"发现已经存在翻译好的PDF文档": "Found an already translated PDF document",
|
||||
"待提取的知识库名称id": "Knowledge base name ID to be extracted",
|
||||
"文本碎片重组为完整的tex片段": "Reassemble text fragments into complete tex fragments",
|
||||
"注意事项": "Notes",
|
||||
"参数说明": "Parameter description",
|
||||
"或代理节点": "Or proxy node",
|
||||
"构建知识库": "Building knowledge base",
|
||||
"报错信息如下. 如果是与网络相关的问题": "Error message as follows. If it is related to network issues",
|
||||
"功能描述": "Function description",
|
||||
"禁止移除或修改此警告": "Removal or modification of this warning is prohibited",
|
||||
"Arixv翻译": "Arixv translation",
|
||||
"读取优先级": "Read priority",
|
||||
"包含documentclass关键字": "Contains the documentclass keyword",
|
||||
"根据文本使用GPT模型生成相应的图像": "Generate corresponding images using GPT model based on the text",
|
||||
"图像生成所用到的提示文本": "Prompt text used for image generation",
|
||||
"Your account is not active. OpenAI以账户失效为由": "Your account is not active. OpenAI states that it is due to account expiration",
|
||||
"快捷的调试函数": "Convenient debugging function",
|
||||
"在多Tex文档中": "In multiple Tex documents",
|
||||
"因此选择GenerateImage函数": "Therefore, choose the GenerateImage function",
|
||||
"当前工作路径为": "The current working directory is",
|
||||
"实际得到格式": "Obtained format in reality",
|
||||
"这段代码定义了一个名为TempProxy的空上下文管理器": "This code defines an empty context manager named TempProxy",
|
||||
"吸收其他杂项": "Absorb other miscellaneous items",
|
||||
"请输入要翻译成哪种语言": "Please enter which language to translate into",
|
||||
"的单词": "of the word",
|
||||
"正在尝试自动安装": "Attempting automatic installation",
|
||||
"如果有必要": "If necessary",
|
||||
"开始下载": "Start downloading",
|
||||
"项目Github地址 \\url{https": "Project GitHub address \\url{https",
|
||||
"将根据报错信息修正tex源文件并重试": "The Tex source file will be corrected and retried based on the error message",
|
||||
"发送至azure openai api": "Send to Azure OpenAI API",
|
||||
"吸收匿名公式": "Absorb anonymous formulas",
|
||||
"用该压缩包+ConversationHistoryArchive进行反馈": "Provide feedback using the compressed package + ConversationHistoryArchive",
|
||||
"需要特殊依赖": "Requires special dependencies",
|
||||
"还原部分原文": "Restore part of the original text",
|
||||
"构建完成": "Build completed",
|
||||
"解析arxiv网址失败": "Failed to parse arXiv URL",
|
||||
"输入问题后点击该插件": "Click the plugin after entering the question",
|
||||
"请求子进程": "Requesting subprocess",
|
||||
"请务必用 pip install -r requirements.txt 指令安装依赖": "Please make sure to install the dependencies using the 'pip install -r requirements.txt' command",
|
||||
"如果程序停顿5分钟以上": "If the program pauses for more than 5 minutes",
|
||||
"转化PDF编译已经成功": "Conversion to PDF compilation was successful",
|
||||
"虽然PDF生成失败了": "Although PDF generation failed",
|
||||
"分析上述回答": "Analyze the above answer",
|
||||
"吸收在42行以内的begin-end组合": "Absorb the begin-end combination within 42 lines",
|
||||
"推荐http": "Recommend http",
|
||||
"Latex没有安装": "Latex is not installed",
|
||||
"用latex编译为PDF对修正处做高亮": "Compile to PDF using LaTeX and highlight the corrections",
|
||||
"reverse 操作必须放在最后": "'reverse' operation must be placed at the end",
|
||||
"AZURE OPENAI API拒绝了请求": "AZURE OPENAI API rejected the request",
|
||||
"该项目的Latex主文件是": "The main LaTeX file of this project is",
|
||||
"You are associated with a deactivated account. OpenAI以账户失效为由": "You are associated with a deactivated account. OpenAI considers it as an account expiration",
|
||||
"它*必须*被包含在AVAIL_LLM_MODELS列表中": "It *must* be included in the AVAIL_LLM_MODELS list",
|
||||
"未知指令": "Unknown command",
|
||||
"尝试执行Latex指令失败": "Failed to execute the LaTeX command",
|
||||
"摘要生成后的文档路径": "Path of the document after summary generation",
|
||||
"GPT结果已输出": "GPT result has been outputted",
|
||||
"使用Newbing": "Using Newbing",
|
||||
"其他模型转化效果未知": "Unknown conversion effect of other models",
|
||||
"P.S. 但愿没人把latex模板放在里面传进来": "P.S. Hopefully, no one passes a LaTeX template in it",
|
||||
"定位主Latex文件": "Locate the main LaTeX file",
|
||||
"后面是英文冒号": "English colon follows",
|
||||
"文档越长耗时越长": "The longer the document, the longer it takes.",
|
||||
"压缩包": "Compressed file",
|
||||
"但通常不会出现在正文": "But usually does not appear in the body.",
|
||||
"正在预热文本向量化模组": "Preheating text vectorization module",
|
||||
"5刀": "5 dollars",
|
||||
"提问吧! 但注意": "Ask questions! But be careful",
|
||||
"发送至AZURE OPENAI API": "Send to AZURE OPENAI API",
|
||||
"请仔细鉴别并以原文为准": "Please carefully verify and refer to the original text",
|
||||
"如果需要使用AZURE 详情请见额外文档 docs\\use_azure.md": "If you need to use AZURE, please refer to the additional document docs\\use_azure.md for details",
|
||||
"使用正则表达式查找半行注释": "Use regular expressions to find inline comments",
|
||||
"只有第二步成功": "Only the second step is successful",
|
||||
"P.S. 顺便把CTEX塞进去以支持中文": "P.S. By the way, include CTEX to support Chinese",
|
||||
"安装方法https": "Installation method: https",
|
||||
"则跳过GPT请求环节": "Then skip the GPT request process",
|
||||
"请切换至“UpdateKnowledgeArchive”插件进行知识库访问": "Please switch to the 'UpdateKnowledgeArchive' plugin for knowledge base access",
|
||||
"=================================== 工具函数 ===============================================": "=================================== Utility functions ===============================================",
|
||||
"填入azure openai api的密钥": "Fill in the Azure OpenAI API key",
|
||||
"上传Latex压缩包": "Upload LaTeX compressed file",
|
||||
"远程云服务器部署": "Deploy to remote cloud server",
|
||||
"用黑色标注转换区": "Use black color to annotate the conversion area",
|
||||
"音频文件的路径": "Path to the audio file",
|
||||
"必须包含documentclass": "Must include documentclass",
|
||||
"再列出用户可能提出的三个问题": "List three more questions that the user might ask",
|
||||
"根据需要切换prompt": "Switch the prompt as needed",
|
||||
"将文件复制一份到下载区": "Make a copy of the file in the download area",
|
||||
"次编译": "Second compilation",
|
||||
"Latex文件融合完成": "LaTeX file merging completed",
|
||||
"返回": "Return",
|
||||
"后面是英文逗号": "Comma after this",
|
||||
"对不同latex源文件扣分": "Deduct points for different LaTeX source files",
|
||||
"失败啦": "Failed",
|
||||
"编译BibTex": "Compile BibTeX",
|
||||
"Linux下必须使用Docker安装": "Must install using Docker on Linux",
|
||||
"报错信息": "Error message",
|
||||
"删除或修改歧义文件": "Delete or modify ambiguous files",
|
||||
"-预热文本向量化模组": "- Preheating text vectorization module",
|
||||
"将每次对话记录写入Markdown格式的文件中": "Write each conversation record into a file in Markdown format",
|
||||
"其他类型文献转化效果未知": "Unknown conversion effect for other types of literature",
|
||||
"获取线程锁": "Acquire thread lock",
|
||||
"使用英文": "Use English",
|
||||
"如果存在调试缓存文件": "If there is a debug cache file",
|
||||
"您需要首先调用构建知识库": "You need to call the knowledge base building first",
|
||||
"原始PDF编译是否成功": "Whether the original PDF compilation is successful",
|
||||
"生成 azure openai api请求": "Generate Azure OpenAI API requests",
|
||||
"正在编译PDF": "Compiling PDF",
|
||||
"仅调试": "Debug only",
|
||||
"========================================= 插件主程序2 =====================================================": "========================================= Plugin Main Program 2 =====================================================",
|
||||
"多线程翻译开始": "Multithreaded translation begins",
|
||||
"出问题了": "There is a problem",
|
||||
"版权归原文作者所有": "Copyright belongs to the original author",
|
||||
"当前大语言模型": "Current large language model",
|
||||
"目前对机器学习类文献转化效果最好": "Currently, the best conversion effect for machine learning literature",
|
||||
"这个paper有个input命令文件名大小写错误!": "This paper has an input command with a filename case error!",
|
||||
"期望格式例如": "Expected format, for example",
|
||||
"解决部分词汇翻译不准确的问题": "Resolve the issue of inaccurate translation for some terms",
|
||||
"待注入的知识库名称id": "Name/ID of the knowledge base to be injected",
|
||||
"精细切分latex文件": "Fine-grained segmentation of LaTeX files",
|
||||
"永远给定None": "Always given None",
|
||||
"work_folder = Latex预处理": "work_folder = LaTeX preprocessing",
|
||||
"请直接去该路径下取回翻译结果": "Please directly go to the path to retrieve the translation results",
|
||||
"寻找主tex文件": "Finding the main .tex file",
|
||||
"模型参数": "Model parameters",
|
||||
"返回找到的第一个": "Return the first one found",
|
||||
"编译转化后的PDF": "Compile the converted PDF",
|
||||
"\\SEAFILE_LOCALŅ03047\\我的资料库\\music\\Akie秋绘-未来轮廓.mp3": "\\SEAFILE_LOCALŅ03047\\My Library\\music\\Akie秋绘-未来轮廓.mp3",
|
||||
"拆分过长的latex片段": "Splitting overly long LaTeX fragments",
|
||||
"没有找到任何可读取文件": "No readable files found",
|
||||
"暗色模式 / 亮色模式": "Dark mode / Light mode",
|
||||
"检测到arxiv文档连接": "Detected arXiv document link",
|
||||
"此插件Windows支持最佳": "This plugin has best support for Windows",
|
||||
"from crazy_functions.虚空终端 import 终端": "from crazy_functions.null_terminal import Terminal",
|
||||
"本地论文翻译": "Local paper translation",
|
||||
"输出html调试文件": "Output HTML debugging file",
|
||||
"以下所有配置也都支持利用环境变量覆写": "All the following configurations can also be overridden using environment variables",
|
||||
"PDF文件所在的路径": "Path of the PDF file",
|
||||
"也是可读的": "It is also readable",
|
||||
"将消耗较长时间下载中文向量化模型": "Downloading Chinese vectorization model will take a long time",
|
||||
"环境变量配置格式见docker-compose.yml": "See docker-compose.yml for the format of environment variable configuration",
|
||||
"编译文献交叉引用": "Compile bibliographic cross-references",
|
||||
"默认为default": "Default is 'default'",
|
||||
"或者使用此插件继续上传更多文件": "Or use this plugin to continue uploading more files",
|
||||
"该PDF由GPT-Academic开源项目调用大语言模型+Latex翻译插件一键生成": "This PDF is generated by the GPT-Academic open-source project using a large language model + LaTeX translation plugin",
|
||||
"使用latexdiff生成论文转化前后对比": "Use latexdiff to generate before and after comparison of paper transformation",
|
||||
"正在编译PDF文档": "Compiling PDF document",
|
||||
"读取config.py文件中关于AZURE OPENAI API的信息": "Read the information about AZURE OPENAI API from the config.py file",
|
||||
"配置教程&视频教程": "Configuration tutorial & video tutorial",
|
||||
"临时地启动代理网络": "Temporarily start proxy network",
|
||||
"临时地激活代理网络": "Temporarily activate proxy network",
|
||||
"功能尚不稳定": "Functionality is unstable",
|
||||
"默认为Chinese": "Default is Chinese",
|
||||
"请查收结果": "Please check the results",
|
||||
"将 chatglm 直接对齐到 chatglm2": "Align chatglm directly to chatglm2",
|
||||
"中读取数据构建知识库": "Build a knowledge base by reading data in",
|
||||
"用于给一小段代码上代理": "Used to proxy a small piece of code",
|
||||
"分析结果": "Analysis results",
|
||||
"依赖不足": "Insufficient dependencies",
|
||||
"Markdown翻译": "Markdown translation",
|
||||
"除非您是论文的原作者": "Unless you are the original author of the paper",
|
||||
"test_LangchainKnowledgeBase读取": "test_LangchainKnowledgeBase read",
|
||||
"将多文件tex工程融合为一个巨型tex": "Merge multiple tex projects into one giant tex",
|
||||
"吸收iffalse注释": "Absorb iffalser comments",
|
||||
"您接下来不能再使用其他插件了": "You can no longer use other plugins next",
|
||||
"正在构建知识库": "Building knowledge base",
|
||||
"需Latex": "Requires Latex",
|
||||
"即找不到": "That is not found",
|
||||
"保证括号正确": "Ensure parentheses are correct",
|
||||
"= 2 通过一些Latex模板中常见": "= 2 through some common Latex templates",
|
||||
"请立即终止程序": "Please terminate the program immediately",
|
||||
"解压失败! 需要安装pip install rarfile来解压rar文件": "Decompression failed! Install 'pip install rarfile' to decompress rar files",
|
||||
"请在此处给出自定义翻译命令": "Please provide custom translation command here",
|
||||
"解压失败! 需要安装pip install py7zr来解压7z文件": "Decompression failed! Install 'pip install py7zr' to decompress 7z files",
|
||||
"执行错误": "Execution error",
|
||||
"目前仅支持GPT3.5/GPT4": "Currently only supports GPT3.5/GPT4",
|
||||
"P.S. 顺便把Latex的注释去除": "P.S. Also remove comments from Latex",
|
||||
"写出文件": "Write out the file",
|
||||
"当前报错的latex代码处于第": "The current error in the LaTeX code is on line",
|
||||
"主程序即将开始": "Main program is about to start",
|
||||
"详情信息见requirements.txt": "See details in requirements.txt",
|
||||
"释放线程锁": "Release thread lock",
|
||||
"由于最为关键的转化PDF编译失败": "Due to the critical failure of PDF conversion and compilation",
|
||||
"即将退出": "Exiting soon",
|
||||
"尝试下载": "Attempting to download",
|
||||
"删除整行的空注释": "Remove empty comments from the entire line",
|
||||
"也找不到": "Not found either",
|
||||
"从一批文件": "From a batch of files",
|
||||
"编译结束": "Compilation finished",
|
||||
"调用缓存": "Calling cache",
|
||||
"只有GenerateImage和生成图像相关": "Only GenerateImage and image generation related",
|
||||
"待处理的word文档路径": "Path of the word document to be processed",
|
||||
"是否在提交时自动清空输入框": "Whether to automatically clear the input box upon submission",
|
||||
"检查结果": "Check the result",
|
||||
"生成时间戳": "Generate a timestamp",
|
||||
"编译原始PDF": "Compile the original PDF",
|
||||
"填入ENGINE": "Fill in ENGINE",
|
||||
"填入api版本": "Fill in the API version",
|
||||
"中文Bing版": "Chinese Bing version",
|
||||
"当前支持的格式包括": "Currently supported formats include"
|
||||
}
|
||||
46
docs/use_audio.md
Normal file
46
docs/use_audio.md
Normal file
@ -0,0 +1,46 @@
|
||||
# 使用音频交互功能
|
||||
|
||||
|
||||
## 1. 安装额外依赖
|
||||
```
|
||||
pip install --upgrade pyOpenSSL scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
|
||||
```
|
||||
|
||||
如果因为中国特色网络问题导致上述命令无法执行:
|
||||
1. git clone alibabacloud-nls-python-sdk这个项目(或者直接前往Github对应网址下载压缩包).
|
||||
命令行输入: `git clone https://github.com/aliyun/alibabacloud-nls-python-sdk.git`
|
||||
1. 进入alibabacloud-nls-python-sdk目录命令行输入:`python setup.py install`
|
||||
|
||||
|
||||
## 2. 配置音频功能开关 和 阿里云APPKEY(config.py/config_private.py/环境变量)
|
||||
```
|
||||
ENABLE_AUDIO = True
|
||||
ALIYUN_TOKEN = "554a50fcd0bb476c8d07bb630e94d20c" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||
ALIYUN_APPKEY = "RoPlZrM88DnAFkZK" # 例如 RoPlZrM88DnAFkZK
|
||||
```
|
||||
|
||||
参考 https://help.aliyun.com/document_detail/450255.html
|
||||
先有阿里云开发者账号,登录之后,需要开通 智能语音交互 的功能,可以免费获得一个token,然后在 全部项目 中,创建一个项目,可以获得一个appkey.
|
||||
|
||||
## 3.启动
|
||||
|
||||
启动gpt-academic `python main.py`
|
||||
|
||||
## 4.点击record from microphe,授权音频采集
|
||||
|
||||
I 如果需要监听自己说话(不监听电脑音频),直接在浏览器中选择对应的麦即可
|
||||
|
||||
II 如果需要监听电脑音频(不监听自己说话),需要安装`VB-Audio VoiceMeeter`,打开声音控制面板(sound control panel)
|
||||
- 1 `[把电脑的所有外放声音用VoiceMeeter截留]` 在输出区(playback)选项卡,把VoiceMeeter Input虚拟设备set as default设为默认播放设备。
|
||||
- 2 `[把截留的声音释放到gpt-academic]` 打开gpt-academic主界面,授权音频采集后,在浏览器地址栏或者类似的地方会出现一个麦克风图标,打开后,按照浏览器的提示,选择VoiceMeeter虚拟麦克风。然后刷新页面,重新授权音频采集。
|
||||
- 3 `[把截留的声音同时释放到耳机或音响]` 完成第一步之后,您应处于听不到电脑声音的状态。为了在截获音频的同时,避免影响正常使用,请完成这最后一步配置。在声音控制面板(sound control panel)输入区(recording)选项卡,把VoiceMeeter Output虚拟设备set as default。双击进入VoiceMeeter Output虚拟设备的设置。
|
||||
- 3-1 进入VoiceMeeter Output虚拟设备子菜单,打开listen选项卡。
|
||||
- 3-2 勾选Listen to this device。
|
||||
- 3-3 在playback through this device下拉菜单中选择你的正常耳机或音响。
|
||||
|
||||
III 两种音频监听模式切换时,需要刷新页面才有效。
|
||||
|
||||
## 5.点击函数插件区“实时音频采集” 或者其他音频交互功能
|
||||
|
||||
|
||||
|
||||
@ -90,62 +90,29 @@
|
||||
|
||||
到现在为止,申请操作就完成了,需要记下来的有下面几个东西:
|
||||
|
||||
● 密钥(1或2都可以)
|
||||
● 密钥(对应AZURE_API_KEY,1或2都可以)
|
||||
|
||||
● 终结点
|
||||
● 终结点 (对应AZURE_ENDPOINT)
|
||||
|
||||
● 部署名(对应AZURE_ENGINE,不是模型名)
|
||||
|
||||
● 部署名(不是模型名)
|
||||
|
||||
# 修改 config.py
|
||||
|
||||
```
|
||||
AZURE_ENDPOINT = "填入终结点"
|
||||
LLM_MODEL = "azure-gpt-3.5" # 指定启动时的默认模型,当然事后从下拉菜单选也ok
|
||||
|
||||
AZURE_ENDPOINT = "填入终结点" # 见上述图片
|
||||
AZURE_API_KEY = "填入azure openai api的密钥"
|
||||
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
|
||||
AZURE_ENGINE = "填入部署名"
|
||||
|
||||
```
|
||||
# API的使用
|
||||
|
||||
接下来就是具体怎么使用API了,还是可以参考官方文档:[快速入门 - 开始通过 Azure OpenAI 服务使用 ChatGPT 和 GPT-4 - Azure OpenAI Service | Microsoft Learn](https://learn.microsoft.com/zh-cn/azure/cognitive-services/openai/chatgpt-quickstart?pivots=programming-language-python)
|
||||
|
||||
和openai自己的api调用有点类似,都需要安装openai库,不同的是调用方式
|
||||
|
||||
```
|
||||
import openai
|
||||
openai.api_type = "azure" #固定格式,无需修改
|
||||
openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") #这里填入“终结点”
|
||||
openai.api_version = "2023-05-15" #固定格式,无需修改
|
||||
openai.api_key = os.getenv("AZURE_OPENAI_KEY") #这里填入“密钥1”或“密钥2”
|
||||
|
||||
response = openai.ChatCompletion.create(
|
||||
engine="gpt-35-turbo", #这里填入的不是模型名,是部署名
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
|
||||
{"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
|
||||
{"role": "user", "content": "Do other Azure Cognitive Services support this too?"}
|
||||
]
|
||||
)
|
||||
|
||||
print(response)
|
||||
print(response['choices'][0]['message']['content'])
|
||||
AZURE_ENGINE = "填入部署名" # 见上述图片
|
||||
|
||||
```
|
||||
|
||||
需要注意的是:
|
||||
|
||||
1. engine那里填入的是部署名,不是模型名
|
||||
|
||||
2. 通过openai库获得的这个 response 和通过 request 库访问 url 获得的 response 不同,不需要 decode,已经是解析好的 json 了,直接根据键值读取即可。
|
||||
|
||||
更细节的使用方法,详见官方API文档。
|
||||
|
||||
# 关于费用
|
||||
|
||||
Azure OpenAI API 还是需要一些费用的(免费订阅只有1个月有效期),费用如下:
|
||||
|
||||

|
||||
Azure OpenAI API 还是需要一些费用的(免费订阅只有1个月有效期)
|
||||
|
||||
具体可以可以看这个网址 :[Azure OpenAI 服务 - 定价| Microsoft Azure](https://azure.microsoft.com/zh-cn/pricing/details/cognitive-services/openai-service/?cdn=disable)
|
||||
|
||||
|
||||
75
main.py
75
main.py
@ -4,22 +4,23 @@ def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.28.3','3.32.2']: assert False, "需要特殊依赖,请务必用 pip install -r requirements.txt 指令安装依赖,详情信息见requirements.txt"
|
||||
from request_llm.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY, AVAIL_LLM_MODELS = \
|
||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY', 'AVAIL_LLM_MODELS')
|
||||
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = \
|
||||
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT')
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
if not AUTHENTICATION: AUTHENTICATION = None
|
||||
|
||||
from check_proxy import get_current_version
|
||||
from theme.theme import adjust_theme, advanced_css, theme_declaration
|
||||
initial_prompt = "Serve me as a writing and programming assistant."
|
||||
title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>"
|
||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||
description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
|
||||
|
||||
# 问询记录, python 版本建议3.9+(越新越好)
|
||||
import logging
|
||||
import logging, uuid
|
||||
os.makedirs("gpt_log", exist_ok=True)
|
||||
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
|
||||
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
|
||||
@ -37,7 +38,6 @@ def main():
|
||||
gr.Chatbot.postprocess = format_io
|
||||
|
||||
# 做一些外观色彩上的调整
|
||||
from theme import adjust_theme, advanced_css
|
||||
set_theme = adjust_theme()
|
||||
|
||||
# 代理与自动更新
|
||||
@ -45,23 +45,23 @@ def main():
|
||||
proxy_info = check_proxy(proxies)
|
||||
|
||||
gr_L1 = lambda: gr.Row().style()
|
||||
gr_L2 = lambda scale: gr.Column(scale=scale)
|
||||
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id)
|
||||
if LAYOUT == "TOP-DOWN":
|
||||
gr_L1 = lambda: DummyWith()
|
||||
gr_L2 = lambda scale: gr.Row()
|
||||
gr_L2 = lambda scale, elem_id: gr.Row()
|
||||
CHATBOT_HEIGHT /= 2
|
||||
|
||||
cancel_handles = []
|
||||
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
||||
gr.HTML(title_html)
|
||||
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
|
||||
cookies = gr.State(load_chat_cookies())
|
||||
with gr_L1():
|
||||
with gr_L2(scale=2):
|
||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}")
|
||||
chatbot.style(height=CHATBOT_HEIGHT)
|
||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||
chatbot = gr.Chatbot(label=f"当前模型:{LLM_MODEL}", elem_id="gpt-chatbot")
|
||||
if LAYOUT == "TOP-DOWN": chatbot.style(height=CHATBOT_HEIGHT)
|
||||
history = gr.State([])
|
||||
with gr_L2(scale=1):
|
||||
with gr.Accordion("输入区", open=True) as area_input_primary:
|
||||
with gr_L2(scale=1, elem_id="gpt-panel"):
|
||||
with gr.Accordion("输入区", open=True, elem_id="input-panel") as area_input_primary:
|
||||
with gr.Row():
|
||||
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
|
||||
with gr.Row():
|
||||
@ -70,17 +70,20 @@ def main():
|
||||
resetBtn = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
|
||||
stopBtn = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
|
||||
clearBtn = gr.Button("清除", variant="secondary", visible=False); clearBtn.style(size="sm")
|
||||
if ENABLE_AUDIO:
|
||||
with gr.Row():
|
||||
audio_mic = gr.Audio(source="microphone", type="numpy", streaming=True, show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}")
|
||||
with gr.Accordion("基础功能区", open=True) as area_basic_fn:
|
||||
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}", elem_id="state-panel")
|
||||
with gr.Accordion("基础功能区", open=True, elem_id="basic-panel") as area_basic_fn:
|
||||
with gr.Row():
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
|
||||
functional[k]["Button"] = gr.Button(k, variant=variant)
|
||||
with gr.Accordion("函数插件区", open=True) as area_crazy_fn:
|
||||
with gr.Accordion("函数插件区", open=True, elem_id="plugin-panel") as area_crazy_fn:
|
||||
with gr.Row():
|
||||
gr.Markdown("注意:以下“红颜色”标识的函数插件需从输入区读取路径作为参数.")
|
||||
gr.Markdown("插件可读取“输入区”文本/路径作为参数(上传文件自动修正路径)")
|
||||
with gr.Row():
|
||||
for k in crazy_fns:
|
||||
if not crazy_fns[k].get("AsButton", True): continue
|
||||
@ -91,25 +94,25 @@ def main():
|
||||
with gr.Accordion("更多函数插件", open=True):
|
||||
dropdown_fn_list = [k for k in crazy_fns.keys() if not crazy_fns[k].get("AsButton", True)]
|
||||
with gr.Row():
|
||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="").style(container=False)
|
||||
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="", show_label=False).style(container=False)
|
||||
with gr.Row():
|
||||
plugin_advanced_arg = gr.Textbox(show_label=True, label="高级参数输入区", visible=False,
|
||||
placeholder="这里是特殊函数插件的高级参数输入区").style(container=False)
|
||||
with gr.Row():
|
||||
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary")
|
||||
with gr.Row():
|
||||
with gr.Accordion("点击展开“文件上传区”。上传本地文件可供红色函数插件调用。", open=False) as area_file_up:
|
||||
with gr.Accordion("点击展开“文件上传区”。上传本地文件/压缩包供函数插件调用。", open=False) as area_file_up:
|
||||
file_upload = gr.Files(label="任何文件, 但推荐上传压缩文件(zip, tar)", file_count="multiple")
|
||||
with gr.Accordion("更换模型 & SysPrompt & 交互界面布局", open=(LAYOUT == "TOP-DOWN")):
|
||||
with gr.Accordion("更换模型 & SysPrompt & 交互界面布局", open=(LAYOUT == "TOP-DOWN"), elem_id="interact-panel"):
|
||||
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
|
||||
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
|
||||
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=4096, value=512, step=1, interactive=True, label="Local LLM MaxLength",)
|
||||
max_length_sl = gr.Slider(minimum=256, maximum=8192, value=4096, step=1, interactive=True, label="Local LLM MaxLength",)
|
||||
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区", "输入清除键", "插件参数区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
|
||||
md_dropdown = gr.Dropdown(AVAIL_LLM_MODELS, value=LLM_MODEL, label="更换LLM模型/请求源").style(container=False)
|
||||
|
||||
gr.Markdown(description)
|
||||
with gr.Accordion("备选输入区", open=True, visible=False) as area_input_secondary:
|
||||
with gr.Accordion("备选输入区", open=True, visible=False, elem_id="input-panel2") as area_input_secondary:
|
||||
with gr.Row():
|
||||
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", label="输入区2").style(container=False)
|
||||
with gr.Row():
|
||||
@ -144,6 +147,11 @@ def main():
|
||||
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
|
||||
clearBtn.click(lambda: ("",""), None, [txt, txt2])
|
||||
clearBtn2.click(lambda: ("",""), None, [txt, txt2])
|
||||
if AUTO_CLEAR_TXT:
|
||||
submitBtn.click(lambda: ("",""), None, [txt, txt2])
|
||||
submitBtn2.click(lambda: ("",""), None, [txt, txt2])
|
||||
txt.submit(lambda: ("",""), None, [txt, txt2])
|
||||
txt2.submit(lambda: ("",""), None, [txt, txt2])
|
||||
# 基础功能区的回调函数注册
|
||||
for k in functional:
|
||||
if ("Visible" in functional[k]) and (not functional[k]["Visible"]): continue
|
||||
@ -171,16 +179,29 @@ def main():
|
||||
return {chatbot: gr.update(label="当前模型:"+k)}
|
||||
md_dropdown.select(on_md_dropdown_changed, [md_dropdown], [chatbot] )
|
||||
# 随变按钮的回调函数注册
|
||||
def route(k, *args, **kwargs):
|
||||
def route(request: gr.Request, k, *args, **kwargs):
|
||||
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
|
||||
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
|
||||
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(request, *args, **kwargs)
|
||||
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
|
||||
click_handle.then(on_report_generated, [cookies, file_upload, chatbot], [cookies, file_upload, chatbot])
|
||||
cancel_handles.append(click_handle)
|
||||
# 终止按钮的回调函数注册
|
||||
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.live_audio.audio_io import RealtimeAudioDistribution
|
||||
rad = RealtimeAudioDistribution()
|
||||
def deal_audio(audio, cookies):
|
||||
rad.feed(cookies['uuid'].hex, audio)
|
||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||
|
||||
def init_cookie(cookies, chatbot):
|
||||
# 为每一位访问的用户赋予一个独一无二的uuid编码
|
||||
cookies.update({'uuid': uuid.uuid4()})
|
||||
return cookies
|
||||
demo.load(init_cookie, inputs=[cookies, chatbot], outputs=[cookies])
|
||||
demo.load(lambda: 0, inputs=None, outputs=None, _js='()=>{ChatBotHeight();}')
|
||||
|
||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||
def auto_opentab_delay():
|
||||
import threading, webbrowser, time
|
||||
|
||||
@ -33,7 +33,7 @@ import pickle
|
||||
import time
|
||||
|
||||
CACHE_FOLDER = "gpt_log"
|
||||
blacklist = ['multi-language', 'gpt_log', '.git', 'private_upload', 'multi_language.py']
|
||||
blacklist = ['multi-language', 'gpt_log', '.git', 'private_upload', 'multi_language.py', 'build', '.github', '.vscode', '__pycache__', 'venv']
|
||||
|
||||
# LANG = "TraditionalChinese"
|
||||
# TransPrompt = f"Replace each json value `#` with translated results in Traditional Chinese, e.g., \"原始文本\":\"翻譯後文字\". Keep Json format. Do not answer #."
|
||||
@ -301,6 +301,7 @@ def step_1_core_key_translate():
|
||||
elif isinstance(node, ast.ImportFrom):
|
||||
for n in node.names:
|
||||
if contains_chinese(n.name): syntax.append(n.name)
|
||||
# if node.module is None: print(node.module)
|
||||
for k in node.module.split('.'):
|
||||
if contains_chinese(k): syntax.append(k)
|
||||
return syntax
|
||||
@ -310,6 +311,7 @@ def step_1_core_key_translate():
|
||||
for root, dirs, files in os.walk(directory_path):
|
||||
if any([b in root for b in blacklist]):
|
||||
continue
|
||||
print(files)
|
||||
for file in files:
|
||||
if file.endswith('.py'):
|
||||
file_path = os.path.join(root, file)
|
||||
@ -505,6 +507,6 @@ def step_2_core_key_translate():
|
||||
with open(file_path_new, 'w', encoding='utf-8') as f:
|
||||
f.write(content)
|
||||
os.remove(file_path)
|
||||
|
||||
step_1_core_key_translate()
|
||||
step_2_core_key_translate()
|
||||
print('Finished, checkout generated results at ./multi-language/')
|
||||
@ -16,15 +16,9 @@ from toolbox import get_conf, trimmed_format_exc
|
||||
from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
|
||||
from .bridge_chatgpt import predict as chatgpt_ui
|
||||
|
||||
from .bridge_azure_test import predict_no_ui_long_connection as azure_noui
|
||||
from .bridge_azure_test import predict as azure_ui
|
||||
|
||||
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
|
||||
from .bridge_chatglm import predict as chatglm_ui
|
||||
|
||||
from .bridge_newbing import predict_no_ui_long_connection as newbing_noui
|
||||
from .bridge_newbing import predict as newbing_ui
|
||||
|
||||
# from .bridge_tgui import predict_no_ui_long_connection as tgui_noui
|
||||
# from .bridge_tgui import predict as tgui_ui
|
||||
|
||||
@ -51,10 +45,11 @@ class LazyloadTiktoken(object):
|
||||
return encoder.decode(*args, **kwargs)
|
||||
|
||||
# Endpoint 重定向
|
||||
API_URL_REDIRECT, = get_conf("API_URL_REDIRECT")
|
||||
API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "AZURE_ENDPOINT", "AZURE_ENGINE")
|
||||
openai_endpoint = "https://api.openai.com/v1/chat/completions"
|
||||
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
|
||||
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
# 兼容旧版的配置
|
||||
try:
|
||||
API_URL, = get_conf("API_URL")
|
||||
@ -124,10 +119,10 @@ model_info = {
|
||||
},
|
||||
|
||||
# azure openai
|
||||
"azure-gpt35":{
|
||||
"fn_with_ui": azure_ui,
|
||||
"fn_without_ui": azure_noui,
|
||||
"endpoint": get_conf("AZURE_ENDPOINT"),
|
||||
"azure-gpt-3.5":{
|
||||
"fn_with_ui": chatgpt_ui,
|
||||
"fn_without_ui": chatgpt_noui,
|
||||
"endpoint": azure_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
@ -152,7 +147,7 @@ model_info = {
|
||||
"token_cnt": get_token_num_gpt4,
|
||||
},
|
||||
|
||||
# chatglm
|
||||
# 将 chatglm 直接对齐到 chatglm2
|
||||
"chatglm": {
|
||||
"fn_with_ui": chatglm_ui,
|
||||
"fn_without_ui": chatglm_noui,
|
||||
@ -161,12 +156,11 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
# newbing
|
||||
"newbing": {
|
||||
"fn_with_ui": newbing_ui,
|
||||
"fn_without_ui": newbing_noui,
|
||||
"endpoint": newbing_endpoint,
|
||||
"max_token": 4096,
|
||||
"chatglm2": {
|
||||
"fn_with_ui": chatglm_ui,
|
||||
"fn_without_ui": chatglm_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 1024,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
@ -174,7 +168,8 @@ model_info = {
|
||||
}
|
||||
|
||||
|
||||
AVAIL_LLM_MODELS, = get_conf("AVAIL_LLM_MODELS")
|
||||
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
|
||||
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
|
||||
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
|
||||
from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
|
||||
from .bridge_jittorllms_rwkv import predict as rwkv_ui
|
||||
@ -258,6 +253,41 @@ if "newbing-free" in AVAIL_LLM_MODELS:
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "newbing" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
try:
|
||||
from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
|
||||
from .bridge_newbingfree import predict as newbingfree_ui
|
||||
# claude
|
||||
model_info.update({
|
||||
"newbing": {
|
||||
"fn_with_ui": newbingfree_ui,
|
||||
"fn_without_ui": newbingfree_noui,
|
||||
"endpoint": newbing_endpoint,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "chatglmft" in AVAIL_LLM_MODELS: # same with newbing-free
|
||||
try:
|
||||
from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
|
||||
from .bridge_chatglmft import predict as chatglmft_ui
|
||||
# claude
|
||||
model_info.update({
|
||||
"chatglmft": {
|
||||
"fn_with_ui": chatglmft_ui,
|
||||
"fn_without_ui": chatglmft_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
|
||||
|
||||
def LLM_CATCH_EXCEPTION(f):
|
||||
"""
|
||||
@ -361,6 +391,6 @@ def predict(inputs, llm_kwargs, *args, **kwargs):
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]
|
||||
method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
|
||||
yield from method(inputs, llm_kwargs, *args, **kwargs)
|
||||
|
||||
|
||||
@ -1,241 +0,0 @@
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
||||
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||
"""
|
||||
|
||||
import logging
|
||||
import traceback
|
||||
import importlib
|
||||
import openai
|
||||
import time
|
||||
|
||||
|
||||
# 读取config.py文件中关于AZURE OPENAI API的信息
|
||||
from toolbox import get_conf, update_ui, clip_history, trimmed_format_exc
|
||||
TIMEOUT_SECONDS, MAX_RETRY, AZURE_ENGINE, AZURE_ENDPOINT, AZURE_API_VERSION, AZURE_API_KEY = \
|
||||
get_conf('TIMEOUT_SECONDS', 'MAX_RETRY',"AZURE_ENGINE","AZURE_ENDPOINT", "AZURE_API_VERSION", "AZURE_API_KEY")
|
||||
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Openai返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
发送至azure openai api,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
print(llm_kwargs["llm_model"])
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||
|
||||
|
||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||
|
||||
history.append(inputs); history.append("")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
|
||||
openai.api_type = "azure"
|
||||
openai.api_version = AZURE_API_VERSION
|
||||
openai.api_base = AZURE_ENDPOINT
|
||||
openai.api_key = AZURE_API_KEY
|
||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||||
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], "获取response失败,重试中。。。"))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
|
||||
stream_response = response
|
||||
|
||||
while True:
|
||||
try:
|
||||
chunk = next(stream_response)
|
||||
|
||||
except StopIteration:
|
||||
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk)}")
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk) # 刷新界面
|
||||
return
|
||||
|
||||
if is_head_of_the_stream and (r'"object":"error"' not in chunk):
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if chunk:
|
||||
#print(chunk)
|
||||
try:
|
||||
if "delta" in chunk["choices"][0]:
|
||||
if chunk["choices"][0]["finish_reason"] == "stop":
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
status_text = f"finish_reason: {chunk['choices'][0]['finish_reason']}"
|
||||
gpt_replying_buffer = gpt_replying_buffer + chunk["choices"][0]["delta"]["content"]
|
||||
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
|
||||
error_msg = chunk
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||
return
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
发送至AZURE OPENAI API,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||
inputs:
|
||||
是本次问询的输入
|
||||
sys_prompt:
|
||||
系统静默prompt
|
||||
llm_kwargs:
|
||||
chatGPT的内部调优参数
|
||||
history:
|
||||
是之前的对话列表
|
||||
observe_window = None:
|
||||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||
"""
|
||||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||
retry = 0
|
||||
while True:
|
||||
|
||||
try:
|
||||
openai.api_type = "azure"
|
||||
openai.api_version = AZURE_API_VERSION
|
||||
openai.api_base = AZURE_ENDPOINT
|
||||
openai.api_key = AZURE_API_KEY
|
||||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||||
|
||||
except:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
|
||||
stream_response = response
|
||||
result = ''
|
||||
while True:
|
||||
try: chunk = next(stream_response)
|
||||
except StopIteration:
|
||||
break
|
||||
except:
|
||||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||
|
||||
if len(chunk)==0: continue
|
||||
if not chunk.startswith('data:'):
|
||||
error_msg = get_full_error(chunk, stream_response)
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("AZURE OPENAI API拒绝了请求:" + error_msg)
|
||||
else:
|
||||
raise RuntimeError("AZURE OPENAI API拒绝了请求:" + error_msg)
|
||||
if ('data: [DONE]' in chunk): break
|
||||
|
||||
delta = chunk["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if "content" in delta:
|
||||
result += delta["content"]
|
||||
if not console_slience: print(delta["content"], end='')
|
||||
if observe_window is not None:
|
||||
# 观测窗,把已经获取的数据显示出去
|
||||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||||
# 看门狗,如果超过期限没有喂狗,则终止
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
if chunk['finish_reason'] == 'length':
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
return result
|
||||
|
||||
|
||||
def generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成 azure openai api请求,为发送请求做准备
|
||||
"""
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
payload = {
|
||||
"model": llm_kwargs['llm_model'],
|
||||
"messages": messages,
|
||||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
"engine": AZURE_ENGINE
|
||||
}
|
||||
try:
|
||||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||||
except:
|
||||
print('输入中可能存在乱码。')
|
||||
return payload
|
||||
|
||||
|
||||
@ -40,12 +40,12 @@ class GetGLMHandle(Process):
|
||||
while True:
|
||||
try:
|
||||
if self.chatglm_model is None:
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
if device=='cpu':
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).float()
|
||||
else:
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = self.chatglm_model.eval()
|
||||
break
|
||||
else:
|
||||
|
||||
210
request_llm/bridge_chatglmft.py
Normal file
210
request_llm/bridge_chatglmft.py
Normal file
@ -0,0 +1,210 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import os
|
||||
import json
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
def string_to_options(arguments):
|
||||
import argparse
|
||||
import shlex
|
||||
# Create an argparse.ArgumentParser instance
|
||||
parser = argparse.ArgumentParser()
|
||||
# Add command-line arguments
|
||||
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||||
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||||
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||||
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||||
# Parse the arguments
|
||||
args = parser.parse_args(shlex.split(arguments))
|
||||
return args
|
||||
|
||||
|
||||
#################################################################################
|
||||
class GetGLMFTHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
self.parent, self.child = Pipe()
|
||||
self.chatglmft_model = None
|
||||
self.chatglmft_tokenizer = None
|
||||
self.info = ""
|
||||
self.success = True
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
import sentencepiece
|
||||
self.info = "依赖检测通过"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
return self.chatglmft_model is not None
|
||||
|
||||
def run(self):
|
||||
# 子进程执行
|
||||
# 第一次运行,加载参数
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
if self.chatglmft_model is None:
|
||||
from transformers import AutoConfig
|
||||
import torch
|
||||
# conf = 'request_llm/current_ptune_model.json'
|
||||
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
|
||||
# with open(conf, 'r', encoding='utf8') as f:
|
||||
# model_args = json.loads(f.read())
|
||||
ChatGLM_PTUNING_CHECKPOINT, = get_conf('ChatGLM_PTUNING_CHECKPOINT')
|
||||
assert os.path.exists(ChatGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
|
||||
conf = os.path.join(ChatGLM_PTUNING_CHECKPOINT, "config.json")
|
||||
with open(conf, 'r', encoding='utf8') as f:
|
||||
model_args = json.loads(f.read())
|
||||
if 'model_name_or_path' not in model_args:
|
||||
model_args['model_name_or_path'] = model_args['_name_or_path']
|
||||
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args['model_name_or_path'], trust_remote_code=True)
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args['model_name_or_path'], trust_remote_code=True)
|
||||
|
||||
config.pre_seq_len = model_args['pre_seq_len']
|
||||
config.prefix_projection = model_args['prefix_projection']
|
||||
|
||||
print(f"Loading prefix_encoder weight from {ChatGLM_PTUNING_CHECKPOINT}")
|
||||
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
|
||||
prefix_state_dict = torch.load(os.path.join(ChatGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
|
||||
new_prefix_state_dict = {}
|
||||
for k, v in prefix_state_dict.items():
|
||||
if k.startswith("transformer.prefix_encoder."):
|
||||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||||
|
||||
if model_args['quantization_bit'] is not None:
|
||||
print(f"Quantized to {model_args['quantization_bit']} bit")
|
||||
model = model.quantize(model_args['quantization_bit'])
|
||||
model = model.cuda()
|
||||
if model_args['pre_seq_len'] is not None:
|
||||
# P-tuning v2
|
||||
model.transformer.prefix_encoder.float()
|
||||
self.chatglmft_model = model.eval()
|
||||
|
||||
break
|
||||
else:
|
||||
break
|
||||
except Exception as e:
|
||||
retry += 1
|
||||
if retry > 3:
|
||||
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
|
||||
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
|
||||
|
||||
while True:
|
||||
# 进入任务等待状态
|
||||
kwargs = self.child.recv()
|
||||
# 收到消息,开始请求
|
||||
try:
|
||||
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
|
||||
self.child.send(response)
|
||||
# # 中途接收可能的终止指令(如果有的话)
|
||||
# if self.child.poll():
|
||||
# command = self.child.recv()
|
||||
# if command == '[Terminate]': break
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
# 请求处理结束,开始下一个循环
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
# 主进程执行
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs)
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
if res != '[Finish]':
|
||||
yield res
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
global glmft_handle
|
||||
glmft_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
global glmft_handle
|
||||
if glmft_handle is None:
|
||||
glmft_handle = GetGLMFTHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
|
||||
if not glmft_handle.success:
|
||||
error = glmft_handle.info
|
||||
glmft_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# chatglmft 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", sys_prompt])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
global glmft_handle
|
||||
if glmft_handle is None:
|
||||
glmft_handle = GetGLMFTHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not glmft_handle.success:
|
||||
glmft_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
# 处理历史信息
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", system_prompt] )
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收chatglmft的回复
|
||||
response = "[Local Message]: 等待ChatGLMFT响应中 ..."
|
||||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
|
||||
response = "[Local Message]: ChatGLMFT响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
@ -22,8 +22,8 @@ import importlib
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc
|
||||
proxies, API_KEY, TIMEOUT_SECONDS, MAX_RETRY = \
|
||||
get_conf('proxies', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG = \
|
||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG')
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
@ -101,6 +101,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("用户取消了程序。")
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
if json_data['finish_reason'] == 'content_filter':
|
||||
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
||||
if json_data['finish_reason'] == 'length':
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||||
return result
|
||||
@ -205,6 +207,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
chunk_decoded = chunk.decode()
|
||||
error_msg = chunk_decoded
|
||||
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
|
||||
if "reduce the length" in error_msg:
|
||||
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||
@ -214,9 +217,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
elif "does not exist" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||
elif "Incorrect API key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务.")
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website)
|
||||
elif "exceeded your current quota" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务.")
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website)
|
||||
elif "account is not active" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||
elif "associated with a deactivated account" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website)
|
||||
elif "bad forward key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||
elif "Not enough point" in error_msg:
|
||||
@ -241,6 +248,8 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
|
||||
if llm_kwargs['llm_model'].startswith('azure-'): headers.update({"api-key": api_key})
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
|
||||
@ -1,254 +0,0 @@
|
||||
"""
|
||||
========================================================================
|
||||
第一部分:来自EdgeGPT.py
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
========================================================================
|
||||
"""
|
||||
from .edge_gpt import NewbingChatbot
|
||||
load_message = "等待NewBing响应。"
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
第二部分:子进程Worker(调用主体)
|
||||
========================================================================
|
||||
"""
|
||||
import time
|
||||
import json
|
||||
import re
|
||||
import logging
|
||||
import asyncio
|
||||
import importlib
|
||||
import threading
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
def preprocess_newbing_out(s):
|
||||
pattern = r'\^(\d+)\^' # 匹配^数字^
|
||||
sub = lambda m: '('+m.group(1)+')' # 将匹配到的数字作为替换值
|
||||
result = re.sub(pattern, sub, s) # 替换操作
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
return result
|
||||
|
||||
def preprocess_newbing_out_simple(result):
|
||||
if '[1]' in result:
|
||||
result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n'
|
||||
return result
|
||||
|
||||
class NewBingHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
self.parent, self.child = Pipe()
|
||||
self.newbing_model = None
|
||||
self.info = ""
|
||||
self.success = True
|
||||
self.local_history = []
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
self.success = False
|
||||
import certifi, httpx, rich
|
||||
self.info = "依赖检测通过,等待NewBing响应。注意目前不能多人同时调用NewBing接口(有线程锁),否则将导致每个人的NewBing问询历史互相渗透。调用NewBing时,会自动使用已配置的代理。"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少的依赖,如果要使用Newbing,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_newbing.txt`安装Newbing的依赖。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
return self.newbing_model is not None
|
||||
|
||||
async def async_run(self):
|
||||
# 读取配置
|
||||
NEWBING_STYLE, = get_conf('NEWBING_STYLE')
|
||||
from request_llm.bridge_all import model_info
|
||||
endpoint = model_info['newbing']['endpoint']
|
||||
while True:
|
||||
# 等待
|
||||
kwargs = self.child.recv()
|
||||
question=kwargs['query']
|
||||
history=kwargs['history']
|
||||
system_prompt=kwargs['system_prompt']
|
||||
|
||||
# 是否重置
|
||||
if len(self.local_history) > 0 and len(history)==0:
|
||||
await self.newbing_model.reset()
|
||||
self.local_history = []
|
||||
|
||||
# 开始问问题
|
||||
prompt = ""
|
||||
if system_prompt not in self.local_history:
|
||||
self.local_history.append(system_prompt)
|
||||
prompt += system_prompt + '\n'
|
||||
|
||||
# 追加历史
|
||||
for ab in history:
|
||||
a, b = ab
|
||||
if a not in self.local_history:
|
||||
self.local_history.append(a)
|
||||
prompt += a + '\n'
|
||||
# if b not in self.local_history:
|
||||
# self.local_history.append(b)
|
||||
# prompt += b + '\n'
|
||||
|
||||
# 问题
|
||||
prompt += question
|
||||
self.local_history.append(question)
|
||||
print('question:', prompt)
|
||||
# 提交
|
||||
async for final, response in self.newbing_model.ask_stream(
|
||||
prompt=question,
|
||||
conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"]
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
):
|
||||
if not final:
|
||||
print(response)
|
||||
self.child.send(str(response))
|
||||
else:
|
||||
print('-------- receive final ---------')
|
||||
self.child.send('[Finish]')
|
||||
# self.local_history.append(response)
|
||||
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
这个函数运行在子进程
|
||||
"""
|
||||
# 第一次运行,加载参数
|
||||
self.success = False
|
||||
self.local_history = []
|
||||
if (self.newbing_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies, = get_conf('proxies')
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
# cookie
|
||||
NEWBING_COOKIES, = get_conf('NEWBING_COOKIES')
|
||||
try:
|
||||
cookies = json.loads(NEWBING_COOKIES)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] 不能加载Newbing组件。NEWBING_COOKIES未填写或有格式错误。')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
raise RuntimeError(f"不能加载Newbing组件。NEWBING_COOKIES未填写或有格式错误。")
|
||||
|
||||
try:
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https, cookies=cookies)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] 不能加载Newbing组件。{tb_str}')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
raise RuntimeError(f"不能加载Newbing组件。")
|
||||
|
||||
self.success = True
|
||||
try:
|
||||
# 进入任务等待状态
|
||||
asyncio.run(self.async_run())
|
||||
except Exception:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] Newbing失败 {tb_str}.')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
"""
|
||||
这个函数运行在主进程
|
||||
"""
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs) # 发送请求到子进程
|
||||
while True:
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == '[Finish]':
|
||||
break # 结束
|
||||
elif res == '[Fail]':
|
||||
self.success = False
|
||||
break
|
||||
else:
|
||||
yield res # newbing回复的片段
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
"""
|
||||
========================================================================
|
||||
第三部分:主进程统一调用函数接口
|
||||
========================================================================
|
||||
"""
|
||||
global newbing_handle
|
||||
newbing_handle = None
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
global newbing_handle
|
||||
if (newbing_handle is None) or (not newbing_handle.success):
|
||||
newbing_handle = NewBingHandle()
|
||||
observe_window[0] = load_message + "\n\n" + newbing_handle.info
|
||||
if not newbing_handle.success:
|
||||
error = newbing_handle.info
|
||||
newbing_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
observe_window[0] = "[Local Message]: 等待NewBing响应中 ..."
|
||||
for response in newbing_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return preprocess_newbing_out_simple(response)
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, "[Local Message]: 等待NewBing响应中 ..."))
|
||||
|
||||
global newbing_handle
|
||||
if (newbing_handle is None) or (not newbing_handle.success):
|
||||
newbing_handle = NewBingHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + newbing_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not newbing_handle.success:
|
||||
newbing_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
import core_functional
|
||||
importlib.reload(core_functional) # 热更新prompt
|
||||
core_functional = core_functional.get_core_functions()
|
||||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||
|
||||
history_feedin = []
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
chatbot[-1] = (inputs, "[Local Message]: 等待NewBing响应中 ...")
|
||||
response = "[Local Message]: 等待NewBing响应中 ..."
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
for response in newbing_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, preprocess_newbing_out(response))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
if response == "[Local Message]: 等待NewBing响应中 ...": response = "[Local Message]: NewBing响应异常,请刷新界面重试 ..."
|
||||
history.extend([inputs, response])
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {response}')
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="完成全部响应,请提交新问题。")
|
||||
|
||||
@ -89,9 +89,6 @@ class NewBingHandle(Process):
|
||||
if a not in self.local_history:
|
||||
self.local_history.append(a)
|
||||
prompt += a + '\n'
|
||||
# if b not in self.local_history:
|
||||
# self.local_history.append(b)
|
||||
# prompt += b + '\n'
|
||||
|
||||
# 问题
|
||||
prompt += question
|
||||
@ -101,7 +98,7 @@ class NewBingHandle(Process):
|
||||
async for final, response in self.newbing_model.ask_stream(
|
||||
prompt=question,
|
||||
conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"]
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub"
|
||||
):
|
||||
if not final:
|
||||
print(response)
|
||||
@ -121,14 +118,26 @@ class NewBingHandle(Process):
|
||||
self.local_history = []
|
||||
if (self.newbing_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies, = get_conf('proxies')
|
||||
proxies, NEWBING_COOKIES = get_conf('proxies', 'NEWBING_COOKIES')
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
|
||||
if (NEWBING_COOKIES is not None) and len(NEWBING_COOKIES) > 100:
|
||||
try:
|
||||
cookies = json.loads(NEWBING_COOKIES)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] NEWBING_COOKIES未填写或有格式错误。')
|
||||
self.child.send('[Fail]'); self.child.send('[Finish]')
|
||||
raise RuntimeError(f"NEWBING_COOKIES未填写或有格式错误。")
|
||||
else:
|
||||
cookies = None
|
||||
|
||||
try:
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https)
|
||||
self.newbing_model = NewbingChatbot(proxy=self.proxies_https, cookies=cookies)
|
||||
except:
|
||||
self.success = False
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
@ -143,7 +152,7 @@ class NewBingHandle(Process):
|
||||
asyncio.run(self.async_run())
|
||||
except Exception:
|
||||
tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
|
||||
self.child.send(f'[Local Message] Newbing失败 {tb_str}.')
|
||||
self.child.send(f'[Local Message] Newbing 请求失败,报错信息如下. 如果是与网络相关的问题,建议更换代理协议(推荐http)或代理节点 {tb_str}.')
|
||||
self.child.send('[Fail]')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
@ -151,18 +160,14 @@ class NewBingHandle(Process):
|
||||
"""
|
||||
这个函数运行在主进程
|
||||
"""
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs) # 发送请求到子进程
|
||||
self.threadLock.acquire() # 获取线程锁
|
||||
self.parent.send(kwargs) # 请求子进程
|
||||
while True:
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == '[Finish]':
|
||||
break # 结束
|
||||
elif res == '[Fail]':
|
||||
self.success = False
|
||||
break
|
||||
else:
|
||||
yield res # newbing回复的片段
|
||||
self.threadLock.release()
|
||||
res = self.parent.recv() # 等待newbing回复的片段
|
||||
if res == '[Finish]': break # 结束
|
||||
elif res == '[Fail]': self.success = False; break # 失败
|
||||
else: yield res # newbing回复的片段
|
||||
self.threadLock.release() # 释放线程锁
|
||||
|
||||
|
||||
"""
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
from .bridge_newbing import preprocess_newbing_out, preprocess_newbing_out_simple
|
||||
from .bridge_newbingfree import preprocess_newbing_out, preprocess_newbing_out_simple
|
||||
from multiprocessing import Process, Pipe
|
||||
from toolbox import update_ui, get_conf, trimmed_format_exc
|
||||
import threading
|
||||
|
||||
@ -1,409 +0,0 @@
|
||||
"""
|
||||
========================================================================
|
||||
第一部分:来自EdgeGPT.py
|
||||
https://github.com/acheong08/EdgeGPT
|
||||
========================================================================
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import ssl
|
||||
import sys
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Generator
|
||||
from typing import Literal
|
||||
from typing import Optional
|
||||
from typing import Union
|
||||
import websockets.client as websockets
|
||||
|
||||
DELIMITER = "\x1e"
|
||||
|
||||
|
||||
# Generate random IP between range 13.104.0.0/14
|
||||
FORWARDED_IP = (
|
||||
f"13.{random.randint(104, 107)}.{random.randint(0, 255)}.{random.randint(0, 255)}"
|
||||
)
|
||||
|
||||
HEADERS = {
|
||||
"accept": "application/json",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"content-type": "application/json",
|
||||
"sec-ch-ua": '"Not_A Brand";v="99", "Microsoft Edge";v="110", "Chromium";v="110"',
|
||||
"sec-ch-ua-arch": '"x86"',
|
||||
"sec-ch-ua-bitness": '"64"',
|
||||
"sec-ch-ua-full-version": '"109.0.1518.78"',
|
||||
"sec-ch-ua-full-version-list": '"Chromium";v="110.0.5481.192", "Not A(Brand";v="24.0.0.0", "Microsoft Edge";v="110.0.1587.69"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-model": "",
|
||||
"sec-ch-ua-platform": '"Windows"',
|
||||
"sec-ch-ua-platform-version": '"15.0.0"',
|
||||
"sec-fetch-dest": "empty",
|
||||
"sec-fetch-mode": "cors",
|
||||
"sec-fetch-site": "same-origin",
|
||||
"x-ms-client-request-id": str(uuid.uuid4()),
|
||||
"x-ms-useragent": "azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32",
|
||||
"Referer": "https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx",
|
||||
"Referrer-Policy": "origin-when-cross-origin",
|
||||
"x-forwarded-for": FORWARDED_IP,
|
||||
}
|
||||
|
||||
HEADERS_INIT_CONVER = {
|
||||
"authority": "edgeservices.bing.com",
|
||||
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
|
||||
"accept-language": "en-US,en;q=0.9",
|
||||
"cache-control": "max-age=0",
|
||||
"sec-ch-ua": '"Chromium";v="110", "Not A(Brand";v="24", "Microsoft Edge";v="110"',
|
||||
"sec-ch-ua-arch": '"x86"',
|
||||
"sec-ch-ua-bitness": '"64"',
|
||||
"sec-ch-ua-full-version": '"110.0.1587.69"',
|
||||
"sec-ch-ua-full-version-list": '"Chromium";v="110.0.5481.192", "Not A(Brand";v="24.0.0.0", "Microsoft Edge";v="110.0.1587.69"',
|
||||
"sec-ch-ua-mobile": "?0",
|
||||
"sec-ch-ua-model": '""',
|
||||
"sec-ch-ua-platform": '"Windows"',
|
||||
"sec-ch-ua-platform-version": '"15.0.0"',
|
||||
"sec-fetch-dest": "document",
|
||||
"sec-fetch-mode": "navigate",
|
||||
"sec-fetch-site": "none",
|
||||
"sec-fetch-user": "?1",
|
||||
"upgrade-insecure-requests": "1",
|
||||
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36 Edg/110.0.1587.69",
|
||||
"x-edge-shopping-flag": "1",
|
||||
"x-forwarded-for": FORWARDED_IP,
|
||||
}
|
||||
|
||||
def get_ssl_context():
|
||||
import certifi
|
||||
ssl_context = ssl.create_default_context()
|
||||
ssl_context.load_verify_locations(certifi.where())
|
||||
return ssl_context
|
||||
|
||||
|
||||
|
||||
class NotAllowedToAccess(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class ConversationStyle(Enum):
|
||||
creative = "h3imaginative,clgalileo,gencontentv3"
|
||||
balanced = "galileo"
|
||||
precise = "h3precise,clgalileo"
|
||||
|
||||
|
||||
CONVERSATION_STYLE_TYPE = Optional[
|
||||
Union[ConversationStyle, Literal["creative", "balanced", "precise"]]
|
||||
]
|
||||
|
||||
|
||||
def _append_identifier(msg: dict) -> str:
|
||||
"""
|
||||
Appends special character to end of message to identify end of message
|
||||
"""
|
||||
# Convert dict to json string
|
||||
return json.dumps(msg) + DELIMITER
|
||||
|
||||
|
||||
def _get_ran_hex(length: int = 32) -> str:
|
||||
"""
|
||||
Returns random hex string
|
||||
"""
|
||||
return "".join(random.choice("0123456789abcdef") for _ in range(length))
|
||||
|
||||
|
||||
class _ChatHubRequest:
|
||||
"""
|
||||
Request object for ChatHub
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
conversation_signature: str,
|
||||
client_id: str,
|
||||
conversation_id: str,
|
||||
invocation_id: int = 0,
|
||||
) -> None:
|
||||
self.struct: dict = {}
|
||||
|
||||
self.client_id: str = client_id
|
||||
self.conversation_id: str = conversation_id
|
||||
self.conversation_signature: str = conversation_signature
|
||||
self.invocation_id: int = invocation_id
|
||||
|
||||
def update(
|
||||
self,
|
||||
prompt,
|
||||
conversation_style,
|
||||
options,
|
||||
) -> None:
|
||||
"""
|
||||
Updates request object
|
||||
"""
|
||||
if options is None:
|
||||
options = [
|
||||
"deepleo",
|
||||
"enable_debug_commands",
|
||||
"disable_emoji_spoken_text",
|
||||
"enablemm",
|
||||
]
|
||||
if conversation_style:
|
||||
if not isinstance(conversation_style, ConversationStyle):
|
||||
conversation_style = getattr(ConversationStyle, conversation_style)
|
||||
options = [
|
||||
"nlu_direct_response_filter",
|
||||
"deepleo",
|
||||
"disable_emoji_spoken_text",
|
||||
"responsible_ai_policy_235",
|
||||
"enablemm",
|
||||
conversation_style.value,
|
||||
"dtappid",
|
||||
"cricinfo",
|
||||
"cricinfov2",
|
||||
"dv3sugg",
|
||||
]
|
||||
self.struct = {
|
||||
"arguments": [
|
||||
{
|
||||
"source": "cib",
|
||||
"optionsSets": options,
|
||||
"sliceIds": [
|
||||
"222dtappid",
|
||||
"225cricinfo",
|
||||
"224locals0",
|
||||
],
|
||||
"traceId": _get_ran_hex(32),
|
||||
"isStartOfSession": self.invocation_id == 0,
|
||||
"message": {
|
||||
"author": "user",
|
||||
"inputMethod": "Keyboard",
|
||||
"text": prompt,
|
||||
"messageType": "Chat",
|
||||
},
|
||||
"conversationSignature": self.conversation_signature,
|
||||
"participant": {
|
||||
"id": self.client_id,
|
||||
},
|
||||
"conversationId": self.conversation_id,
|
||||
},
|
||||
],
|
||||
"invocationId": str(self.invocation_id),
|
||||
"target": "chat",
|
||||
"type": 4,
|
||||
}
|
||||
self.invocation_id += 1
|
||||
|
||||
|
||||
class _Conversation:
|
||||
"""
|
||||
Conversation API
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cookies,
|
||||
proxy,
|
||||
) -> None:
|
||||
self.struct: dict = {
|
||||
"conversationId": None,
|
||||
"clientId": None,
|
||||
"conversationSignature": None,
|
||||
"result": {"value": "Success", "message": None},
|
||||
}
|
||||
import httpx
|
||||
self.proxy = proxy
|
||||
proxy = (
|
||||
proxy
|
||||
or os.environ.get("all_proxy")
|
||||
or os.environ.get("ALL_PROXY")
|
||||
or os.environ.get("https_proxy")
|
||||
or os.environ.get("HTTPS_PROXY")
|
||||
or None
|
||||
)
|
||||
if proxy is not None and proxy.startswith("socks5h://"):
|
||||
proxy = "socks5://" + proxy[len("socks5h://") :]
|
||||
self.session = httpx.Client(
|
||||
proxies=proxy,
|
||||
timeout=30,
|
||||
headers=HEADERS_INIT_CONVER,
|
||||
)
|
||||
for cookie in cookies:
|
||||
self.session.cookies.set(cookie["name"], cookie["value"])
|
||||
|
||||
# Send GET request
|
||||
response = self.session.get(
|
||||
url=os.environ.get("BING_PROXY_URL")
|
||||
or "https://edgeservices.bing.com/edgesvc/turing/conversation/create",
|
||||
)
|
||||
if response.status_code != 200:
|
||||
response = self.session.get(
|
||||
"https://edge.churchless.tech/edgesvc/turing/conversation/create",
|
||||
)
|
||||
if response.status_code != 200:
|
||||
print(f"Status code: {response.status_code}")
|
||||
print(response.text)
|
||||
print(response.url)
|
||||
raise Exception("Authentication failed")
|
||||
try:
|
||||
self.struct = response.json()
|
||||
except (json.decoder.JSONDecodeError, NotAllowedToAccess) as exc:
|
||||
raise Exception(
|
||||
"Authentication failed. You have not been accepted into the beta.",
|
||||
) from exc
|
||||
if self.struct["result"]["value"] == "UnauthorizedRequest":
|
||||
raise NotAllowedToAccess(self.struct["result"]["message"])
|
||||
|
||||
|
||||
class _ChatHub:
|
||||
"""
|
||||
Chat API
|
||||
"""
|
||||
|
||||
def __init__(self, conversation) -> None:
|
||||
self.wss = None
|
||||
self.request: _ChatHubRequest
|
||||
self.loop: bool
|
||||
self.task: asyncio.Task
|
||||
print(conversation.struct)
|
||||
self.request = _ChatHubRequest(
|
||||
conversation_signature=conversation.struct["conversationSignature"],
|
||||
client_id=conversation.struct["clientId"],
|
||||
conversation_id=conversation.struct["conversationId"],
|
||||
)
|
||||
|
||||
async def ask_stream(
|
||||
self,
|
||||
prompt: str,
|
||||
wss_link: str,
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
raw: bool = False,
|
||||
options: dict = None,
|
||||
) -> Generator[str, None, None]:
|
||||
"""
|
||||
Ask a question to the bot
|
||||
"""
|
||||
if self.wss and not self.wss.closed:
|
||||
await self.wss.close()
|
||||
# Check if websocket is closed
|
||||
self.wss = await websockets.connect(
|
||||
wss_link,
|
||||
extra_headers=HEADERS,
|
||||
max_size=None,
|
||||
ssl=get_ssl_context()
|
||||
)
|
||||
await self._initial_handshake()
|
||||
# Construct a ChatHub request
|
||||
self.request.update(
|
||||
prompt=prompt,
|
||||
conversation_style=conversation_style,
|
||||
options=options,
|
||||
)
|
||||
# Send request
|
||||
await self.wss.send(_append_identifier(self.request.struct))
|
||||
final = False
|
||||
while not final:
|
||||
objects = str(await self.wss.recv()).split(DELIMITER)
|
||||
for obj in objects:
|
||||
if obj is None or not obj:
|
||||
continue
|
||||
response = json.loads(obj)
|
||||
if response.get("type") != 2 and raw:
|
||||
yield False, response
|
||||
elif response.get("type") == 1 and response["arguments"][0].get(
|
||||
"messages",
|
||||
):
|
||||
resp_txt = response["arguments"][0]["messages"][0]["adaptiveCards"][
|
||||
0
|
||||
]["body"][0].get("text")
|
||||
yield False, resp_txt
|
||||
elif response.get("type") == 2:
|
||||
final = True
|
||||
yield True, response
|
||||
|
||||
async def _initial_handshake(self) -> None:
|
||||
await self.wss.send(_append_identifier({"protocol": "json", "version": 1}))
|
||||
await self.wss.recv()
|
||||
|
||||
async def close(self) -> None:
|
||||
"""
|
||||
Close the connection
|
||||
"""
|
||||
if self.wss and not self.wss.closed:
|
||||
await self.wss.close()
|
||||
|
||||
|
||||
class NewbingChatbot:
|
||||
"""
|
||||
Combines everything to make it seamless
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cookies,
|
||||
proxy
|
||||
) -> None:
|
||||
if cookies is None:
|
||||
cookies = {}
|
||||
self.cookies = cookies
|
||||
self.proxy = proxy
|
||||
self.chat_hub: _ChatHub = _ChatHub(
|
||||
_Conversation(self.cookies, self.proxy),
|
||||
)
|
||||
|
||||
async def ask(
|
||||
self,
|
||||
prompt: str,
|
||||
wss_link: str,
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
options: dict = None,
|
||||
) -> dict:
|
||||
"""
|
||||
Ask a question to the bot
|
||||
"""
|
||||
async for final, response in self.chat_hub.ask_stream(
|
||||
prompt=prompt,
|
||||
conversation_style=conversation_style,
|
||||
wss_link=wss_link,
|
||||
options=options,
|
||||
):
|
||||
if final:
|
||||
return response
|
||||
await self.chat_hub.wss.close()
|
||||
return None
|
||||
|
||||
async def ask_stream(
|
||||
self,
|
||||
prompt: str,
|
||||
wss_link: str,
|
||||
conversation_style: CONVERSATION_STYLE_TYPE = None,
|
||||
raw: bool = False,
|
||||
options: dict = None,
|
||||
) -> Generator[str, None, None]:
|
||||
"""
|
||||
Ask a question to the bot
|
||||
"""
|
||||
async for response in self.chat_hub.ask_stream(
|
||||
prompt=prompt,
|
||||
conversation_style=conversation_style,
|
||||
wss_link=wss_link,
|
||||
raw=raw,
|
||||
options=options,
|
||||
):
|
||||
yield response
|
||||
|
||||
async def close(self) -> None:
|
||||
"""
|
||||
Close the connection
|
||||
"""
|
||||
await self.chat_hub.close()
|
||||
|
||||
async def reset(self) -> None:
|
||||
"""
|
||||
Reset the conversation
|
||||
"""
|
||||
await self.close()
|
||||
self.chat_hub = _ChatHub(_Conversation(self.cookies, self.proxy))
|
||||
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
./docs/gradio-3.32.2-py3-none-any.whl
|
||||
pydantic==1.10.11
|
||||
tiktoken>=0.3.3
|
||||
requests[socks]
|
||||
transformers
|
||||
@ -15,4 +16,4 @@ pymupdf
|
||||
openai
|
||||
numpy
|
||||
arxiv
|
||||
rich
|
||||
rich
|
||||
|
||||
47
theme/common.js
Normal file
47
theme/common.js
Normal file
@ -0,0 +1,47 @@
|
||||
function ChatBotHeight() {
|
||||
function update_height(){
|
||||
var { panel_height_target, chatbot_height, chatbot } = get_elements();
|
||||
if (panel_height_target!=chatbot_height)
|
||||
{
|
||||
var pixelString = panel_height_target.toString() + 'px';
|
||||
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
||||
}
|
||||
}
|
||||
|
||||
function update_height_slow(){
|
||||
var { panel_height_target, chatbot_height, chatbot } = get_elements();
|
||||
if (panel_height_target!=chatbot_height)
|
||||
{
|
||||
new_panel_height = (panel_height_target - chatbot_height)*0.5 + chatbot_height;
|
||||
if (Math.abs(new_panel_height - panel_height_target) < 10){
|
||||
new_panel_height = panel_height_target;
|
||||
}
|
||||
// console.log(chatbot_height, panel_height_target, new_panel_height);
|
||||
var pixelString = new_panel_height.toString() + 'px';
|
||||
chatbot.style.maxHeight = pixelString; chatbot.style.height = pixelString;
|
||||
}
|
||||
}
|
||||
|
||||
update_height();
|
||||
setInterval(function() {
|
||||
update_height_slow()
|
||||
}, 50); // 每100毫秒执行一次
|
||||
}
|
||||
|
||||
function get_elements() {
|
||||
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
||||
if (!chatbot) {
|
||||
chatbot = document.querySelector('#gpt-chatbot');
|
||||
}
|
||||
const panel1 = document.querySelector('#input-panel');
|
||||
const panel2 = document.querySelector('#basic-panel');
|
||||
const panel3 = document.querySelector('#plugin-panel');
|
||||
const panel4 = document.querySelector('#interact-panel');
|
||||
const panel5 = document.querySelector('#input-panel2');
|
||||
const panel_active = document.querySelector('#state-panel');
|
||||
var panel_height_target = (20-panel_active.offsetHeight) + panel1.offsetHeight + panel2.offsetHeight + panel3.offsetHeight + panel4.offsetHeight + panel5.offsetHeight + 21;
|
||||
var panel_height_target = parseInt(panel_height_target);
|
||||
var chatbot_height = chatbot.style.height;
|
||||
var chatbot_height = parseInt(chatbot_height);
|
||||
return { panel_height_target, chatbot_height, chatbot };
|
||||
}
|
||||
@ -1,108 +1,3 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
CODE_HIGHLIGHT, ADD_WAIFU = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU')
|
||||
# gradio可用颜色列表
|
||||
# gr.themes.utils.colors.slate (石板色)
|
||||
# gr.themes.utils.colors.gray (灰色)
|
||||
# gr.themes.utils.colors.zinc (锌色)
|
||||
# gr.themes.utils.colors.neutral (中性色)
|
||||
# gr.themes.utils.colors.stone (石头色)
|
||||
# gr.themes.utils.colors.red (红色)
|
||||
# gr.themes.utils.colors.orange (橙色)
|
||||
# gr.themes.utils.colors.amber (琥珀色)
|
||||
# gr.themes.utils.colors.yellow (黄色)
|
||||
# gr.themes.utils.colors.lime (酸橙色)
|
||||
# gr.themes.utils.colors.green (绿色)
|
||||
# gr.themes.utils.colors.emerald (祖母绿)
|
||||
# gr.themes.utils.colors.teal (青蓝色)
|
||||
# gr.themes.utils.colors.cyan (青色)
|
||||
# gr.themes.utils.colors.sky (天蓝色)
|
||||
# gr.themes.utils.colors.blue (蓝色)
|
||||
# gr.themes.utils.colors.indigo (靛蓝色)
|
||||
# gr.themes.utils.colors.violet (紫罗兰色)
|
||||
# gr.themes.utils.colors.purple (紫色)
|
||||
# gr.themes.utils.colors.fuchsia (洋红色)
|
||||
# gr.themes.utils.colors.pink (粉红色)
|
||||
# gr.themes.utils.colors.rose (玫瑰色)
|
||||
|
||||
|
||||
def adjust_theme():
|
||||
|
||||
try:
|
||||
color_er = gr.themes.utils.colors.fuchsia
|
||||
set_theme = gr.themes.Default(
|
||||
primary_hue=gr.themes.utils.colors.orange,
|
||||
neutral_hue=gr.themes.utils.colors.gray,
|
||||
font=["sans-serif", "Microsoft YaHei", "ui-sans-serif", "system-ui",
|
||||
"sans-serif", gr.themes.utils.fonts.GoogleFont("Source Sans Pro")],
|
||||
font_mono=["ui-monospace", "Consolas", "monospace", gr.themes.utils.fonts.GoogleFont("IBM Plex Mono")])
|
||||
set_theme.set(
|
||||
# Colors
|
||||
input_background_fill_dark="*neutral_800",
|
||||
# Transition
|
||||
button_transition="none",
|
||||
# Shadows
|
||||
button_shadow="*shadow_drop",
|
||||
button_shadow_hover="*shadow_drop_lg",
|
||||
button_shadow_active="*shadow_inset",
|
||||
input_shadow="0 0 0 *shadow_spread transparent, *shadow_inset",
|
||||
input_shadow_focus="0 0 0 *shadow_spread *secondary_50, *shadow_inset",
|
||||
input_shadow_focus_dark="0 0 0 *shadow_spread *neutral_700, *shadow_inset",
|
||||
checkbox_label_shadow="*shadow_drop",
|
||||
block_shadow="*shadow_drop",
|
||||
form_gap_width="1px",
|
||||
# Button borders
|
||||
input_border_width="1px",
|
||||
input_background_fill="white",
|
||||
# Gradients
|
||||
stat_background_fill="linear-gradient(to right, *primary_400, *primary_200)",
|
||||
stat_background_fill_dark="linear-gradient(to right, *primary_400, *primary_600)",
|
||||
error_background_fill=f"linear-gradient(to right, {color_er.c100}, *background_fill_secondary)",
|
||||
error_background_fill_dark="*background_fill_primary",
|
||||
checkbox_label_background_fill="linear-gradient(to top, *neutral_50, white)",
|
||||
checkbox_label_background_fill_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
|
||||
checkbox_label_background_fill_hover="linear-gradient(to top, *neutral_100, white)",
|
||||
checkbox_label_background_fill_hover_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
|
||||
button_primary_background_fill="linear-gradient(to bottom right, *primary_100, *primary_300)",
|
||||
button_primary_background_fill_dark="linear-gradient(to bottom right, *primary_500, *primary_600)",
|
||||
button_primary_background_fill_hover="linear-gradient(to bottom right, *primary_100, *primary_200)",
|
||||
button_primary_background_fill_hover_dark="linear-gradient(to bottom right, *primary_500, *primary_500)",
|
||||
button_primary_border_color_dark="*primary_500",
|
||||
button_secondary_background_fill="linear-gradient(to bottom right, *neutral_100, *neutral_200)",
|
||||
button_secondary_background_fill_dark="linear-gradient(to bottom right, *neutral_600, *neutral_700)",
|
||||
button_secondary_background_fill_hover="linear-gradient(to bottom right, *neutral_100, *neutral_100)",
|
||||
button_secondary_background_fill_hover_dark="linear-gradient(to bottom right, *neutral_600, *neutral_600)",
|
||||
button_cancel_background_fill=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c200})",
|
||||
button_cancel_background_fill_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c700})",
|
||||
button_cancel_background_fill_hover=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c100})",
|
||||
button_cancel_background_fill_hover_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c600})",
|
||||
button_cancel_border_color=color_er.c200,
|
||||
button_cancel_border_color_dark=color_er.c600,
|
||||
button_cancel_text_color=color_er.c600,
|
||||
button_cancel_text_color_dark="white",
|
||||
)
|
||||
|
||||
# 添加一个萌萌的看板娘
|
||||
if ADD_WAIFU:
|
||||
js = """
|
||||
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/autoload.js"></script>
|
||||
"""
|
||||
gradio_original_template_fn = gr.routes.templates.TemplateResponse
|
||||
def gradio_new_template_fn(*args, **kwargs):
|
||||
res = gradio_original_template_fn(*args, **kwargs)
|
||||
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
||||
res.init_headers()
|
||||
return res
|
||||
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
|
||||
except:
|
||||
set_theme = None
|
||||
print('gradio版本较旧, 不能自定义字体和颜色')
|
||||
return set_theme
|
||||
|
||||
|
||||
advanced_css = """
|
||||
.markdown-body table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
@ -187,10 +82,15 @@ advanced_css = """
|
||||
margin: 1em 2em 1em 0.5em;
|
||||
}
|
||||
|
||||
"""
|
||||
/* .mic-wrap.svelte-1thnwz {
|
||||
|
||||
if CODE_HIGHLIGHT:
|
||||
advanced_css += """
|
||||
} */
|
||||
.block.svelte-mppz8v > .mic-wrap.svelte-1thnwz{
|
||||
justify-content: center;
|
||||
display: flex;
|
||||
padding: 0;
|
||||
|
||||
}
|
||||
|
||||
.codehilite .hll { background-color: #6e7681 }
|
||||
.codehilite .c { color: #8b949e; font-style: italic } /* Comment */
|
||||
@ -350,4 +250,3 @@ if CODE_HIGHLIGHT:
|
||||
.dark .codehilite .vm { color: #82AAFF } /* Name.Variable.Magic */
|
||||
.dark .codehilite .il { color: #F78C6C } /* Literal.Number.Integer.Long */
|
||||
|
||||
"""
|
||||
87
theme/default.py
Normal file
87
theme/default.py
Normal file
@ -0,0 +1,87 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
|
||||
|
||||
def adjust_theme():
|
||||
|
||||
try:
|
||||
color_er = gr.themes.utils.colors.fuchsia
|
||||
set_theme = gr.themes.Default(
|
||||
primary_hue=gr.themes.utils.colors.orange,
|
||||
neutral_hue=gr.themes.utils.colors.gray,
|
||||
font=["sans-serif", "Microsoft YaHei", "ui-sans-serif", "system-ui",
|
||||
"sans-serif", gr.themes.utils.fonts.GoogleFont("Source Sans Pro")],
|
||||
font_mono=["ui-monospace", "Consolas", "monospace", gr.themes.utils.fonts.GoogleFont("IBM Plex Mono")])
|
||||
set_theme.set(
|
||||
# Colors
|
||||
input_background_fill_dark="*neutral_800",
|
||||
# Transition
|
||||
button_transition="none",
|
||||
# Shadows
|
||||
button_shadow="*shadow_drop",
|
||||
button_shadow_hover="*shadow_drop_lg",
|
||||
button_shadow_active="*shadow_inset",
|
||||
input_shadow="0 0 0 *shadow_spread transparent, *shadow_inset",
|
||||
input_shadow_focus="0 0 0 *shadow_spread *secondary_50, *shadow_inset",
|
||||
input_shadow_focus_dark="0 0 0 *shadow_spread *neutral_700, *shadow_inset",
|
||||
checkbox_label_shadow="*shadow_drop",
|
||||
block_shadow="*shadow_drop",
|
||||
form_gap_width="1px",
|
||||
# Button borders
|
||||
input_border_width="1px",
|
||||
input_background_fill="white",
|
||||
# Gradients
|
||||
stat_background_fill="linear-gradient(to right, *primary_400, *primary_200)",
|
||||
stat_background_fill_dark="linear-gradient(to right, *primary_400, *primary_600)",
|
||||
error_background_fill=f"linear-gradient(to right, {color_er.c100}, *background_fill_secondary)",
|
||||
error_background_fill_dark="*background_fill_primary",
|
||||
checkbox_label_background_fill="linear-gradient(to top, *neutral_50, white)",
|
||||
checkbox_label_background_fill_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
|
||||
checkbox_label_background_fill_hover="linear-gradient(to top, *neutral_100, white)",
|
||||
checkbox_label_background_fill_hover_dark="linear-gradient(to top, *neutral_900, *neutral_800)",
|
||||
button_primary_background_fill="linear-gradient(to bottom right, *primary_100, *primary_300)",
|
||||
button_primary_background_fill_dark="linear-gradient(to bottom right, *primary_500, *primary_600)",
|
||||
button_primary_background_fill_hover="linear-gradient(to bottom right, *primary_100, *primary_200)",
|
||||
button_primary_background_fill_hover_dark="linear-gradient(to bottom right, *primary_500, *primary_500)",
|
||||
button_primary_border_color_dark="*primary_500",
|
||||
button_secondary_background_fill="linear-gradient(to bottom right, *neutral_100, *neutral_200)",
|
||||
button_secondary_background_fill_dark="linear-gradient(to bottom right, *neutral_600, *neutral_700)",
|
||||
button_secondary_background_fill_hover="linear-gradient(to bottom right, *neutral_100, *neutral_100)",
|
||||
button_secondary_background_fill_hover_dark="linear-gradient(to bottom right, *neutral_600, *neutral_600)",
|
||||
button_cancel_background_fill=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c200})",
|
||||
button_cancel_background_fill_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c700})",
|
||||
button_cancel_background_fill_hover=f"linear-gradient(to bottom right, {color_er.c100}, {color_er.c100})",
|
||||
button_cancel_background_fill_hover_dark=f"linear-gradient(to bottom right, {color_er.c600}, {color_er.c600})",
|
||||
button_cancel_border_color=color_er.c200,
|
||||
button_cancel_border_color_dark=color_er.c600,
|
||||
button_cancel_text_color=color_er.c600,
|
||||
button_cancel_text_color_dark="white",
|
||||
)
|
||||
|
||||
if LAYOUT=="TOP-DOWN":
|
||||
js = ""
|
||||
else:
|
||||
with open('theme/common.js', 'r', encoding='utf8') as f:
|
||||
js = f"<script>{f.read()}</script>"
|
||||
|
||||
# 添加一个萌萌的看板娘
|
||||
if ADD_WAIFU:
|
||||
js += """
|
||||
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/autoload.js"></script>
|
||||
"""
|
||||
gradio_original_template_fn = gr.routes.templates.TemplateResponse
|
||||
def gradio_new_template_fn(*args, **kwargs):
|
||||
res = gradio_original_template_fn(*args, **kwargs)
|
||||
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
||||
res.init_headers()
|
||||
return res
|
||||
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
|
||||
except:
|
||||
set_theme = None
|
||||
print('gradio版本较旧, 不能自定义字体和颜色')
|
||||
return set_theme
|
||||
|
||||
with open("theme/default.css", "r", encoding="utf-8") as f:
|
||||
advanced_css = f.read()
|
||||
806
theme/green.css
Normal file
806
theme/green.css
Normal file
@ -0,0 +1,806 @@
|
||||
:root {
|
||||
--chatbot-color-light: #000000;
|
||||
--chatbot-color-dark: #FFFFFF;
|
||||
--chatbot-background-color-light: #F3F3F3;
|
||||
--chatbot-background-color-dark: #121111;
|
||||
--message-user-background-color-light: #95EC69;
|
||||
--message-user-background-color-dark: #26B561;
|
||||
--message-bot-background-color-light: #FFFFFF;
|
||||
--message-bot-background-color-dark: #2C2C2C;
|
||||
}
|
||||
mspace {
|
||||
display: block;
|
||||
}
|
||||
@media only screen and (max-width: 767px) {
|
||||
#column_1 {
|
||||
display: none !important;
|
||||
}
|
||||
}
|
||||
@keyframes highlight {
|
||||
0%, 100% {
|
||||
border: 2px solid transparent;
|
||||
}
|
||||
50% {
|
||||
border-color: yellow;
|
||||
}
|
||||
}
|
||||
|
||||
#highlight_update {
|
||||
animation-name: highlight;
|
||||
animation-duration: 0.75s;
|
||||
animation-iteration-count: 3;
|
||||
}
|
||||
|
||||
.table-wrap.svelte-13hsdno.svelte-13hsdno.svelte-13hsdno {
|
||||
border: 0px solid var(--border-color-primary) !important;
|
||||
}
|
||||
|
||||
#examples_col {
|
||||
z-index: 2;
|
||||
position: absolute;
|
||||
bottom: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
margin-bottom: 30% !important;
|
||||
}
|
||||
#hide_examples {
|
||||
z-index: 0;
|
||||
}
|
||||
|
||||
#debug_mes {
|
||||
position: absolute;
|
||||
display: flex;
|
||||
bottom: 0;
|
||||
left: 0;
|
||||
z-index: 1; /* 设置更高的 z-index 值 */
|
||||
margin-bottom: -4px !important;
|
||||
align-self: flex-end;
|
||||
}
|
||||
#chat_box {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
overflow-y: visible !important;
|
||||
z-index: 3;
|
||||
flex-grow: 1; /* 自动填充剩余空间 */
|
||||
position: absolute;
|
||||
bottom: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
margin-bottom: 30px !important;
|
||||
border: 1px solid var(--border-color-primary);
|
||||
}
|
||||
.toast-body {
|
||||
z-index: 5 !important;
|
||||
}
|
||||
.chat_input {
|
||||
|
||||
}
|
||||
.sm_btn {
|
||||
position: relative;
|
||||
bottom: 5px;
|
||||
height: 10%;
|
||||
border-radius: 20px!important;
|
||||
min-width: min(10%,100%) !important;
|
||||
overflow: hidden;
|
||||
}
|
||||
.sm_select {
|
||||
position: relative !important;
|
||||
z-index: 5 !important;
|
||||
bottom: 5px;
|
||||
min-width: min(20%,100%) !important;
|
||||
border-radius: 20px!important;
|
||||
}
|
||||
.sm_checkbox {
|
||||
position: relative !important;
|
||||
z-index: 5 !important;
|
||||
bottom: 5px;
|
||||
padding: 0 !important;
|
||||
}
|
||||
.sm_select .wrap-inner.svelte-aqlk7e.svelte-aqlk7e.svelte-aqlk7e {
|
||||
padding: 0 !important;
|
||||
}
|
||||
.sm_select .block.svelte-mppz8v {
|
||||
width: 10% !important;
|
||||
}
|
||||
|
||||
/* usage_display */
|
||||
.insert_block {
|
||||
position: relative;
|
||||
bottom: 2px;
|
||||
min-width: min(55px,100%) !important;
|
||||
}
|
||||
|
||||
.submit_btn {
|
||||
flex-direction: column-reverse;
|
||||
overflow-y: auto !important;
|
||||
position: absolute;
|
||||
bottom: 0;
|
||||
right: 10px;
|
||||
margin-bottom: 10px !important;
|
||||
min-width: min(50px,100%) !important;
|
||||
}
|
||||
|
||||
textarea {
|
||||
resize: none;
|
||||
height: 100%; /* 填充父元素的高度 */
|
||||
}
|
||||
#main_chatbot {
|
||||
height: 75vh !important;
|
||||
max-height: 75vh !important;
|
||||
/* overflow: auto !important; */
|
||||
z-index: 2;
|
||||
transform: translateZ(0) !important;
|
||||
backface-visibility: hidden !important;
|
||||
will-change: transform !important;
|
||||
}
|
||||
#prompt_result{
|
||||
height: 60vh !important;
|
||||
max-height: 60vh !important;
|
||||
}
|
||||
|
||||
#app_title {
|
||||
font-weight: var(--prose-header-text-weight);
|
||||
font-size: var(--text-xxl);
|
||||
line-height: 1.3;
|
||||
text-align: left;
|
||||
margin-top: 6px;
|
||||
white-space: nowrap;
|
||||
}
|
||||
#description {
|
||||
text-align: center;
|
||||
margin: 32px 0 4px 0;
|
||||
}
|
||||
|
||||
/* gradio的页脚信息 */
|
||||
footer {
|
||||
/* display: none !important; */
|
||||
margin-top: .2em !important;
|
||||
font-size: 85%;
|
||||
}
|
||||
#footer {
|
||||
text-align: center;
|
||||
}
|
||||
#footer div {
|
||||
display: inline-block;
|
||||
}
|
||||
#footer .versions{
|
||||
font-size: 85%;
|
||||
opacity: 0.60;
|
||||
}
|
||||
/* user_info */
|
||||
|
||||
#float_display {
|
||||
position: absolute;
|
||||
max-height: 30px;
|
||||
}
|
||||
/* user_info */
|
||||
#user_info {
|
||||
white-space: nowrap;
|
||||
position: absolute; left: 8em; top: .2em;
|
||||
z-index: var(--layer-2);
|
||||
box-shadow: var(--block-shadow);
|
||||
border: none; border-radius: var(--block-label-radius);
|
||||
background: var(--color-accent);
|
||||
padding: var(--block-label-padding);
|
||||
font-size: var(--block-label-text-size); line-height: var(--line-sm);
|
||||
width: auto; min-height: 30px !important;
|
||||
opacity: 1;
|
||||
transition: opacity 0.3s ease-in-out;
|
||||
}
|
||||
textarea.svelte-1pie7s6 {
|
||||
background: #e7e6e6 !important;
|
||||
width: 96% !important;
|
||||
}
|
||||
|
||||
.dark textarea.svelte-1pie7s6 {
|
||||
background: var(--input-background-fill) !important;
|
||||
width: 96% !important;
|
||||
}
|
||||
|
||||
.dark input[type=number].svelte-1cl284s {
|
||||
background: #393939 !important;
|
||||
border: var(--input-border-width) solid var(--input-border-color) !important;
|
||||
}
|
||||
.dark input[type="range"] {
|
||||
background: #393939 !important;
|
||||
}
|
||||
#user_info .wrap {
|
||||
opacity: 0;
|
||||
}
|
||||
#user_info p {
|
||||
color: white;
|
||||
font-weight: var(--block-label-text-weight);
|
||||
}
|
||||
#user_info.hideK {
|
||||
opacity: 0;
|
||||
transition: opacity 1s ease-in-out;
|
||||
}
|
||||
[class *= "message"] {
|
||||
gap: 7px !important;
|
||||
border-radius: var(--radius-xl) !important
|
||||
}
|
||||
/* debug_mes */
|
||||
#debug_mes {
|
||||
min-height: 2em;
|
||||
align-items: flex-end;
|
||||
justify-content: flex-end;
|
||||
}
|
||||
#debug_mes p {
|
||||
font-size: .85em;
|
||||
font-family: ui-monospace, "SF Mono", "SFMono-Regular", "Menlo", "Consolas", "Liberation Mono", "Microsoft Yahei UI", "Microsoft Yahei", monospace;
|
||||
/* Windows下中文的monospace会fallback为新宋体,实在太丑,这里折中使用微软雅黑 */
|
||||
color: #000000;
|
||||
}
|
||||
.dark #debug_mes p {
|
||||
color: #ee65ed;
|
||||
}
|
||||
|
||||
#debug_mes {
|
||||
transition: all 0.6s;
|
||||
}
|
||||
#main_chatbot {
|
||||
transition: height 0.3s ease;
|
||||
}
|
||||
|
||||
/* .wrap.svelte-18telvq.svelte-18telvq {
|
||||
padding: var(--block-padding) !important;
|
||||
height: 100% !important;
|
||||
max-height: 95% !important;
|
||||
overflow-y: auto !important;
|
||||
}*/
|
||||
.app.svelte-1mya07g.svelte-1mya07g {
|
||||
max-width: 100%;
|
||||
position: relative;
|
||||
padding: var(--size-4);
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.gradio-container-3-32-2 h1 {
|
||||
font-weight: 700 !important;
|
||||
font-size: 28px !important;
|
||||
}
|
||||
|
||||
|
||||
.gradio-container-3-32-2 h2 {
|
||||
font-weight: 600 !important;
|
||||
font-size: 24px !important;
|
||||
}
|
||||
.gradio-container-3-32-2 h3 {
|
||||
font-weight: 500 !important;
|
||||
font-size: 20px !important;
|
||||
}
|
||||
.gradio-container-3-32-2 h4 {
|
||||
font-weight: 400 !important;
|
||||
font-size: 16px !important;
|
||||
}
|
||||
.gradio-container-3-32-2 h5 {
|
||||
font-weight: 300 !important;
|
||||
font-size: 14px !important;
|
||||
}
|
||||
.gradio-container-3-32-2 h6 {
|
||||
font-weight: 200 !important;
|
||||
font-size: 12px !important;
|
||||
}
|
||||
|
||||
|
||||
#usage_display p, #usage_display span {
|
||||
margin: 0;
|
||||
font-size: .85em;
|
||||
color: var(--body-text-color-subdued);
|
||||
}
|
||||
.progress-bar {
|
||||
background-color: var(--input-background-fill);;
|
||||
margin: .5em 0 !important;
|
||||
height: 20px;
|
||||
border-radius: 10px;
|
||||
overflow: hidden;
|
||||
}
|
||||
.progress {
|
||||
background-color: var(--block-title-background-fill);
|
||||
height: 100%;
|
||||
border-radius: 10px;
|
||||
text-align: right;
|
||||
transition: width 0.5s ease-in-out;
|
||||
}
|
||||
.progress-text {
|
||||
/* color: white; */
|
||||
color: var(--color-accent) !important;
|
||||
font-size: 1em !important;
|
||||
font-weight: bold;
|
||||
padding-right: 10px;
|
||||
line-height: 20px;
|
||||
}
|
||||
|
||||
.apSwitch {
|
||||
top: 2px;
|
||||
display: inline-block;
|
||||
height: 24px;
|
||||
position: relative;
|
||||
width: 48px;
|
||||
border-radius: 12px;
|
||||
}
|
||||
.apSwitch input {
|
||||
display: none !important;
|
||||
}
|
||||
.apSlider {
|
||||
background-color: var(--neutral-200);
|
||||
bottom: 0;
|
||||
cursor: pointer;
|
||||
left: 0;
|
||||
position: absolute;
|
||||
right: 0;
|
||||
top: 0;
|
||||
transition: .4s;
|
||||
font-size: 18px;
|
||||
border-radius: 7px;
|
||||
}
|
||||
.apSlider::before {
|
||||
bottom: -1.5px;
|
||||
left: 1px;
|
||||
position: absolute;
|
||||
transition: .4s;
|
||||
content: "🌞";
|
||||
}
|
||||
hr.append-display {
|
||||
margin: 8px 0;
|
||||
border: none;
|
||||
height: 1px;
|
||||
border-top-width: 0;
|
||||
background-image: linear-gradient(to right, rgba(50,50,50, 0.1), rgba(150, 150, 150, 0.8), rgba(50,50,50, 0.1));
|
||||
}
|
||||
.source-a {
|
||||
font-size: 0.8em;
|
||||
max-width: 100%;
|
||||
margin: 0;
|
||||
display: flex;
|
||||
flex-direction: row;
|
||||
flex-wrap: wrap;
|
||||
align-items: center;
|
||||
/* background-color: #dddddd88; */
|
||||
border-radius: 1.5rem;
|
||||
padding: 0.2em;
|
||||
}
|
||||
.source-a a {
|
||||
display: inline-block;
|
||||
background-color: #aaaaaa50;
|
||||
border-radius: 1rem;
|
||||
padding: 0.5em;
|
||||
text-align: center;
|
||||
text-overflow: ellipsis;
|
||||
overflow: hidden;
|
||||
min-width: 20%;
|
||||
white-space: nowrap;
|
||||
margin: 0.2rem 0.1rem;
|
||||
text-decoration: none !important;
|
||||
flex: 1;
|
||||
transition: flex 0.5s;
|
||||
}
|
||||
.source-a a:hover {
|
||||
background-color: #aaaaaa20;
|
||||
flex: 2;
|
||||
}
|
||||
input:checked + .apSlider {
|
||||
background-color: var(--primary-600);
|
||||
}
|
||||
input:checked + .apSlider::before {
|
||||
transform: translateX(23px);
|
||||
content:"🌚";
|
||||
}
|
||||
|
||||
/* Override Slider Styles (for webkit browsers like Safari and Chrome)
|
||||
* 好希望这份提案能早日实现 https://github.com/w3c/csswg-drafts/issues/4410
|
||||
* 进度滑块在各个平台还是太不统一了
|
||||
*/
|
||||
input[type="range"] {
|
||||
-webkit-appearance: none;
|
||||
height: 4px;
|
||||
background: var(--input-background-fill);
|
||||
border-radius: 5px;
|
||||
background-image: linear-gradient(var(--primary-500),var(--primary-500));
|
||||
background-size: 0% 100%;
|
||||
background-repeat: no-repeat;
|
||||
}
|
||||
input[type="range"]::-webkit-slider-thumb {
|
||||
-webkit-appearance: none;
|
||||
height: 20px;
|
||||
width: 20px;
|
||||
border-radius: 50%;
|
||||
border: solid 0.5px #ddd;
|
||||
background-color: white;
|
||||
cursor: ew-resize;
|
||||
box-shadow: var(--input-shadow);
|
||||
transition: background-color .1s ease;
|
||||
}
|
||||
input[type="range"]::-webkit-slider-thumb:hover {
|
||||
background: var(--neutral-50);
|
||||
}
|
||||
input[type=range]::-webkit-slider-runnable-track {
|
||||
-webkit-appearance: none;
|
||||
box-shadow: none;
|
||||
border: none;
|
||||
background: transparent;
|
||||
}
|
||||
|
||||
.submit_btn, #cancel_btn {
|
||||
height: 42px !important;
|
||||
}
|
||||
.submit_btn::before {
|
||||
content: url("data:image/svg+xml, %3Csvg width='21px' height='20px' viewBox='0 0 21 20' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E %3Cg id='page' stroke='none' stroke-width='1' fill='none' fill-rule='evenodd'%3E %3Cg id='send' transform='translate(0.435849, 0.088463)' fill='%23FFFFFF' fill-rule='nonzero'%3E %3Cpath d='M0.579148261,0.0428666046 C0.301105539,-0.0961547561 -0.036517765,0.122307382 0.0032026237,0.420210298 L1.4927172,18.1553639 C1.5125774,18.4334066 1.79062012,18.5922882 2.04880264,18.4929872 L8.24518329,15.8913017 L11.6412765,19.7441794 C11.8597387,19.9825018 12.2370824,19.8832008 12.3165231,19.5852979 L13.9450591,13.4882182 L19.7839562,11.0255541 C20.0619989,10.8865327 20.0818591,10.4694687 19.7839562,10.3105871 L0.579148261,0.0428666046 Z M11.6138902,17.0883151 L9.85385903,14.7195502 L0.718169621,0.618812241 L12.69945,12.9346347 L11.6138902,17.0883151 Z' id='shape'%3E%3C/path%3E %3C/g%3E %3C/g%3E %3C/svg%3E");
|
||||
height: 21px;
|
||||
}
|
||||
|
||||
#cancel_btn::before {
|
||||
content: url("data:image/svg+xml,%3Csvg width='21px' height='21px' viewBox='0 0 21 21' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E %3Cg id='pg' stroke='none' stroke-width='1' fill='none' fill-rule='evenodd'%3E %3Cpath d='M10.2072007,20.088463 C11.5727865,20.088463 12.8594566,19.8259823 14.067211,19.3010209 C15.2749653,18.7760595 16.3386126,18.0538087 17.2581528,17.1342685 C18.177693,16.2147282 18.8982283,15.1527965 19.4197586,13.9484733 C19.9412889,12.7441501 20.202054,11.4557644 20.202054,10.0833163 C20.202054,8.71773046 19.9395733,7.43106036 19.4146119,6.22330603 C18.8896505,5.01555169 18.1673997,3.95018885 17.2478595,3.0272175 C16.3283192,2.10424615 15.2646719,1.3837109 14.0569176,0.865611739 C12.8491633,0.34751258 11.5624932,0.088463 10.1969073,0.088463 C8.83132146,0.088463 7.54636692,0.34751258 6.34204371,0.865611739 C5.1377205,1.3837109 4.07407321,2.10424615 3.15110186,3.0272175 C2.22813051,3.95018885 1.5058797,5.01555169 0.984349419,6.22330603 C0.46281914,7.43106036 0.202054,8.71773046 0.202054,10.0833163 C0.202054,11.4557644 0.4645347,12.7441501 0.9894961,13.9484733 C1.5144575,15.1527965 2.23670831,16.2147282 3.15624854,17.1342685 C4.07578877,18.0538087 5.1377205,18.7760595 6.34204371,19.3010209 C7.54636692,19.8259823 8.83475258,20.088463 10.2072007,20.088463 Z M10.2072007,18.2562448 C9.07493099,18.2562448 8.01471483,18.0452309 7.0265522,17.6232031 C6.03838956,17.2011753 5.17031614,16.6161693 4.42233192,15.8681851 C3.6743477,15.1202009 3.09105726,14.2521274 2.67246059,13.2639648 C2.25386392,12.2758022 2.04456558,11.215586 2.04456558,10.0833163 C2.04456558,8.95104663 2.25386392,7.89083047 2.67246059,6.90266784 C3.09105726,5.9145052 3.6743477,5.04643178 4.42233192,4.29844756 C5.17031614,3.55046334 6.036674,2.9671729 7.02140552,2.54857623 C8.00613703,2.12997956 9.06463763,1.92068122 10.1969073,1.92068122 C11.329177,1.92068122 12.3911087,2.12997956 13.3827025,2.54857623 C14.3742962,2.9671729 15.2440852,3.55046334 15.9920694,4.29844756 C16.7400537,5.04643178 17.3233441,5.9145052 17.7419408,6.90266784 C18.1605374,7.89083047 18.3698358,8.95104663 18.3698358,10.0833163 C18.3698358,11.215586 18.1605374,12.2758022 17.7419408,13.2639648 C17.3233441,14.2521274 16.7400537,15.1202009 15.9920694,15.8681851 C15.2440852,16.6161693 14.3760118,17.2011753 13.3878492,17.6232031 C12.3996865,18.0452309 11.3394704,18.2562448 10.2072007,18.2562448 Z M7.65444721,13.6242324 L12.7496608,13.6242324 C13.0584616,13.6242324 13.3003556,13.5384544 13.4753427,13.3668984 C13.6503299,13.1953424 13.7378234,12.9585951 13.7378234,12.6566565 L13.7378234,7.49968276 C13.7378234,7.19774418 13.6503299,6.96099688 13.4753427,6.78944087 C13.3003556,6.61788486 13.0584616,6.53210685 12.7496608,6.53210685 L7.65444721,6.53210685 C7.33878414,6.53210685 7.09345904,6.61788486 6.91847191,6.78944087 C6.74348478,6.96099688 6.65599121,7.19774418 6.65599121,7.49968276 L6.65599121,12.6566565 C6.65599121,12.9585951 6.74348478,13.1953424 6.91847191,13.3668984 C7.09345904,13.5384544 7.33878414,13.6242324 7.65444721,13.6242324 Z' id='shape' fill='%23FF3B30' fill-rule='nonzero'%3E%3C/path%3E %3C/g%3E %3C/svg%3E");
|
||||
height: 21px;
|
||||
}
|
||||
/* list */
|
||||
ol:not(.options), ul:not(.options) {
|
||||
padding-inline-start: 2em !important;
|
||||
}
|
||||
|
||||
/* 亮色(默认) */
|
||||
#main_chatbot {
|
||||
background-color: var(--chatbot-background-color-light) !important;
|
||||
color: var(--chatbot-color-light) !important;
|
||||
}
|
||||
/* 暗色 */
|
||||
.dark #main_chatbot {
|
||||
background-color: var(--block-background-fill) !important;
|
||||
color: var(--chatbot-color-dark) !important;
|
||||
}
|
||||
|
||||
/* 屏幕宽度大于等于500px的设备 */
|
||||
/* update on 2023.4.8: 高度的细致调整已写入JavaScript */
|
||||
@media screen and (min-width: 500px) {
|
||||
#main_chatbot {
|
||||
height: calc(100vh - 200px);
|
||||
}
|
||||
#main_chatbot .wrap {
|
||||
max-height: calc(100vh - 200px - var(--line-sm)*1rem - 2*var(--block-label-margin) );
|
||||
}
|
||||
}
|
||||
/* 屏幕宽度小于500px的设备 */
|
||||
@media screen and (max-width: 499px) {
|
||||
#main_chatbot {
|
||||
height: calc(100vh - 140px);
|
||||
}
|
||||
#main_chatbot .wrap {
|
||||
max-height: calc(100vh - 140px - var(--line-sm)*1rem - 2*var(--block-label-margin) );
|
||||
}
|
||||
[data-testid = "bot"] {
|
||||
max-width: 95% !important;
|
||||
}
|
||||
#app_title h1{
|
||||
letter-spacing: -1px; font-size: 22px;
|
||||
}
|
||||
}
|
||||
#main_chatbot .wrap {
|
||||
overflow-x: hidden
|
||||
}
|
||||
/* 对话气泡 */
|
||||
.message {
|
||||
border-radius: var(--radius-xl) !important;
|
||||
border: none;
|
||||
padding: var(--spacing-xl) !important;
|
||||
font-size: 15px !important;
|
||||
line-height: var(--line-md) !important;
|
||||
min-height: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
|
||||
min-width: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
|
||||
}
|
||||
[data-testid = "bot"] {
|
||||
max-width: 85%;
|
||||
border-bottom-left-radius: 0 !important;
|
||||
}
|
||||
[data-testid = "user"] {
|
||||
max-width: 85%;
|
||||
width: auto !important;
|
||||
border-bottom-right-radius: 0 !important;
|
||||
}
|
||||
|
||||
.message p {
|
||||
margin-top: 0.6em !important;
|
||||
margin-bottom: 0.6em !important;
|
||||
}
|
||||
.message p:first-child { margin-top: 0 !important; }
|
||||
.message p:last-of-type { margin-bottom: 0 !important; }
|
||||
|
||||
.message .md-message {
|
||||
display: block;
|
||||
padding: 0 !important;
|
||||
}
|
||||
.message .raw-message {
|
||||
display: block;
|
||||
padding: 0 !important;
|
||||
white-space: pre-wrap;
|
||||
}
|
||||
.raw-message.hideM, .md-message.hideM {
|
||||
display: none;
|
||||
}
|
||||
|
||||
/* custom buttons */
|
||||
.chuanhu-btn {
|
||||
border-radius: 5px;
|
||||
/* background-color: #E6E6E6 !important; */
|
||||
color: rgba(120, 120, 120, 0.64) !important;
|
||||
padding: 4px !important;
|
||||
position: absolute;
|
||||
right: -22px;
|
||||
cursor: pointer !important;
|
||||
transition: color .2s ease, background-color .2s ease;
|
||||
}
|
||||
.chuanhu-btn:hover {
|
||||
background-color: rgba(167, 167, 167, 0.25) !important;
|
||||
color: unset !important;
|
||||
}
|
||||
.chuanhu-btn:active {
|
||||
background-color: rgba(167, 167, 167, 0.5) !important;
|
||||
}
|
||||
.chuanhu-btn:focus {
|
||||
outline: none;
|
||||
}
|
||||
.copy-bot-btn {
|
||||
/* top: 18px; */
|
||||
bottom: 0;
|
||||
}
|
||||
.toggle-md-btn {
|
||||
/* top: 0; */
|
||||
bottom: 20px;
|
||||
}
|
||||
.copy-code-btn {
|
||||
position: relative;
|
||||
float: right;
|
||||
font-size: 1em;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
.message-wrap>div img{
|
||||
border-radius: 10px !important;
|
||||
}
|
||||
|
||||
/* history message */
|
||||
.wrap>.history-message {
|
||||
padding: 10px !important;
|
||||
}
|
||||
.history-message {
|
||||
/* padding: 0 !important; */
|
||||
opacity: 80%;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
}
|
||||
.history-message>.history-message {
|
||||
padding: 0 !important;
|
||||
}
|
||||
.history-message>.message-wrap {
|
||||
padding: 0 !important;
|
||||
margin-bottom: 16px;
|
||||
}
|
||||
.history-message>.message {
|
||||
margin-bottom: 16px;
|
||||
}
|
||||
.wrap>.history-message::after {
|
||||
content: "";
|
||||
display: block;
|
||||
height: 2px;
|
||||
background-color: var(--body-text-color-subdued);
|
||||
margin-bottom: 10px;
|
||||
margin-top: -10px;
|
||||
clear: both;
|
||||
}
|
||||
.wrap>.history-message>:last-child::after {
|
||||
content: "仅供查看";
|
||||
display: block;
|
||||
text-align: center;
|
||||
color: var(--body-text-color-subdued);
|
||||
font-size: 0.8em;
|
||||
}
|
||||
|
||||
/* 表格 */
|
||||
table {
|
||||
margin: 1em 0;
|
||||
border-collapse: collapse;
|
||||
empty-cells: show;
|
||||
}
|
||||
td,th {
|
||||
border: 1.2px solid var(--border-color-primary) !important;
|
||||
padding: 0.2em;
|
||||
}
|
||||
thead {
|
||||
background-color: rgba(175,184,193,0.2);
|
||||
}
|
||||
thead th {
|
||||
padding: .5em .2em;
|
||||
}
|
||||
/* 行内代码 */
|
||||
.message :not(pre) code {
|
||||
display: inline;
|
||||
white-space: break-spaces;
|
||||
border-radius: 6px;
|
||||
margin: 0 2px 0 2px;
|
||||
padding: .2em .4em .1em .4em;
|
||||
background-color: rgba(175,184,193,0.2);
|
||||
}
|
||||
/* 代码块 */
|
||||
.message pre code {
|
||||
display: block;
|
||||
overflow: auto;
|
||||
white-space: pre;
|
||||
background-color: hsla(0, 0%, 7%, 70%)!important;
|
||||
border-radius: 10px;
|
||||
padding: 1.2em 1em 0em .5em;
|
||||
margin: 0.6em 2em 1em 0.2em;
|
||||
color: #FFF;
|
||||
box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
|
||||
}
|
||||
.dark .message pre code {
|
||||
background-color: hsla(0, 0%, 20%, 300%)!important;
|
||||
}
|
||||
.message pre {
|
||||
padding: 0 !important;
|
||||
}
|
||||
.message pre code div.highlight {
|
||||
background-color: unset !important;
|
||||
}
|
||||
|
||||
button.copy-button {
|
||||
display: none;
|
||||
}
|
||||
|
||||
/* 代码高亮样式 */
|
||||
.codehilite .hll { background-color: #6e7681 }
|
||||
.codehilite .c { color: #8b949e; font-style: italic } /* Comment */
|
||||
.codehilite .err { color: #f85149 } /* Error */
|
||||
.codehilite .esc { color: #c9d1d9 } /* Escape */
|
||||
.codehilite .g { color: #c9d1d9 } /* Generic */
|
||||
.codehilite .k { color: #ff7b72 } /* Keyword */
|
||||
.codehilite .l { color: #a5d6ff } /* Literal */
|
||||
.codehilite .n { color: #c9d1d9 } /* Name */
|
||||
.codehilite .o { color: #ff7b72; font-weight: bold } /* Operator */
|
||||
.codehilite .x { color: #c9d1d9 } /* Other */
|
||||
.codehilite .p { color: #c9d1d9 } /* Punctuation */
|
||||
.codehilite .ch { color: #8b949e; font-style: italic } /* Comment.Hashbang */
|
||||
.codehilite .cm { color: #8b949e; font-style: italic } /* Comment.Multiline */
|
||||
.codehilite .cp { color: #8b949e; font-weight: bold; font-style: italic } /* Comment.Preproc */
|
||||
.codehilite .cpf { color: #8b949e; font-style: italic } /* Comment.PreprocFile */
|
||||
.codehilite .c1 { color: #8b949e; font-style: italic } /* Comment.Single */
|
||||
.codehilite .cs { color: #8b949e; font-weight: bold; font-style: italic } /* Comment.Special */
|
||||
.codehilite .gd { color: #ffa198; background-color: #490202 } /* Generic.Deleted */
|
||||
.codehilite .ge { color: #c9d1d9; font-style: italic } /* Generic.Emph */
|
||||
.codehilite .gr { color: #ffa198 } /* Generic.Error */
|
||||
.codehilite .gh { color: #79c0ff; font-weight: bold } /* Generic.Heading */
|
||||
.codehilite .gi { color: #56d364; background-color: #0f5323 } /* Generic.Inserted */
|
||||
.codehilite .go { color: #8b949e } /* Generic.Output */
|
||||
.codehilite .gp { color: #8b949e } /* Generic.Prompt */
|
||||
.codehilite .gs { color: #c9d1d9; font-weight: bold } /* Generic.Strong */
|
||||
.codehilite .gu { color: #79c0ff } /* Generic.Subheading */
|
||||
.codehilite .gt { color: #ff7b72 } /* Generic.Traceback */
|
||||
.codehilite .g-Underline { color: #c9d1d9; text-decoration: underline } /* Generic.Underline */
|
||||
.codehilite .kc { color: #79c0ff } /* Keyword.Constant */
|
||||
.codehilite .kd { color: #ff7b72 } /* Keyword.Declaration */
|
||||
.codehilite .kn { color: #ff7b72 } /* Keyword.Namespace */
|
||||
.codehilite .kp { color: #79c0ff } /* Keyword.Pseudo */
|
||||
.codehilite .kr { color: #ff7b72 } /* Keyword.Reserved */
|
||||
.codehilite .kt { color: #ff7b72 } /* Keyword.Type */
|
||||
.codehilite .ld { color: #79c0ff } /* Literal.Date */
|
||||
.codehilite .m { color: #a5d6ff } /* Literal.Number */
|
||||
.codehilite .s { color: #a5d6ff } /* Literal.String */
|
||||
.codehilite .na { color: #c9d1d9 } /* Name.Attribute */
|
||||
.codehilite .nb { color: #c9d1d9 } /* Name.Builtin */
|
||||
.codehilite .nc { color: #f0883e; font-weight: bold } /* Name.Class */
|
||||
.codehilite .no { color: #79c0ff; font-weight: bold } /* Name.Constant */
|
||||
.codehilite .nd { color: #d2a8ff; font-weight: bold } /* Name.Decorator */
|
||||
.codehilite .ni { color: #ffa657 } /* Name.Entity */
|
||||
.codehilite .ne { color: #f0883e; font-weight: bold } /* Name.Exception */
|
||||
.codehilite .nf { color: #d2a8ff; font-weight: bold } /* Name.Function */
|
||||
.codehilite .nl { color: #79c0ff; font-weight: bold } /* Name.Label */
|
||||
.codehilite .nn { color: #ff7b72 } /* Name.Namespace */
|
||||
.codehilite .nx { color: #c9d1d9 } /* Name.Other */
|
||||
.codehilite .py { color: #79c0ff } /* Name.Property */
|
||||
.codehilite .nt { color: #7ee787 } /* Name.Tag */
|
||||
.codehilite .nv { color: #79c0ff } /* Name.Variable */
|
||||
.codehilite .ow { color: #ff7b72; font-weight: bold } /* Operator.Word */
|
||||
.codehilite .pm { color: #c9d1d9 } /* Punctuation.Marker */
|
||||
.codehilite .w { color: #6e7681 } /* Text.Whitespace */
|
||||
.codehilite .mb { color: #a5d6ff } /* Literal.Number.Bin */
|
||||
.codehilite .mf { color: #a5d6ff } /* Literal.Number.Float */
|
||||
.codehilite .mh { color: #a5d6ff } /* Literal.Number.Hex */
|
||||
.codehilite .mi { color: #a5d6ff } /* Literal.Number.Integer */
|
||||
.codehilite .mo { color: #a5d6ff } /* Literal.Number.Oct */
|
||||
.codehilite .sa { color: #79c0ff } /* Literal.String.Affix */
|
||||
.codehilite .sb { color: #a5d6ff } /* Literal.String.Backtick */
|
||||
.codehilite .sc { color: #a5d6ff } /* Literal.String.Char */
|
||||
.codehilite .dl { color: #79c0ff } /* Literal.String.Delimiter */
|
||||
.codehilite .sd { color: #a5d6ff } /* Literal.String.Doc */
|
||||
.codehilite .s2 { color: #a5d6ff } /* Literal.String.Double */
|
||||
.codehilite .se { color: #79c0ff } /* Literal.String.Escape */
|
||||
.codehilite .sh { color: #79c0ff } /* Literal.String.Heredoc */
|
||||
.codehilite .si { color: #a5d6ff } /* Literal.String.Interpol */
|
||||
.codehilite .sx { color: #a5d6ff } /* Literal.String.Other */
|
||||
.codehilite .sr { color: #79c0ff } /* Literal.String.Regex */
|
||||
.codehilite .s1 { color: #a5d6ff } /* Literal.String.Single */
|
||||
.codehilite .ss { color: #a5d6ff } /* Literal.String.Symbol */
|
||||
.codehilite .bp { color: #c9d1d9 } /* Name.Builtin.Pseudo */
|
||||
.codehilite .fm { color: #d2a8ff; font-weight: bold } /* Name.Function.Magic */
|
||||
.codehilite .vc { color: #79c0ff } /* Name.Variable.Class */
|
||||
.codehilite .vg { color: #79c0ff } /* Name.Variable.Global */
|
||||
.codehilite .vi { color: #79c0ff } /* Name.Variable.Instance */
|
||||
.codehilite .vm { color: #79c0ff } /* Name.Variable.Magic */
|
||||
.codehilite .il { color: #a5d6ff } /* Literal.Number.Integer.Long */
|
||||
|
||||
.dark .codehilite .hll { background-color: #2C3B41 }
|
||||
.dark .codehilite .c { color: #79d618; font-style: italic } /* Comment */
|
||||
.dark .codehilite .err { color: #FF5370 } /* Error */
|
||||
.dark .codehilite .esc { color: #89DDFF } /* Escape */
|
||||
.dark .codehilite .g { color: #EEFFFF } /* Generic */
|
||||
.dark .codehilite .k { color: #BB80B3 } /* Keyword */
|
||||
.dark .codehilite .l { color: #C3E88D } /* Literal */
|
||||
.dark .codehilite .n { color: #EEFFFF } /* Name */
|
||||
.dark .codehilite .o { color: #89DDFF } /* Operator */
|
||||
.dark .codehilite .p { color: #89DDFF } /* Punctuation */
|
||||
.dark .codehilite .ch { color: #79d618; font-style: italic } /* Comment.Hashbang */
|
||||
.dark .codehilite .cm { color: #79d618; font-style: italic } /* Comment.Multiline */
|
||||
.dark .codehilite .cp { color: #79d618; font-style: italic } /* Comment.Preproc */
|
||||
.dark .codehilite .cpf { color: #79d618; font-style: italic } /* Comment.PreprocFile */
|
||||
.dark .codehilite .c1 { color: #79d618; font-style: italic } /* Comment.Single */
|
||||
.dark .codehilite .cs { color: #79d618; font-style: italic } /* Comment.Special */
|
||||
.dark .codehilite .gd { color: #FF5370 } /* Generic.Deleted */
|
||||
.dark .codehilite .ge { color: #89DDFF } /* Generic.Emph */
|
||||
.dark .codehilite .gr { color: #FF5370 } /* Generic.Error */
|
||||
.dark .codehilite .gh { color: #C3E88D } /* Generic.Heading */
|
||||
.dark .codehilite .gi { color: #C3E88D } /* Generic.Inserted */
|
||||
.dark .codehilite .go { color: #79d618 } /* Generic.Output */
|
||||
.dark .codehilite .gp { color: #FFCB6B } /* Generic.Prompt */
|
||||
.dark .codehilite .gs { color: #FF5370 } /* Generic.Strong */
|
||||
.dark .codehilite .gu { color: #89DDFF } /* Generic.Subheading */
|
||||
.dark .codehilite .gt { color: #FF5370 } /* Generic.Traceback */
|
||||
.dark .codehilite .kc { color: #89DDFF } /* Keyword.Constant */
|
||||
.dark .codehilite .kd { color: #BB80B3 } /* Keyword.Declaration */
|
||||
.dark .codehilite .kn { color: #89DDFF; font-style: italic } /* Keyword.Namespace */
|
||||
.dark .codehilite .kp { color: #89DDFF } /* Keyword.Pseudo */
|
||||
.dark .codehilite .kr { color: #BB80B3 } /* Keyword.Reserved */
|
||||
.dark .codehilite .kt { color: #BB80B3 } /* Keyword.Type */
|
||||
.dark .codehilite .ld { color: #C3E88D } /* Literal.Date */
|
||||
.dark .codehilite .m { color: #F78C6C } /* Literal.Number */
|
||||
.dark .codehilite .s { color: #C3E88D } /* Literal.String */
|
||||
.dark .codehilite .na { color: #BB80B3 } /* Name.Attribute */
|
||||
.dark .codehilite .nb { color: #82AAFF } /* Name.Builtin */
|
||||
.dark .codehilite .nc { color: #FFCB6B } /* Name.Class */
|
||||
.dark .codehilite .no { color: #EEFFFF } /* Name.Constant */
|
||||
.dark .codehilite .nd { color: #82AAFF } /* Name.Decorator */
|
||||
.dark .codehilite .ni { color: #89DDFF } /* Name.Entity */
|
||||
.dark .codehilite .ne { color: #FFCB6B } /* Name.Exception */
|
||||
.dark .codehilite .nf { color: #82AAFF } /* Name.Function */
|
||||
.dark .codehilite .nl { color: #82AAFF } /* Name.Label */
|
||||
.dark .codehilite .nn { color: #FFCB6B } /* Name.Namespace */
|
||||
.dark .codehilite .nx { color: #EEFFFF } /* Name.Other */
|
||||
.dark .codehilite .py { color: #FFCB6B } /* Name.Property */
|
||||
.dark .codehilite .nt { color: #FF5370 } /* Name.Tag */
|
||||
.dark .codehilite .nv { color: #89DDFF } /* Name.Variable */
|
||||
.dark .codehilite .ow { color: #89DDFF; font-style: italic } /* Operator.Word */
|
||||
.dark .codehilite .pm { color: #89DDFF } /* Punctuation.Marker */
|
||||
.dark .codehilite .w { color: #EEFFFF } /* Text.Whitespace */
|
||||
.dark .codehilite .mb { color: #F78C6C } /* Literal.Number.Bin */
|
||||
.dark .codehilite .mf { color: #F78C6C } /* Literal.Number.Float */
|
||||
.dark .codehilite .mh { color: #F78C6C } /* Literal.Number.Hex */
|
||||
.dark .codehilite .mi { color: #F78C6C } /* Literal.Number.Integer */
|
||||
.dark .codehilite .mo { color: #F78C6C } /* Literal.Number.Oct */
|
||||
.dark .codehilite .sa { color: #BB80B3 } /* Literal.String.Affix */
|
||||
.dark .codehilite .sb { color: #C3E88D } /* Literal.String.Backtick */
|
||||
.dark .codehilite .sc { color: #C3E88D } /* Literal.String.Char */
|
||||
.dark .codehilite .dl { color: #EEFFFF } /* Literal.String.Delimiter */
|
||||
.dark .codehilite .sd { color: #79d618; font-style: italic } /* Literal.String.Doc */
|
||||
.dark .codehilite .s2 { color: #C3E88D } /* Literal.String.Double */
|
||||
.dark .codehilite .se { color: #EEFFFF } /* Literal.String.Escape */
|
||||
.dark .codehilite .sh { color: #C3E88D } /* Literal.String.Heredoc */
|
||||
.dark .codehilite .si { color: #89DDFF } /* Literal.String.Interpol */
|
||||
.dark .codehilite .sx { color: #C3E88D } /* Literal.String.Other */
|
||||
.dark .codehilite .sr { color: #89DDFF } /* Literal.String.Regex */
|
||||
.dark .codehilite .s1 { color: #C3E88D } /* Literal.String.Single */
|
||||
.dark .codehilite .ss { color: #89DDFF } /* Literal.String.Symbol */
|
||||
.dark .codehilite .bp { color: #89DDFF } /* Name.Builtin.Pseudo */
|
||||
.dark .codehilite .fm { color: #82AAFF } /* Name.Function.Magic */
|
||||
.dark .codehilite .vc { color: #89DDFF } /* Name.Variable.Class */
|
||||
.dark .codehilite .vg { color: #89DDFF } /* Name.Variable.Global */
|
||||
.dark .codehilite .vi { color: #89DDFF } /* Name.Variable.Instance */
|
||||
.dark .codehilite .vm { color: #82AAFF } /* Name.Variable.Magic */
|
||||
.dark .codehilite .il { color: #F78C6C } /* Literal.Number.Integer.Long */
|
||||
104
theme/green.py
Normal file
104
theme/green.py
Normal file
@ -0,0 +1,104 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
CODE_HIGHLIGHT, ADD_WAIFU, LAYOUT = get_conf('CODE_HIGHLIGHT', 'ADD_WAIFU', 'LAYOUT')
|
||||
|
||||
def adjust_theme():
|
||||
try:
|
||||
set_theme = gr.themes.Soft(
|
||||
primary_hue=gr.themes.Color(
|
||||
c50="#EBFAF2",
|
||||
c100="#CFF3E1",
|
||||
c200="#A8EAC8",
|
||||
c300="#77DEA9",
|
||||
c400="#3FD086",
|
||||
c500="#02C160",
|
||||
c600="#06AE56",
|
||||
c700="#05974E",
|
||||
c800="#057F45",
|
||||
c900="#04673D",
|
||||
c950="#2E5541",
|
||||
name="small_and_beautiful",
|
||||
),
|
||||
secondary_hue=gr.themes.Color(
|
||||
c50="#576b95",
|
||||
c100="#576b95",
|
||||
c200="#576b95",
|
||||
c300="#576b95",
|
||||
c400="#576b95",
|
||||
c500="#576b95",
|
||||
c600="#576b95",
|
||||
c700="#576b95",
|
||||
c800="#576b95",
|
||||
c900="#576b95",
|
||||
c950="#576b95",
|
||||
),
|
||||
neutral_hue=gr.themes.Color(
|
||||
name="gray",
|
||||
c50="#f6f7f8",
|
||||
# c100="#f3f4f6",
|
||||
c100="#F2F2F2",
|
||||
c200="#e5e7eb",
|
||||
c300="#d1d5db",
|
||||
c400="#B2B2B2",
|
||||
c500="#808080",
|
||||
c600="#636363",
|
||||
c700="#515151",
|
||||
c800="#393939",
|
||||
# c900="#272727",
|
||||
c900="#2B2B2B",
|
||||
c950="#171717",
|
||||
),
|
||||
|
||||
radius_size=gr.themes.sizes.radius_sm,
|
||||
).set(
|
||||
button_primary_background_fill="*primary_500",
|
||||
button_primary_background_fill_dark="*primary_600",
|
||||
button_primary_background_fill_hover="*primary_400",
|
||||
button_primary_border_color="*primary_500",
|
||||
button_primary_border_color_dark="*primary_600",
|
||||
button_primary_text_color="wihte",
|
||||
button_primary_text_color_dark="white",
|
||||
button_secondary_background_fill="*neutral_100",
|
||||
button_secondary_background_fill_hover="*neutral_50",
|
||||
button_secondary_background_fill_dark="*neutral_900",
|
||||
button_secondary_text_color="*neutral_800",
|
||||
button_secondary_text_color_dark="white",
|
||||
background_fill_primary="#F7F7F7",
|
||||
background_fill_primary_dark="#1F1F1F",
|
||||
block_title_text_color="*primary_500",
|
||||
block_title_background_fill_dark="*primary_900",
|
||||
block_label_background_fill_dark="*primary_900",
|
||||
input_background_fill="#F6F6F6",
|
||||
chatbot_code_background_color="*neutral_950",
|
||||
chatbot_code_background_color_dark="*neutral_950",
|
||||
)
|
||||
|
||||
js = ''
|
||||
if LAYOUT=="TOP-DOWN":
|
||||
js = ""
|
||||
else:
|
||||
with open('theme/common.js', 'r', encoding='utf8') as f:
|
||||
js = f"<script>{f.read()}</script>"
|
||||
|
||||
# 添加一个萌萌的看板娘
|
||||
if ADD_WAIFU:
|
||||
js += """
|
||||
<script src="file=docs/waifu_plugin/jquery.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/jquery-ui.min.js"></script>
|
||||
<script src="file=docs/waifu_plugin/autoload.js"></script>
|
||||
"""
|
||||
gradio_original_template_fn = gr.routes.templates.TemplateResponse
|
||||
def gradio_new_template_fn(*args, **kwargs):
|
||||
res = gradio_original_template_fn(*args, **kwargs)
|
||||
res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
|
||||
res.init_headers()
|
||||
return res
|
||||
gr.routes.templates.TemplateResponse = gradio_new_template_fn # override gradio template
|
||||
except:
|
||||
set_theme = None
|
||||
print('gradio版本较旧, 不能自定义字体和颜色')
|
||||
return set_theme
|
||||
|
||||
|
||||
with open("theme/green.css", "r", encoding="utf-8") as f:
|
||||
advanced_css = f.read()
|
||||
12
theme/theme.py
Normal file
12
theme/theme.py
Normal file
@ -0,0 +1,12 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
THEME, = get_conf('THEME')
|
||||
|
||||
if THEME == 'Chuanhu-Small-and-Beautiful':
|
||||
from .green import adjust_theme, advanced_css
|
||||
theme_declaration = "<h2 align=\"center\" class=\"small\">[Chuanhu-Small-and-Beautiful主题]</h2>"
|
||||
else:
|
||||
from .default import adjust_theme, advanced_css
|
||||
theme_declaration = ""
|
||||
|
||||
|
||||
71
toolbox.py
71
toolbox.py
@ -4,6 +4,7 @@ import time
|
||||
import inspect
|
||||
import re
|
||||
import os
|
||||
import gradio
|
||||
from latex2mathml.converter import convert as tex2mathml
|
||||
from functools import wraps, lru_cache
|
||||
pj = os.path.join
|
||||
@ -40,7 +41,7 @@ def ArgsGeneralWrapper(f):
|
||||
"""
|
||||
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。
|
||||
"""
|
||||
def decorated(cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args):
|
||||
def decorated(request: gradio.Request, cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args):
|
||||
txt_passon = txt
|
||||
if txt == "" and txt2 != "": txt_passon = txt2
|
||||
# 引入一个有cookie的chatbot
|
||||
@ -54,13 +55,21 @@ def ArgsGeneralWrapper(f):
|
||||
'top_p':top_p,
|
||||
'max_length': max_length,
|
||||
'temperature':temperature,
|
||||
'client_ip': request.client.host,
|
||||
}
|
||||
plugin_kwargs = {
|
||||
"advanced_arg": plugin_advanced_arg,
|
||||
}
|
||||
chatbot_with_cookie = ChatBotWithCookies(cookies)
|
||||
chatbot_with_cookie.write_list(chatbot)
|
||||
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
|
||||
if cookies.get('lock_plugin', None) is None:
|
||||
# 正常状态
|
||||
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
|
||||
else:
|
||||
# 处理个别特殊插件的锁定状态
|
||||
module, fn_name = cookies['lock_plugin'].split('->')
|
||||
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name)
|
||||
yield from f_hot_reload(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
|
||||
return decorated
|
||||
|
||||
|
||||
@ -68,8 +77,21 @@ def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面
|
||||
"""
|
||||
刷新用户界面
|
||||
"""
|
||||
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时,可用clear将其清空,然后用for+append循环重新赋值。"
|
||||
yield chatbot.get_cookies(), chatbot, history, msg
|
||||
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时, 可用clear将其清空, 然后用for+append循环重新赋值。"
|
||||
cookies = chatbot.get_cookies()
|
||||
|
||||
# 解决插件锁定时的界面显示问题
|
||||
if cookies.get('lock_plugin', None):
|
||||
label = cookies.get('llm_model', "") + " | " + "正在锁定插件" + cookies.get('lock_plugin', None)
|
||||
chatbot_gr = gradio.update(value=chatbot, label=label)
|
||||
if cookies.get('label', "") != label: cookies['label'] = label # 记住当前的label
|
||||
elif cookies.get('label', None):
|
||||
chatbot_gr = gradio.update(value=chatbot, label=cookies.get('llm_model', ""))
|
||||
cookies['label'] = None # 清空label
|
||||
else:
|
||||
chatbot_gr = chatbot
|
||||
|
||||
yield cookies, chatbot_gr, history, msg
|
||||
|
||||
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): # 刷新界面
|
||||
"""
|
||||
@ -192,7 +214,7 @@ def write_results_to_file(history, file_name=None):
|
||||
# remove everything that cannot be handled by utf8
|
||||
f.write(content.encode('utf-8', 'ignore').decode())
|
||||
f.write('\n\n')
|
||||
res = '以上材料已经被写入' + os.path.abspath(f'./gpt_log/{file_name}')
|
||||
res = '以上材料已经被写入:\t' + os.path.abspath(f'./gpt_log/{file_name}')
|
||||
print(res)
|
||||
return res
|
||||
|
||||
@ -445,8 +467,11 @@ def promote_file_to_downloadzone(file, rename_file=None, chatbot=None):
|
||||
import shutil
|
||||
if rename_file is None: rename_file = f'{gen_time_str()}-{os.path.basename(file)}'
|
||||
new_path = os.path.join(f'./gpt_log/', rename_file)
|
||||
# 如果已经存在,先删除
|
||||
if os.path.exists(new_path) and not os.path.samefile(new_path, file): os.remove(new_path)
|
||||
# 把文件复制过去
|
||||
if not os.path.exists(new_path): shutil.copyfile(file, new_path)
|
||||
# 将文件添加到chatbot cookie中,避免多用户干扰
|
||||
if chatbot:
|
||||
if 'file_to_promote' in chatbot._cookies: current = chatbot._cookies['file_to_promote']
|
||||
else: current = []
|
||||
@ -498,23 +523,31 @@ def on_report_generated(cookies, files, chatbot):
|
||||
else:
|
||||
report_files = find_recent_files('gpt_log')
|
||||
if len(report_files) == 0:
|
||||
return None, chatbot
|
||||
return cookies, None, chatbot
|
||||
# files.extend(report_files)
|
||||
file_links = ''
|
||||
for f in report_files: file_links += f'<br/><a href="file={os.path.abspath(f)}" target="_blank">{f}</a>'
|
||||
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}'])
|
||||
return cookies, report_files, chatbot
|
||||
|
||||
def load_chat_cookies():
|
||||
API_KEY, LLM_MODEL, AZURE_API_KEY = get_conf('API_KEY', 'LLM_MODEL', 'AZURE_API_KEY')
|
||||
if is_any_api_key(AZURE_API_KEY):
|
||||
if is_any_api_key(API_KEY): API_KEY = API_KEY + ',' + AZURE_API_KEY
|
||||
else: API_KEY = AZURE_API_KEY
|
||||
return {'api_key': API_KEY, 'llm_model': LLM_MODEL}
|
||||
|
||||
def is_openai_api_key(key):
|
||||
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key)
|
||||
return bool(API_MATCH_ORIGINAL)
|
||||
|
||||
def is_azure_api_key(key):
|
||||
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key)
|
||||
return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE)
|
||||
return bool(API_MATCH_AZURE)
|
||||
|
||||
def is_api2d_key(key):
|
||||
if key.startswith('fk') and len(key) == 41:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key)
|
||||
return bool(API_MATCH_API2D)
|
||||
|
||||
def is_any_api_key(key):
|
||||
if ',' in key:
|
||||
@ -523,10 +556,10 @@ def is_any_api_key(key):
|
||||
if is_any_api_key(k): return True
|
||||
return False
|
||||
else:
|
||||
return is_openai_api_key(key) or is_api2d_key(key)
|
||||
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
|
||||
|
||||
def what_keys(keys):
|
||||
avail_key_list = {'OpenAI Key':0, "API2D Key":0}
|
||||
avail_key_list = {'OpenAI Key':0, "Azure Key":0, "API2D Key":0}
|
||||
key_list = keys.split(',')
|
||||
|
||||
for k in key_list:
|
||||
@ -537,7 +570,11 @@ def what_keys(keys):
|
||||
if is_api2d_key(k):
|
||||
avail_key_list['API2D Key'] += 1
|
||||
|
||||
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个,API2D Key {avail_key_list['API2D Key']} 个"
|
||||
for k in key_list:
|
||||
if is_azure_api_key(k):
|
||||
avail_key_list['Azure Key'] += 1
|
||||
|
||||
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个, Azure Key {avail_key_list['Azure Key']} 个, API2D Key {avail_key_list['API2D Key']} 个"
|
||||
|
||||
def select_api_key(keys, llm_model):
|
||||
import random
|
||||
@ -552,8 +589,12 @@ def select_api_key(keys, llm_model):
|
||||
for k in key_list:
|
||||
if is_api2d_key(k): avail_key_list.append(k)
|
||||
|
||||
if llm_model.startswith('azure-'):
|
||||
for k in key_list:
|
||||
if is_azure_api_key(k): avail_key_list.append(k)
|
||||
|
||||
if len(avail_key_list) == 0:
|
||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源。")
|
||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure和api2d请求源)")
|
||||
|
||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||
return api_key
|
||||
|
||||
4
version
4
version
@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 3.41,
|
||||
"version": 3.45,
|
||||
"show_feature": true,
|
||||
"new_feature": "增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件 <-> 添加了OpenAI音频转文本总结插件 <-> 通过Slack添加对Claude的支持"
|
||||
"new_feature": "支持加载自定义的ChatGLM2微调模型 <-> [改善UI] 动态ChatBot窗口高度 <-> 修复Azure接口的BUG <-> 完善多语言模块 <-> 完善本地Latex矫错和翻译功能 <-> 增加gpt-3.5-16k的支持 <-> 新增最强Arxiv论文翻译插件 <-> 修复gradio复制按钮BUG <-> 修复PDF翻译的BUG, 新增HTML中英双栏对照 <-> 添加了OpenAI图片生成插件"
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user